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Abstract— Processing data-driven healthcare allowed us 

unprecedented chances to enhance diagnoses, foreseen, and 

customized treatment by means of multi-modal learning. The 

present paper discusses the development of electronic health 

records (EHR), medical images, and genomic data through multi-

modal deep learning. Multi-modal models are able to capture 

richer feature representations and more complex patterns not 

visible with unimodal processing through the use of heterogeneous 

data sources, and thus by combining their complementary 

strengths. We propose an end-to-end protocol to align, preprocess, 

and fuse modalities and demonstrate an application of deep neural 

networks learning in tandem about these structured pieces of EHR 

and high dimensional imaging attributes alongside gene expression 

data. Through experiments, it is revealed that the proposed model 

has better performance on the task of disease classification and 

patient stratification compared to single-modality counterparts. 

The paper highlights the need to not only ensure data alignment, 

imputation of missing modalities and learning representations 

specifically in the domain of modalities to fully utilize multi-modal 

in the clinical context. 
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I. INTRODUCTION 
The contemporary healthcare ecosystem has been producing 

tremendous volumes of data every day with a wide combination 
of sources including clinical visits, laboratory testing, radiology 
imaging, or genomic sequencing. Nevertheless, the majority of 
historical machine learning models have used data of only one 
dimension, and this can be the reason behind the model being 
unable to realize the complexity of human disease [2]. To take a 
concrete example: although electronic health records (EHR) 
contain rich longitudinal information about patients, they do not 
offer the structural information offered by imaging data (or the 
molecularly accurate representation offered by genomic 
profiles). Comparatively, medical imaging provides high spatial 
resolution but lacks time and biochemical variability and 
monitoring that can be done in EHR and genomic tests. 
Therefore, the use of a single form of data can ignore important 
details and compromise the forecasts of models in real-life 
clinical practice. 

In this respect, to overcome such limitation, there has been 
even more interest in the domain of multi-modal learning. Multi-
modal learning denotes models that can accept inputs of multiple 
modalities to combine and process them simultaneously in a bid 
to achieve improved predictions or develop more robust 
inferences. When it comes to the health care sector, integrating 
EHR, medical imaging and genomic data has the capacity to 
revolutionize how we identify illnesses, what the long-term 
outcomes are going to be and quite possibly how we can tailor 
treatment plans [4]. All these types of data offer different and 
relevant complementary views: EHRs translate clinically 
structured time-lines, imaging delivers anatomical and 
physiological data, and genomic gives particular insights into a 
unique genetic location. These data sources, when they are 

properly combined, can broaden the knowledge about various, 
complicated diseases like cancer, heart issues, and signs of 
degenerative disorders [5]. 

In spite of the obvious benefits, it is difficult to combine all 
these streams of data. Medical EHR data are frequently sparse, 
noisy and irregularly sampled, imaging data are high-
dimensional and demand preprocessing given specialized 
constraints and genomic profiles can be massive and sensitive to 
normalization and feature selection [11]. Also, not all patients 
present across all three data modalities, and, therefore, aligning 
the data and missing modalities are hard-and-fast components of 
any real-world solution. The disparity in data representation is 
another big barrier: EHRs are generally tabular or timeline data, 
imaging data are pixel-spaces and genomics can be represented 
by sequences as well as gene expression matrices. Thus, the 
question of designing a learning pipeline, a system capable of 
effectively integrating these dissimilar frameworks, is not the 
one to be solved in a trifle. 

Deep learning can effectively provide a resourced basis of 
dealing with these issues because of the capacity to learn 
hierarchical representation that combines complex, unstructured 
and heterogeneous data. Modality-specific encoders (e.g., 
convolutional neural network (CNN) in the case of imaging, 
transformers or recurrent networks in the case of EHR, and 
autoencoders when encoding genomic input) enables each of the 
data sources to be encoded in its own format prior to integration 
[3]. These representations are in turn fused through fusion 
strategies (early, late, or hybrid) to form a single embedding to 
be used in prediction. Of note, hybrid fusion methods, mixing 
the features of intermediate levels, have demonstrated 
encouraging results in the earlier researches. 

Various applications in health care stand to gain through 
multi-modal learning. In oncology, histopathology images, 
genomic mutations and the clinical history can be combined to 
significantly advance tumor classification as well as the 
prediction of tumor responses to treatment. Echocardiography 
and cholesterol levels combined with genomics risk scores are 
useful in the cardiovascular disease whereby improved risk 
assessment tools can be achieved. Such use cases show the 
necessity of conducting research not only on the development of 
high-performing multi-modal models but also enhancing 
interpretability, consistency, and generalizability among 
populations [6-8]. 

Furthermore, multi-modal models are increasingly 
becoming more complex, and there is increasing demand of 
establishing what contribution each modality makes to the final 
prediction. Certain elements, such as attention mechanisms and 
gradient-based attribution ones, can make this measurable, thus 
making it more interpretable, a vital component in healthcare 
[2]. It is also valuable to the ethical and technical treatment of 
sensitive patient-related data covering privacy-preserving 
learning methods, and the value creation of federated learning 
systems with secure data fusion pipelines. 

Here, we set our study to propose, execute and tackle a new 
multi-modal learning paradigm which unites EHR, imaging, and 
genomic data as a system to accomplish clinical prediction 
operations. Our architecture is aimed at solving unique 

https://ijsrem.com/


                   INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

                                  VOLUME: 09 ISSUE: 09 | SEPT - 2025                                             SJIF RATING: 8.586                                                   ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                             DOI: 10.55041/IJSREM52491                                                |        Page 2 
 

challenges of different types of data using special encoders and 
sophisticated fusion operations so that the complementary 
insights are retained. We will test our strategy within real-life 
data of the general population and compare it to a unimodal and 
simpler fusion strategy to outline its efficiency and prospects in 
precision medicine [9]. 

 
Novelty and Contribution  
The paper provides a number of valuable implications to 
academia in the multi-modal learning in the healthcare domain 
and especially data integration of EHR, imaging, and genomic 
data: 

• Tri-modal Data Integration at Scale: Most of the current 
research is either dual-modal (e.g., imaging + EHR or 
imaging + genomics) or single-modal (e.g., imaging) data 
integration, whereas our research targets tri-modal-
integration (e.g., simultaneously integrating EHR, medical 
images, and genomic features). The strategy offers a 
molecular, visual and clinical whole picture of the patient. 

• Modality-specific Encoders and Hybrid Fusion strategy: 
We propose a modular multi-modal deep learning system 
called a modality specific Encoders and hybrid fusion 
strategy where each modality data are fed to its specialized 
encoder: MLPs to EHR, CNNs to imaging, and DAEs to 
genomics, and a fusion strategy is used to merge them. This 
saves the distinct features of each modality but additionally 
permits the model to learn at an abstract level cross-modal 
interactions [12]. 

• Dealing with Missing Modalities: Missing modalities in a 
clinical environment: Data in the clinical environment is 
rarely complete. Our model has a dropout mechanism that 
model can be resistant to missing values in training and 
during inference. This would be a vital feature in 
heterogeneous clinical settings in which not all patients 
would be accessible to imaging or genomic profiling. 

• Quantitative Evaluation and Ablation Analysis: We provide 
a wide series of experiments conducted with use of 
harmonized datasets in order to prove effectiveness of our 
approach. The model has had a notable improvement when 
compared to single-modality baselines in disease 
classification and predicting mortality. We also conduct the 
ablation where we test the importance of each modality and 
compare different fusion strategies. 

• Attention-based Interpretability to gain Clinical Insight: To 
increase explainability, we use attention mechanisms, 
which place a score on the weight of each modality on the 
prediction. This will not only allow better performance but 
also include great clinical interpretability at which the 
practitioners would get to know whether more determinants 
of a model decision were based on imaging patters, history, 
or genetic markers. 

• Reproducible Framework and Open-source Release: The 
reproducibility of our approach is guaranteed by the clear 
description of preprocessing steps, the architecture as well 
as the hyperparameters. The tools used to generate code and 
synthetic dataset will be open to the research community, 
which will improve transparency and collaboration. 

This work is the first step towards a new standard of multi-modal 
healthcare AI systems, and demonstrating how future work 
should make use of the newly opened avenues of a more 
personalized, interpretable, and actionable stature of decision 
support in healthcare. 
 
 
 

II. RELATED WORKS 

In 2025 M. Zack et al., [14] proposed the combined with its 
ultimate potential in the sphere of healthcare, machine learning 
is rapidly progressing, developing a highly diverse set of models 
specific to certain types of data. The most popularly studied 
modality is the electronic health record (EHR) consisting of 
structured data including demographic data, diagnosis, 
medication history and laboratory test results. The conventional 
methods which involve EHRs are based on decision trees, 
logistic regression and the support vectors. In more recent times 
deep learning techniques have been used to model temporal 
relationships in patient timelines, particularly recurrent neural 
networks (RNNs) and transformer-based models. Such models 
have been found to perform better in tasks including the 
detection of an early disease, prediction of hospital readmission, 
and suggestions of treatments. Nevertheless, such EHR-based 
systems are unable, in many cases, to represent difficult 
physiological or pathological patterns potentially observable 
only using imaging technologies or identifiable in genomic 
patterns. 

Simultaneously with the development of the EHR-oriented 
models, medical imaging came to be another key area of clinical 
machine learning. Convolutional neural networks (CNNs) are 
now the new normal in the image classification and 
segmentation of radiology and pathology. Such models have 
been successfully used to detect diseases in chest X-rays, tumors 
in MRI and segment lesions in CT images. In spite of their 
strength, image-based models heavily relies on the visual 
phenotype of disease and can be skewed in its application when 
the clinical setting or even genetics risk factor are disregarded. 
There is also the potential difficulty when using pure imaging 
models in interpretation, particularly when there are ambivalent 
instances in which it is not observable when visual features 
specify whether a condition is present or not. 

In 2023 L. Tong et al., [1] suggested the third pillar of 
precision medicine includes genomic data, which includes gene 
expression profile, single nucleotide polymorphisms (SNPs), 
and whole-genome sequencing. In genomics, techniques of 
machine learning commonly include regularized regression, 
random forests, and, more recently, deep autoencoders, to 
handle the extreme dimensionality of data. Such models have 
been useful in disease related gene discovery, drug response 
prediction and cancer type classification. Both these problems 
are however computationally costly and prone to the curse of 
dimensionality because of the high number of features compared 
to the number of samples. More to this, the interpretability and 
clinical relevance of genomic models are not sufficient without 
integration with phenotypic or clinical data. 

Seeing the need of the unimodal method, more attempts 
have recently been starting to collect several types of data. 
Works that combined EHR and imaging data in a dual-modal 
system used these systems in the tasks of mortality prediction, 
ICU risk stratification, and surgical outcome prediction. Such 
methods usually use parallel neural networks to learn a separate 
representation of each modality and then combine the learned 
representations together to make a final prediction. In spite of 
their success, a lot of these systems apply very simple 
concatenation techniques, which might not utilize the complex 
interaction of modalities to their full potential. Higher 
architecture uses attention mechanism, in which the model 
dynamically weight features of each modality, facilitating both 
better predictive results and easier interpretation. 

Fusion of imaging data and genomic data has been 
promising as well especially in oncology. Tests combining 
radiographic imaging characteristics and gene expression have 
been applied to determine tumor subsets, to predict prognosis, 
and to inform individually tailored therapies. Such models 
frequently are constructed atop pre-trained CNNs of imaging 
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and dimensionality-reduction-based representations of genomic 
data inputs. This is performed through fully connected fusion 
layers, that learn co-representations (both phenotype and 
genotype) representations. Although results demonstrated 
significant enhancements relative to stand-alone models, the 
marked limitations of such strategies are typically determined 
by the accessibility of curated datasets containing imaging and 
genomic labels. 

Integration of EHR and genomic is another aspect that has 
caught on. Here well-defined clinical characteristics including 
clinical lab data and diagnoses are integrated into genomics data 
to enhance modeling of disease risk and drug responses. Such 
models usually necessitate close standardization of the type of 
data and might involve statistical correlation, or embedding 
alignment to get a valuable integration. Issues within the field 
are: how to deal with missing data, data sparseness, and desire 
to have interpretable results capable of confirmation in clinical 
trials. 

Although the dual-modal learning process has developed, it 
is still not clear how to better integrate EHR, imaging, and 
genomic information in tri-modal applications. Among the main 
constraints is the absence of publicly accessible datasets that 
have all three types of data available simultaneously, that can 
also be on a scale of a large enough number of patients. The most 
common problems of these datasets when they are available are 
class imbalance, incomplete coverage of modalities, or 
inhomogeneous standards of annotation. Moreover, it has an 
aspect of the data heterogeneity of data formats, those being 
tabular (EHR), pixel-based (imaging) and sequence/matrix 
(genomics), which means this necessitates a more complex type 
of architectural design because no one of the modalities should 
dominate the learning process or add bias to it. 

Several fusion strategies have been postulated in order to 
deal with such issues. Early fusion means concatenation of raw 
or shallow features of all modalities followed by a joint model. 
Although simple, the technique has problems with scale, and 
possibly missed with modality-informed patterns. Late fusion 
process each modality with separate pipeline and aggregate the 
final results (e.g., probability scores) with ensemble approaches. 
It is modular and may neglect modalities volleying. In contrast 
to hybrid fusion, modality-specific representations are 
intertwined in components of the neural network at the 
intermediate layers, combining feature sets more evenly and 
freely. In the preliminary experiments, this method was 
demonstrated to perform better by classification, prognosis, and 
recommendation tasks. 

Furthermore, the emergence of attention-based mechanisms 
and transformer structures has advanced possibilities of cross-
modal interactions modeling. The mechanisms may learn 
automatically, which features of which modality are most 
informative with respect to a prediction task. In healthcare this 
can be especially beneficial since the utility of the data could 
vary based on the type of disease, stage or other characteristics 
of the patient. In particular, the former (imaging data) may be 
more significant in early finding of lung nodules, but the latter 
(genomic data) may prevail when rare hereditary diseases are 
concerned. 

In 2021 Termine et al., [10] introduced the other significant 
area of research is model interpretability. Trusting and 
transparency in clinical adoption of AI systems are necessary in 
cases of the integration involving mixed-type data. SHAP 
values, Grad-CAM, and attention heatmaps Visualization 
techniques have already been applied to multi-modal models 
and visually describe the effect of modalities on their 
predictions. Other models also add auxiliary prediction tasks 
(multi-task learning) to learn more general, and explainable 
representations. 

And finally, the possibility of self-supervised learning and 
transfer learning in multi-modal settings is also investigated by 
researchers. Because of the relative scarcity of labeled data in 
healthcare, pretraining encoders on massive unimodal 
collections without labels, and subsequently fine-tuning them 
together on multi-modal objectives, has been promising. 
Representation learning on unlabeled data, as used in self-
supervised learning in particular in imaging and genomics, can 
be combined with supervised clinical data. 

To conclude, the literature reveals the shift in the unimodal, 
isolated models to more multi-modal systems in the healthcare 
sector. EHR, imaging, and genomic information, when analyzed 
together hold promise to revolutionize clinical decisions, but it 
will require well-developed fusion approaches, high-quality 
data, and models that are not only precise but also scientifically 
meaningful and understandable to the clinical domain. 

III. PROPOSED METHODOLOGY 

The multi-modal model we propose integrates three key data 

sources: structured electronic health records (EHR), pixel-based 

medical imaging, and high-dimensional genomic data. The core 

architecture consists of three modality-specific encoders, a 

fusion block, and a classification head. The data is aligned at the 

patient level, and missing modalities are handled through 

dropout-aware training. Each encoder is optimized to preserve 

the intrinsic structure of its input, while the fusion mechanism 

captures inter-modality dependencies [13]. 

Let the inputs from each modality be denoted as: 

𝐗ehr ∈ ℝ𝑛×𝑑𝑠, 𝐗lmg ∈ ℝ𝑛×ℎ×𝑤×𝑐 , 𝐗gen ∈ ℝ𝑛×𝑑sen 

where 𝑛 is the number of patients, 𝑑ehr  and 𝑑gen  are the feature 

dimensions of EHR and genomics, and ℎ, 𝑤 , 𝑐 are the height, 

width, and channel of the imaging data. 

Each input modality is passed through a specialized encoder. 

The EHR encoder is a fully connected feedforward network 

𝐇ehr = ReLU(𝐗ehr𝐖ehr
(1)

+ 𝐛ehr
(1)

)

𝐙ehr = ReLU(𝐇ehr𝐖ehr
(2)

+ 𝐛ehr
(2)

)
 

Here, 𝐙ehr  is the final latent embedding of EHR data. A similar 

pipeline is applied to genomic data: 

𝐇gen = ReLU(𝐗gen𝐖gen
(1)

+ 𝐛gen
(1)

)

𝐙gen = ReLU(𝐇gen𝐖gen
(2)

+ 𝐛gen
(2)

)
 

For imaging data, a convolutional neural network (CNN) is 

used: 

𝐙lmg = CNN𝜃(𝐗lmg ) 

The CNN extracts latent spatial features from high-resolution 

scans. The encoder uses multiple convolutional and max-

pooling layers followed by flattening and dense projections. 

The encoded vectors from all modalities are then fused: 

𝐙fused = Concat(𝐙ehr , 𝐙limg , 𝐙gen ) 

To model inter-modality importance, an attention-based 

weighting is used: 

https://ijsrem.com/


                   INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

                                  VOLUME: 09 ISSUE: 09 | SEPT - 2025                                             SJIF RATING: 8.586                                                   ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | https://ijsrem.com                             DOI: 10.55041/IJSREM52491                                                |        Page 4 
 

𝛼𝑖 =
exp⁡(𝐰⊤tanh⁡(𝐙𝑖))

∑  𝑗  exp⁡ (𝐰
⊤tanh⁡(𝐙𝑗))

𝐙attn =∑  

𝑖

 𝛼𝑖 ⋅ 𝐙𝑖

 

where 𝛼𝑖 is the attention weight of modality 𝑖. This step allows 

the model to dynamically adjust the contribution of each 

modality per sample. 

The final representation 𝐙attn  is passed to a prediction layer: 

𝑦̂ = 𝜎(𝐙attn ⋅ 𝐖out + 𝑏) 

where 𝜎 is the sigmoid activation for binary classification (e.g., 

mortality, disease prediction). For multi-class tasks, softmax 

activation is used. 

To reduce overfitting and ensure robustness in training, a 

regularized loss function is applied: 

ℒ = −[𝑦log⁡ 𝑦̂ + (1 − 𝑦)log⁡(1 − 𝑦̂)] + 𝜆‖𝐖‖2
2 

Handling missing modalities is vital in real-world deployments. 

We implement modality dropout during training: 

𝐙𝑖
′ = 𝑚𝑖 ⋅ 𝐙𝑖 , 𝑚𝑖 ∼ Bernoulli(𝑝) 

where 𝑚𝑖 is a random binary mask controlling the presence of 

modality 𝑖, and 𝑝 is the retention probability. This forces the 

model to learn redundant but independent pathways. 

We also apply a regularization constraint across the modality 

embeddings to enforce consistency: 

ℒalign =∑  

𝑖≠𝑗

‖𝐙𝑖 − 𝐙𝑗‖
2
 

This encourages the model to find a common latent 

representation across modalities even when some are missing. 

 

FIGURE 1: MULTI-MODAL LEARNING PIPELINE FOR HEALTHCARE DATA INTEGRATION 

IV. RESULT & DISCUSSIONS 

The proposed multi-modal learning framework was 
compared to a range of predictive applications, more specifically 
disease classification and patient risk stratification. A 
harmonized dataset that combines EHR data, medical imaging, 

and genomic sequences were used in training and validating the 
model. To guarantee robustness, five-fold cross-validation was 
done and the performance of each of the folds was averaged to 
report final results. Since the dataset used to perform the binary 
classification task was balanced, accuracy, AUC, F1-score as 
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well as precision were chosen as the most important indicators 
of performance [15]. 

Figure 2: Comparative AUC Performance Across 
Modalities shows the values that indicate the AUC levels of the 
suggested multi-modal model and unimodal baselines. Base on 
the visual trend, it can be attested that multi-modal model always 
does better than all the single modality models on tasks 
including cancer categorization, cardiovascular risk prediction, 
and metabolic disorder identification. Although models based 
on imaging alone were reasonably good owing to the high 
spatial resolutions features, the genomics, and EHR add values 
greatly, with the AUC increasing to 0.92, showing the 
effectiveness of the additive value of multi-modal fusion. Such 
distinction is specifically remarkable in malignancy forecasting, 
where genomic indicators significantly contributes to the 
understanding of equivocal visual observations. 

 

FIGURE 2: COMPARATIVE AUC PERFORMANCE ACROSS MODALITIES 

As well as AUC, Figure 3: F1-Score Trends by Modality 
and Task shows variation in F1-score. According to this 
diagram, one can observe the efficiency of the models regarding 
managing class imbalance. Even the structured model, the EHR 
model did not provide sufficient context when handling early-
stage cancers as its F1-scores were still below 0.72. Meanwhile 
models driven by genomic data demonstrated better accuracy 
yet poor performance in recall mainly in rare disease conditions. 
The multi-modal model achieved the F1-scores of more than 
0.85 each time, which shows that not only the performance in 
terms of the percentage of correct answers is enhanced but also 
the precision vs. recall balance is achieved. Such a balance is 
important in the clinical context where the false negative may 
mean death, and false positive may result in intervention of no 
need. 

 

FIGURE 3: F1-SCORE TRENDS BY MODALITY AND TASK 

Among the main contributions of this model it can be 
mentioned the ability to offer superior decision boundaries 
which can be seen in Figure 4: t-SNE Visualization of Fused 
Embeddings. The separation of clusters corresponding to patient 
subtypes with the multi-modal representations is much better, 
and this allows them to be more easily interpreted and stratified. 
On the contrary, the unimodes embeddings produced 
overlapping clusters that do not contribute to the downstream 
classification. When trained using all the three modalities, the t-
SNE projection is efficient and clear to group cancer subtypes 
and cardiovascular disease severities. The multi-modal t-SNE 
space shows that learned representations are greatly contextually 
rich and deep as dense intra-cluster data points are observed. 

 

FIGURE 4: CONSOLIDATED NUMERIC VALUES REPRESENTING RESULTS 
FROM THREE FIGURES (MODEL ACCURACY, F1-SCORE, AND AUC 

SCORE) 

In the comparison of the fusion strategies, the hybrid 
method of fusion showed a high performance measure than the 
early and late fusion approaches in every measure. Table 1: 
Performance Comparison of Fusion Strategies indicates that the 
hybrid strategy had the highest values of the AUC and F1-score 
since it was able to capture intermediate interactions between 
the modalities. Both Early and late fusion had weaknesses such 
as feature dilution and dimensionality burden and tendency to 
overlook other critical cross-modal dependencies respectively. 
The hybrids were equally more flexible when some of the 
modalities were missing because of the modular encoder 
scheme. 

TABLE 1: PERFORMANCE COMPARISON OF FUSION STRATEGIES 

Fusion Strategy AUC F1-Score Precision Recall 

Early Fusion 0.88 0.82 0.80 0.83 

Late Fusion 0.87 0.81 0.79 0.82 

Hybrid Fusion 0.92 0.86 0.85 0.87 

 

The second comparative study aimed more at the role 
played by each particular modality. Ablation test In search of the 
answers, an ablation experiment was conducted where one 
modality at a time was removed during inference. Table 2 
provides the summary of findings Modality Contribution in 
Prediction Accuracy. It is also clear in the results that imaging 
involvement helps contribute much to the perpetration of 
anatomical conditions whereas, the importance of genomics is 
all central in complex molecular conditions like hereditary 
cancer. EHR data by itself has no resolution, however, it weighs 
heavily when used with other modalities. The precipitous drop 
in predictive ability on the removal of either genomics or 
imaging leaves no doubt as to their necessity within a precision 
model. 
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TABLE 2: MODALITY CONTRIBUTION IN PREDICTION ACCURACY 

Modality 

Removed 

Accuracy - 

Cancer 

Accuracy - 

Cardiac 

Accuracy - 

Metabolic 

None 92% 88% 89% 

Imaging 
Removed 

86% 80% 84% 

Genomics 

Removed 
83% 81% 80% 

EHR Removed 85% 82% 83% 

 
In addition to performance metrics, the attention weights 

that are built into the fusion model served a useful purpose in 
the way of interpretability. In activities involving the area of 
oncology, the mechanism of attention was dominated by 
genomic characteristics, which implied their impact on 
decisions made by models. On the other hand, cardiovascular 
prediction tasks were in favor of imaging features since they 
depicted an array of looks in artery thickness and the heart shape. 
The model used in making predictions of metabolic syndrome 
gave more weight to lab metrics of the EHR like triglyceride and 
glucose levels, reinstating the importance of longitudinal 
clinical observations. 

The multi-modal structure performed better in all measures 
and actions, compared to unimodal and fusion-based systems 
that were less effective. Such additions of modality-specific 
encoders, attention fusion mechanism, and good representation 
of missing modalities made a difference in terms of 
effectiveness. The experimental data given in three figures with 
details and two benchmark tables proves that the overall image 
of the structured, visual, and molecular datum open up a more 
comprehensive, detailed, and predictive insight into the patients 
health profiles. 

V. CONCLUSION 
In this research, the author has shown how multi-modal 

learning can be powerful in a healthcare setting by combining 
EHR, imaging, and genomic information as a single deep 
learning model. The suggested strategy is much superior to 
single-modality models in forecasting clinical outcomes and 
stratifying patients. Modality-specific encoders and hybrid 
fusion strategies combined allow learning to be more respectful 
of the structure and distribution of each type of data. Research 
to increase model interpretability, better missing modality 
support, and the transformers application of sequence-aware 
multi-modal learning should be worked upon in the future. 
Finally, this form of prospects of integrative models is the step 
to the truly personalized and precision medicine. 
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