

Multi-Robot Traversal of 3D Terrain Using Adversarial Reinforcement Learning

Authors: Nishu Singh, Deepika Shrivastava Affiliation: Medicaps University Email: singh31nishu@gmail.com, deepika27shrivastava@gmail.com

Abstract

Autonomous navigation of multi-robot systems in unstructured 3D terrain remains a critical challenge for search-and-rescue (SAR) operations. We present a novel adversarial reinforcement learning (ARL) framework that enables robust sim-to-real transfer for quadrupedal swarms traversing rubble-like environments. Our approach combines:

- A multi-agent proximal policy optimization (MAPPO) baseline with adversarial perturbations
- A domain randomization engine simulating debris variability (slope, friction, obstacle density)
- Hardware-in-the-loop (HIL) validation using ANYmal-C robots

Experimental results demonstrate a 92% success rate in unseen terrains, outperforming classical SLAM-based methods by 37%. This work bridges the sim-to-real gap for legged swarm robotics in disaster scenarios.

Keywords: Multi-Robot Systems, Adversarial RL, Sim-to-Real, Quadrupedal Locomotion, 3D Navigation

1. Introduction

1.1 Problem Statement

Disaster environments feature highly irregular terrains (collapsed buildings, uneven rubble) where wheeled robots fail, and GPS-denied conditions preclude traditional navigation. Legged swarms offer mobility advantages but face:

- **Dynamic instability** in granular media
- Inter-robot collisions in dense formations
- Sim-to-real transfer gaps in physics modeling

1.2 Contributions

- 1. First adversarial RL framework for multi-quadruped 3D traversal, with:
 - Opponent policies generating terrain perturbations
 - Latent space invariance training
- 2. Real-world validation on 6 ANYmal-C units (Fig. 1)
- 3. **Open-source simulation toolkit** (PyBullet + ROS2)

T

2. Related Work

Approach	Limitations				
Centralized Dynamics)	MPC	(Boston	Scalability issues		
Decentralized	Poor transfer		sim-to-real		
Classical SLAM (ORB-SLAM3)			Fails rubble	in	featureless

Our method uniquely combines adversarial robustness with decentralized execution.

3. Methodology

3.1 Adversarial RL Formulation

- Agents: NN ANYmal-C robots with shared policy $\pi\theta\pi\theta$
- Adversary: Perturbation policy $\pi \phi \pi \phi$ modifies:
 - Ground friction coefficients ($\mu \in [0.2, 1.2] \mu \in [0.2, 1.2]$)
 - Debris height maps ($\pm 0.3m \pm 0.3m$ noise)
 - Reward function
 - \circ *Rt*= 0.3*R*progress + 0.2*R*stability0.5+ 0.5*R*swarm

3.2 Sim-to-Real Pipeline

- 1. Domain Randomization: 200+ terrain variants in PyBullet
- 2. Latent Space Alignment:
 - Train VAE on real-world depth scans
 - Minimize KL divergence between sim/real features
- 3. Hardware Deployment:
 - Onboard computation: NVIDIA Jetson AGX Orin
 - Communication: ROS2 DDS over UWB

4. Experiments

4.1 Simulation Benchmarks

Metric Success Rate Collisions/hr		Our (ARL)	MAPP SLA O M			
		92%	68%	55%		
		1.2	4.7	N/A		
Energy (J/m)	Efficiency	480	620	-		

4.2 Real-World Tests

- Scenario: Mock earthquake site (Fig. 3a)
- Results:
 - o 89% success in transfer (vs. 51% for non-adversarial baseline)
 - \circ 2.3× faster debris clearance vs. single-robot

5. Discussion

5.1 Key Findings

- Adversarial training reduced sim-to-real performance drop from $41\% \rightarrow 8\%$
- Swarm coordination emergent from local LiDAR observations only

5.2 Limitations

- Requires >10,000 sim hours for convergence
- UWB ranging errors >3m degrade performance

6. Conclusion

We demonstrated that adversarial RL enables reliable multi-robot navigation in 3D disaster environments. Future work will:

- Integrate **neuromorphic control** for energy efficiency
- Develop failure recovery via robot-to-robot physical assistance

References (Selected)

- OpenAI (2023). Robust Multi-Agent RL via Adversarial Populations. Science Robotics.
- Hutter et al. (2024). ANYmal-C: A Quadruped for Real-World Deployment. IEEE T-RO.
- [Full list: 25 references with DOI links]

T