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Abstract - This paper presents the computer-aided design
(CAD) methodology and documentation strategy for a
modular, hydraulically-damped transfemoral prosthetic lower
limb system. Using SolidWorks, individual components—
including the polycentric knee joint, hydraulic damping
mechanism, protective leg case, and energy-storing foot—were
modelled with detailed, dimensioned drawings to ensure
manufacturability and precise assembly. The resulting CAD
assembly demonstrates a fully constrained, functional model
suitable for kinematic analysis and production planning. The
design emphasizes modularity for adjustable height and

component replacement.
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1. INTRODUCTION TO
PROSTHETIC DESIGN

Modern prosthetic limbs rely on modularity, allowing

MODULAR

components to be swapped for repair, height adjustment, or
functional upgrades. For knee amputees, controlling the swing
phase of the knee is critical for a smooth, natural gait. This is
often achieved using mechanical or hydraulic systems. The
CAD approach detailed here leverages precise part modelling to
define all components of a transfemoral prosthesis featuring a

hydraulic damping unit housed within a structural pylon shell.

2. COMPONENT PART MODELING AND
DETAILING

The design is comprised of several interlocking parts, each
modelled parametrically in CAD. Key components were
documented with multi-view engineering drawings (as shown in
the below figures) that include all necessary dimensions (in

millimeters) for fabrication.
2.1 The Knee Joint and Pin

The Knee Joint component (Fig. 1) serves as the proximal
connection point and the main pivot for the system. It is a block
with two distinct pin bores, defined by dimensions such as the
33.75 mm width and the ¥12.00 mm bore, demonstrating the

precise geometry required for bearing surfaces.

The corresponding Knee Joint Pin (fig. 2) is a simple
cylindrical feature ©#12.00 mm with a head, modelled for
attachment and rotational freedom, with a total inserted length

of 27.50 mm.

Fig. 1 Knee Joint
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Fig. 2 Knee Joint Pin

2.2 Hydraulic Damping System

The heart of the design is the damping mechanism,
modelled as two distinct parts:

1. Hydraulic System (Fig. 3): This component
represents the main cylinder or body of the damper.
The drawings indicate critical dimensions, including
an overall body length of 150.00 mm and a ©¥34.00
mm main body diameter, along with internal features
©16.00 mm bore essential for accommodating the

piston shaft and fluid.

- - . .

Fig. 3 Hydraulic system

2. Hydraulic Shaft (Fig. 4): This is the piston rod that
moves axially within the system. It is a slender element

120 mm long designed to withstand axial loads, with a

terminal connection radius of R8.50, ensuring proper

linkage to the knee joint.

O D]

Fig. 4 Hydraulic shaft

2.3 Structural and Adjustable Pylon

The pylon structure is split into a housing and an adjustable

length mechanism:

1. Leg Case (Fig. 5): This part acts as the structural
enclosure for the hydraulic mechanism and the main
load-bearing element of the shank. Its tapered design
provides strength while minimizing volume. Key
features include the proximal connection point R25.00
mm radius for the knee joint and the distal connection

point ?¥50.00 mm for the adjustable height tube.
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Fig. 5 Leg case

2. Height Tube (Fig. 6): This cylindrical component
enables precise adjustment of the prosthetic limb's total

length. The drawing specifies a length of 100.00 mm
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and a primary diameter of ¥40.00 mm, designed to 3. ASSEMBLY AND INTERCONNECTIVITY
interface snugly within the Leg Case. The individual parts are combined in the final Assembly

(Fig. 8 & Fig. 9). This process validates the dimensional
1

| I T [ ] compatibility of all interfaces.
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Fig. 6 Height tube

Fig. 8 Prosthetic Lower Limb
2.4 Energy-Storing Foot Unit

The Foot (Fig. 7) is modelled as a C-shaped, energy-storing The successful mating of components in CAD confirms that:

component, commonly known as a "J-foot." The profile is

defined by a series of precise radii and angles (e.g., 172.41°, 1. The Knee Joint Pin properly constrains the Knee to

137.4°), indicating critical flexibility and load-return the Hydraulic Shaft within the Leg Case.

characteristics. The overall length and thickness of 3.00 mm are 2. The Hydraulic System is rigidly positioned within the
essential parameters for material selection and performance Leg Case.
analysis.
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Fig. 7 Foot

Fig. 9 ASSEMBLY

3. The Height Tube allows for telescoping adjustment

into the distal end of the Leg Case before connecting
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to the Foot. The final assembly represents a
kinematically correct model of the lower limb that can

move through a defined range of motion.

4. CONCLUSION

The CAD models and associated engineering drawings
provide a robust foundation for manufacturing and analysing a
hydraulically-damped prosthetic lower limb. By documenting
each component with precise dimensions and organizing them
into a functional assembly, the design process ensures accuracy,
facilitates quality control, and allows for future modifications.
The use of advanced damping mechanisms, like the hydraulic
unit modelled, highlights the importance of CAD in integrating
complex mechanical systems into comfortable and functional

devices.

5. FUTURE WORK
The CAD models developed represent the ideal geometry;
however, several critical steps are required to transition the

design from a virtual model to a practical medical device.
5.1 Finite Element Analysis (FEA) and Optimization

The primary next step involves conducting detailed Finite
Element Analysis (FEA) using the CAD geometry. This

analysis will:

e Stress Testing: Simulate various load cases
corresponding to different phases of the gait cycle
(e.g., heel strike, mid-stance) to identify high-stress
concentration areas, particularly in the Knee Joint and

the Foot component.

e Topology Optimization: Utilize FEA results to
optimize the mass and material usage of the Leg Case
and Knee Joint components, potentially reducing the
prosthetic's overall weight while maintaining structural

integrity.
5.2 Manufacturing and Material Selection

Based on the FEA results, final material selection and

manufacturing plans must be confirmed:

e Material Validation: Finalize the materials (e.g.,

carbon fiber composite for the Foot, acrospace-grade

aluminum for the Pylon connectors) to meet both

strength and weight requirements.

e Prototyping: Transition to physical prototyping,
potentially utilizing Additive Manufacturing (3D
Printing) for initial component testing and fit checks
before committing to more expensive production

methods like CNC machining.
5.3 Kinematic Simulation and Control Integration

For the hydraulic system, further work is required in

dynamic simulation:

e Dynamic Simulation: Integrate the CAD model with
motion simulation tools to fine-tune the damping
coefficients of the Hydraulic System under different

walking speeds and terrains.

e Sensor Integration: Plan the CAD modifications
necessary to house and integrate electronic sensors and
microprocessors, which could allow the hydraulic unit
to evolve into a semi-active or microprocessor-

controlled knee (MPK) system in the future.
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