
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 06 ISSUE: 01 | JAN - 2022 SJIF RATING: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11410 | Page 1

Monitoring Performance of Golang Applications Using Code Profiling

Nilesh Jagnik

Mountain View, USA

nileshjagnik@gmail.com

Abstract—Debugging and monitoring are essential

for building scalable and reliable applications. Often,

real-world applications have performance

regressions. These can be hard to root cause using

conventional debugging and monitoring tools. Code

profiling tools can be quite handy for such scenarios.

Profiling tools can be used to detect hotspots, i.e.,

parts of code that have poor performance and high

resource utilization. Profiling tools provide deep

insights into the runtime behavior of an application

which can be useful in general. The pprof package

can be used for profiling of Golang applications. This

tool is easy to use and can provide information about

a lot of runtime aspects of a program. In this paper,

we take a look at pprof, how to use it in Golang and

review the benefits and caveats associated with its

use.

Keywords—software monitoring, software

performance, code profiling

I. INTRODUCTION

While building and maintaining software at large

scale, eventually there may be some unexpected behavior

in the system. This could be in the form of performance

regressions, reduced throughput, increased latency, etc.

The root cause for such issues could vary a lot. Some

examples are memory leaks, expensive computations,

programming errors or even external RPCs. Detecting

unexpected behavior is especially important when

applications are required to scale to large workloads. The

problem is that often the root causes are hard to detect.

There are many debugging tools that developers can

use to detect issues in code. These could be as simple as

printing logs to get visibility into the internal state of the

system. Or running the program in debug mode using a

debugger to step through each line of code. These

approaches can detect simple problems with code. But

for real world applications, it is hard to form a bigger

picture of an application’s health using these approaches.

There is a need to get a top-down view of the system to

understand where the bottlenecks actually are.

One way to get a wholistic view of an application is

to get the thread dump. This would help get a snapshot

of the system to see its running state. However, a

snapshot still captures one instant of time and may not be

representative of what is actually happening over a

longer period of time. The best way to get what we want

is by using profiling tools.

Profiling tools give us an overview of different

properties of a running a running program, which can be

used to study the behavior of different parts of code

during runtime. Profiling tools can provide visibility into

an application’s performance which is quite hard to get

using any other tool. Golang has support for pprof, which

is a profiling tool that can provide visual analysis of

system data. This tool is quite easy to install and use and

is almost indispensable for real-world Golang

applications.

II. WHAT ARE PROFILING TOOLS

Profiling tools (or profilers) capture the running state

of a program, including CPU, memory, and utilization of

several other resources. In addition to utilization, they

also capture the distribution of resources utilized by

different parts of code. The data captured by profilers

(called profiles) can usually be converted into text

reports or visualized as graphs and figures for easier

understanding. Profilers can capture data over a time

interval to profile the average state of a program over

time. All these qualities make profilers an excellent tool

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 06 ISSUE: 01 | JAN - 2022 SJIF RATING: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11410 | Page 2

for learning about nuanced behaviors exhibited by

different parts of a program or server.

III. REASONS TO USE PROFILING TOOLS

A. Identifying Performance Bottlenecks

Profilers can be used to pinpoint parts of code that

consume excessive resources, and cause performance

regressions. Developers gain visibility into the

problematic parts of the system. Development cycles can

then be focused on improvements that will lead to the

largest performance gains.

B. Insight into Application Behavior

Profilers are not just useful when the performance of

the system has deteriorated. Continuously profiling the

system provides insight into how it behaves under

different scenarios. Profiling is a great tool for asserting

that the system behaves as expected even under load.

This can help ensure scalability of services.

C. Optimization of Resource Utilization

When certain resources are expensive, it is important

to write code that will optimally use those resources.

Profiling can be used to detect when certain resources are

leaking or being wasted. This can lead to reduced costs

for running services.

D. Enhancing User Experience

Profiling ensures that a service has good

performance. In addition to performance, it also ensures

that services are stable and reliable. This leads to

improved user experience.

E. Preventing Waste of Development Time

Making incremental updates to an application’s code

and profiling it ensures that development time is not

wasted doing work which later needs to be reverted.

IV. PROFILING WITH PPROF

The pprof package in Golang can be used for easy

creation of profiles. These profiles can be visually

represented with the help of Graphviz. Let us take a look

of how to use pprof.

A. Code Setup

The use of pprof requires some setup in code to allow

the collection of profiles. The first thing that is needed is

to import the pprof package into your program. Then, if

the application isn’t already running an HTTP server, it

must be started to allow interactions with the profiler at

runtime. Fig. 1 shows an example program that has some

memory intensive and CPU intensive tasks. It imports

the pprof package and runs an HTTP server. We will use

run the profiler on this program.

Fig. 1. An example that uses pprof for profiling.

B. CPU Profile

Now that the code it set up, it is easy to collect a CPU

profile. Fig. 2 shows the command that must be run from

the terminal to look at a 60s CPU profile. The use of the

-web flag tells the pprof to generate a graphical view.

Fig. 2. Command for generating a 60s CPU profile.

C. Analyzing Profiles

The command in Fig. 2 prompts the creation of a

graph showing the CPU resource consumption

distribution. Fig. 3 shows the graph generated for the

import (

 "fmt"

 "net/http"

 "sync"

 // This import is necessary

 _ "net/http/pprof"

)

func cpuIntensiveTask(wg *sync.WaitGroup) {

 defer wg.Done()

 for {

 acc := 1

 for i:= 0; i < 10000000; i++ {

 acc *= i;

 }

 }

}

func memoryIntensiveTask(wg *sync.WaitGroup) {

 defer wg.Done()

 data := make([]int, 1)

 for {

 data = append(data, 10000000)

 }

}

func main() {

 go func() {

 fmt.Println(http.ListenAndServe("localhost:6060",

 nil))

 }()

 var wg sync.WaitGroup

 wg.Add(1)

 go cpuIntensiveTask(&wg)

 wg.Add(1)

 go memoryIntensiveTask(&wg)

 wg.Wait()

}

$ go tool pprof -web

http://localhost:6060/debug/pprof/profile?seconds=60

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 06 ISSUE: 01 | JAN - 2022 SJIF RATING: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11410 | Page 3

code in Fig. 1. We can see that even though the CPU

intensive task consumes ~40% of CPU resources, there

are two other tasks which are using the remaining

resources. The first of these is the memory intensive task

which uses up ~39% of CPU resources – almost as such

the CPU intensive task. Apart from this, there is also a

garbage collection task which uses 20% of CPU

resources. This reveals to us that the memory intensive

task is equally expensive CPU-wise as the CPU intensive

task.

Fig. 3. 60s CPU profile genereated by pprof (truncated for

simplicity).

D. Web Interface

In addition to the call graph generated by the

command in Fig. 2, it is also possible to request a web

interface to analyze generated profiles. There are

multiple views allowing users to look at profile data in

different ways.

E. Other Resources

Similar to the CPU profile shown in Fig. 3, several

other resources can be monitored. This includes heap,

allocs, mutexes and blocks.

V. CAVEATS OF PROFILING TOOLS

A. Overhead

Profiling tools can add some performance overhead

due to work required for generating profile data. In some

extreme cases, this may also affect the performance and

resource utilization being observed.

B. Accuracy

Profilers usually present approximations and not

exact results. The exact behavior of the system may vary

somewhat from the data presented by profiling tools.

C. Environment

Profilers may present different data in different

environments, because the application itself may behave

differently. It is important to do profiling in the same or

similar environment and load where the application is

going to be deployed.

D. Complex Interpretations

In a real-world application, call graphs are get quite

large, making them difficult to read. In addition, it is

important to learn how to correlate observed data to root

causes. Sometimes these root causes are not obvious

from profile data.

CONCLUSION

Production behavior of real-world applications can be

hard to predict. Profiling tools bring visibility into the

system behavior which is unlikely to be obtained from

other debugging and monitoring tools. They tell us how

different parts of code utilize different resources. Pprof

is really easy tool to use for Golang application. It

provides information about a lot of different resources

during runtime. However, as with any other tool,

profilers are not suited to satisfy every debugging and

monitoring requirement. Knowing about their strengths

and limitations allow effective use of profiling tools to

get deeper insights about an application’s behavior.

REFERENCES

[1] “pprof Documentation (Dec 2021),”

https://pkg.go.dev/net/http/pprof

[2] “pprof (Dec 2021),” https://github.com/google/pprof

[3] Prathitha Iyengar, “All You Need to Know About

Code Profiling Tools and How to Choose One (Dec

2021),” https://www.headspin.io/blog/all-you-need-

to-know-about-code-profiling-tools-and-how-to-

choose-one

[4] Scott Gangemi, “Analyzing and improving memory

usage in Go (Jul 2021),”

https://medium.com/safetycultureengineering/analy

zing-and-improving-memory-usage-in-go-

46be8c3be0a8

[5] Mark Gritter, “Taming Go’s Memory Usage, or How

We Avoided Rewriting Our Client in Rust (Sep

2021),” https://www.akitasoftware.com/blog-

http://www.ijsrem.com/
https://pkg.go.dev/net/http/pprof
https://github.com/google/pprof
https://www.headspin.io/blog/all-you-need-to-know-about-code-profiling-tools-and-how-to-choose-one
https://www.headspin.io/blog/all-you-need-to-know-about-code-profiling-tools-and-how-to-choose-one
https://www.headspin.io/blog/all-you-need-to-know-about-code-profiling-tools-and-how-to-choose-one
https://medium.com/safetycultureengineering/analyzing-and-improving-memory-usage-in-go-46be8c3be0a8
https://medium.com/safetycultureengineering/analyzing-and-improving-memory-usage-in-go-46be8c3be0a8
https://medium.com/safetycultureengineering/analyzing-and-improving-memory-usage-in-go-46be8c3be0a8
https://www.akitasoftware.com/blog-posts/taming-gos-memory-usage-or-how-we-avoided-rewriting-our-client-in-rust

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 06 ISSUE: 01 | JAN - 2022 SJIF RATING: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM11410 | Page 4

posts/taming-gos-memory-usage-or-how-we-

avoided-rewriting-our-client-in-rust

[6] Alexandra, “What is Code Profiling? Learn the 3

Types of Code Profilers (May 2020),”

https://stackify.com/what-is-code-profiling

http://www.ijsrem.com/
https://www.akitasoftware.com/blog-posts/taming-gos-memory-usage-or-how-we-avoided-rewriting-our-client-in-rust
https://www.akitasoftware.com/blog-posts/taming-gos-memory-usage-or-how-we-avoided-rewriting-our-client-in-rust
https://stackify.com/what-is-code-profiling/

