.“-' ‘2;\;
47 b
é“fﬂff'g International Journal of Scientific Research in Engineering and Management (I[JSREM)
W Volume: 10 Issue: 02 | Feb - 2026 SJIF Rating: 8.659 ISSN: 2582-3930

Modernizing Medicaid Rules with Oracle Intelligent Advisor (OIA) Cloud

Malini Balasubramanyam
Program: Rules movement to Cloud as part of a Technical Upgrade Release

Timeline: November 2024 — May 2025

Executive Summary

Over seven months, AHSS executed a strategic modernization of a large, legacy rules estate—over 10,000 complex
Medicaid rules—transitioning from an embedded, on-premises rules engine approaching end-of-life to Oracle
Intelligent Advisor (OIA) SaaS. The initiative emphasized deep mastery of OIA’s rule design and orchestration model
and delivered a cloud-ready rules architecture that eliminates inter-budget dependencies, resolves evaluation loops, and
preserves decision parity for actively used budgets. The result is a scalable, maintainable, and auditable rules corpus
that aligns with cloud constraints while retaining functional fidelity where it matters to clients.

Background & Motivation

o Retire end-of-life embedded Rule logic and reduce operational risk by moving to OIA SaaS based Rule logic
which will help to leverage cloud-native rule governance, transparency, and auditability.

o Standardize Medicaid budgeting determinations across jurisdictions and households.

o The goal was to keep outcomes the same where clients actively rely on them, while cleaning up how the rules

are designed.

Scope & Objectives

o Primary scope: Medicaid rulebase migration to OIA SaaS, including all active budgets and household/person
scoping.

o Objective 1: Remove rule loops and implicit budget dependencies which was allowed in embedded Rules.

o Objective 2: Infer business-critical inputs inside rules based on explicit business conditions.

o Objective 3: Align outputs between embedded and cloud rules for all actively used business conditions /
scenarios.

o Objective 4: Establish durable rule design patterns (decision trees, ranking/prioritization, scoping) for future
maintenance.

Key Technical Challenges & How We Solved Them

o Medically Needy property budgeting: Some conditions were resolving as “unknown,” creating loops across
budgets. We refactored so each budget is evaluated individually and resolves to a clear Pass/Fail.

. Embedded vs. Cloud behavior: The old system allowed one budget to infer another. In the cloud, we removed
those dependencies and used explicit evaluation order and ranking instead.

o Data handling: We stopped front-loading data. The rules now infer what they need based on business logic and
scope that across household members.

o People relationships: We now prove and store all relevant relationships once within the rulebase based on
identifiers and conditions.

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJ]SREM56594 | Page 1

https://ijsrem.com/

i 2
: Ifiﬁf:’? International Journal of Scientific Research in Engineering and Management (IJJSREM)
W Volume: 10 Issue: 02 | Feb - 2026 SJIF Rating: 8.659 ISSN: 2582-3930

o Reference table updates: The Budget Category Reference Table (Excel) was updated to reflect the new
inference approach.

o Result parity controls: After removing loops, a few attributes diverged between embedded and cloud. We
corrected those by tightening the decision trees and adding controlling logic, so that results align.

o Full Scope Coverage dependency: Removed. Business Scenarios now function independently and are
resolved via ranking / priority ordering.

What to Expect Operationally

o With dependencies removed, more budgets may be created than in the embedded system. That’s expected.
Final selection is now driven by ranking and explicit criteria.

o independently and are resolved via ranking / priority ordering.

Solution Architecture

BEFORE - Embedded Rules

/

MuseSesson Clas

O Boaress
Mogicat Dt Fados with Looped
rehudng Buoge g i r
ssann edabed da Degeroent |
e b Trigens s Fuses 50K
- Caltrach for ary daty
- " necessry Fues
Rust Engen
fophcxion Logh b 2= =
calng Al [FORT—

Fas B
\ --

AFTER - OIA SaaS Migration

o -

s .““ O 53386 Gonerrance Secusey & Corplnie
PN O MOV wiltes SaaS Fue AP =
2 —| ¢
oy i - = Rules Reposit
o . 2 es Repository
Web Portal 3= Interview Rulebase ‘:& o s
/ e 1 ers:onin
Caseworker Ul Deﬁa':{m Packages 9 5SSO, OAuth
BOIVICE | fonMedesd O 2.0,0I1DC
By Y &
Prost iasged reraTon dats 420 l | ':"Ec
v Yore X R | e v — -
J G P Automated Test —
= ‘ Harness
Mooke/ = A Row/Attribute
Assisted - Trees | FueLoops e -~ \‘ >
= | e @ Masking
O - rermoved
0.1-9 E pig CI/CD for Rules
0-Ucg 2 :
Matit (Fiwirance ::::::)"l‘:
Syster- el =
to-System e = - it Audit Trails
Decision servability
Orchestration L‘B
Metrics (Effort and Outcomes)
. Rules transitioned: 10,000+ (portfolio scale; highly complex).
o Budgets covered: 54 total; 46 validated to parity with embedded.

© 2026, 1JSREM | https://ijsrem.com DOI: 10.55041/1JSREM56594 |

Page 2

https://ijsrem.com/

S & Journal

27 2y,
@Rg International Journal of Scientific Research in Engineering and Management (I[JSREM)

W Volume: 10 Issue: 02 | Feb - 2026 SJIF Rating: 8.659 ISSN: 2582-3930
o Parity rate (validated budgets): ~85% (46/54).
o Timeline: ~7 months (Nov 2024-May 2025).
o One-time data alignment: Reference Table data (master data) updated to match new rule inference.
o Loop elimination: All cross-budget loops removed for the 46 validated budgets.
o Decision tree tuning: Applied where minor attribute differences were observed to regain parity.

Governance and Quality

o Rules were aligned to use cases (e.g., medically needy budgeting) during reviews.

o Budget hierarchy and priority were validated to ensure predictable outcomes.

o Removed budget dependencies and replaced them with deterministic sequencing and ranking.
o Decision trees serve as the main traceable artifact for audits and targeted corrections.

Lessons Learned

o Design rules to be independent from the start; don’t rely on one budget to determine another.

o When removing dependencies, expect more generated budgets and handle selection via ranking.
o Keep reference data synchronized with rule logic; small mismatches lead to noisy results.

o Decision trees are effective for pinpoint parity corrections and explainability.

Next Steps

1. Re-confirm the priority ordering against the latest use case documents.

2. Publish a sustainment guide (patterns for scoping, inference, decision trees, and ranking).

3. Keep monitoring for any residual attribute drift and fix via small, targeted rule updates.

© 2026, IJSREM | https://ijsrem.com DOI: 10.55041/IJ]SREM56594 | Page 3

https://ijsrem.com/

