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Abstract :  Mobile robots frequently exhibit abnormal 

behaviors that can impair navigation despite the rapid 

progress of navigation algorithms. Modern robots need to be 

able to recognize these unusual behaviors in order to reach 

high levels of autonomy. Methods for reactive anomaly 

detection Detect anomalies poor task executions based on the 

current state of the robot and thus lack the capability to warn 

the robot before a malfunction actually happens. Due to the 

possibility of harm to the robot and the environment, such a 

warning delay is undesirable. For robot navigation in 

unstructured and uncertain situations, we suggest a proactive 

anomaly detection network (PAAD). Based on the 

anticipated movements from the predictive controller and the 

current observations from the perception module, PAAD 

forecasts the likelihood of future failure. Effective fusion of 

multi-sensor signals to provide reliable anomaly detection as 

seen in the field when there is sensor occlusion environments. 

Our tests on data from field robots show that our model can 

catch abnormal actions in real-time while retaining a low 

false detection rate in congested areas, outperforming earlier 

methods in failure identification 

 

IndexTerms - Face recognition, bias, fairness, soft-biometrics, 

analysis, privacy, biometrics 

I.  INTRODUCTION 

Our tests on data from field robots demonstrate that 

our model outperforms earlier methods in failure 

identification by detecting aberrant activities in real-time 

while maintaining a low false detection rate in crowded 

regions. Robots may still have trouble in real-world situations 

due to the complexity of the surroundings, the variation of the 

terrain, and the unreliability of their sensors, despite recent 

research that has significantly improved trustworthy 

autonomy for robot navigation [2]–[5]. A lack of a detection 

system for Anomaly behaviors prior to failures could result 

in collisions that harm robots and plants. The robot can be 

prevented from entering failure modes by the detection of 

such anomalous actions, opening up opportunities for 

recovery maneuvers to be used and the mission to be 

completed. 

Deep learning-based anomaly detection (AD) techniques 

have been widely adopted in robotic applications [6]. Many 

early studies approached the AD problem in a reactive 

manner. These reactive anomaly detectors can only draw 

conclusions based on sensory data that is currently available 

(such as velocity, torque, and LiDAR measurements), hence 

they are unable to anticipate potential faults in the future.  

Due to the alert delay, the robot may as a result continue to 

sustain damage from collisions (Fig. 1(b)) or enter critical 

states (Fig. 1(c)), the recovery from which is beyond the 

autonomy of the robot. Proactive anomaly detection is an 

alternate approach that forecasts the likelihood of future 

failure based on the planned actions and the current sensory 

observation. LaND [11] and BADGR [12] have both 

investigated this type of prediction model to determine the 

best course of action for outdoor navigation. However, when 

implementing autonomous systems in typical outdoor 

contexts, the AD problem for robot navigation across natural 

field environments creates difficulties that are typically not 

taken into account. First, during operation, both the 

perception system and the control system display high levels 

of uncertainty. The sensory signals produced by weeds, 

lodged plants, and low-hanging leaves are typically loud and 

obscure useful information for AD tasks (such as the robot's 

relative position in relation to the crop rows) (Fig. 2(a)). 

 While this is going on, the robot's movements (such 

as its linear and angular velocities) are constantly distorted 

by the changing wheel-terrain, interactions [2], which can be 

problematic for pattern recognition by introducing significant 

volatility in control signals. Second, the regular sensor 

occlusion makes it difficult for the robot to perceive its 

surroundings (Fig. 2(b)). Due to the lack of a robust 

perception system, anomaly detectors that rely on a single 

sensor modality [7], [11], or [12] are susceptible to being 

easily tricked. We take a proactive approach to the problem 

of anomaly detection by identifying aberrant behaviors based 

on recent observations. Formally, we define an anomalous 

navigational behavior for a robot as a sequence of future 

motions that includes at least one time step with failure within 
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the prediction horizon. A series of control actions or a 

predetermined path can be used to represent this future 

motion. 

We develop a Proactive Anomaly Detection 

network, or PAAD, that uses the predicted motions from the 

predictive controller and the most recent observations from 

the perception system to reason about the likelihood of failure 

at each time step within the future time horizon. The final 

likelihood of failure is produced by independently extracting 

and then fusing features from several modalities twice. To 

enhance generalization capacity and increase robustness 

against noisy sensory signals, we train PAAD with a mixed 

cost function that consists of a prediction job and a 

reconstruction task. 

The following is a summary of our contributions: 

1) For robust perception in unstructured and uncertain 

situations, we present a unique deep neural network 

architecture termed PAAD that successfully fuses 

multi-sensor signals. 

2) To perform proactive anomaly detection and to 

enable effective feature extraction from noisy 

signals, we use a low-variance picture 

representation of intended motions rather than raw 

control actions 

3) In a real-time test, our suggested detector captures 

abnormal behavior while maintaining a low false 

detection rate, outperforming existing approaches in 

failure identification performance on an offline real-

world navigation dataset.    

 

II. RELATED WORK: 

 

A significant issue that has been researched across a 

variety of academic fields and application domains is 

anomaly detection, commonly referred to as outlier detection 

or novelty discovery [6], [13]. In robotics, AD has been 

utilized to identify manipulation task and navigation task 

failures [14, 15]. Learning-based AD algorithms have come 

a long way thanks to recent research efforts. The encoder-

decoder technique for multi-sensor anomaly detection 

(EncDec-AD) introduced by Maalhotra et al. employs 

reconstruction error to identify abnormalities [10]. A 

multimodal LSTM-based variational autoencoder (LSTM-

VAE) that combines sensory signals and reconstructs their 

predicted distribution is the idea put forth by Park et al. Then, 

abnormalities are found using a reconstruction-based 

anomaly score [8]. In our earlier research, the AD problem is 

framed as a multi-class classification problem, and the 

supervised variational autoencoder model (SVAE) is 

suggested [7]. However, these reactive strategies are unable 

to identify unusual behaviors in advance of failures, which 

means that safety is not necessarily increased [17]. 

The predictive model for upcoming navigational 

events (like collisions) proposed in LaND [11] and BADGR 

[12] is the piece of work that most closely resembles PAAD 

in the proactive anomaly detection/predictive collision 

avoidance field. The neural network forecasts the likelihood 

of a collision for each time step inside the prediction horizon 

using an image and a series of future control actions as input. 

It has been demonstrated that the model performs 

consistently well at detecting anomalies in sidewalk and off-

road areas with lots of open space. The unimodal input, 

however, causes sensor occlusion, and the input uncertainty 

makes it difficult for the network to acquire valuable features. 

In this study, we combine camera and LiDAR data to enhance 

the robot's perception abilities, and we replace noisy control 

actions with an image representation of the planned path to 

speed up model training. Traversability analysis in 

unstructured environments is another actively investigated 

area of research that is pertinent to our work. 

The topic of evaluating how difficult it will be for a ground 

vehicle to navigate a terrain is known as terrain traversability 

analysis [18]. In order to predict vibrations using only picture 

texture data, Bekhti et al. train a Gaussian process regressor 

using terrain photos and acceleration signals [19]. With a 

2.5D grid map centered on the vehicle frame and containing 

both geometry and semantic information about the 

surroundings, Mat- urana et al.'s real-time mapping technique 

is proposed [20]. Traversing a traversable terrain does not 

necessarily mean that the robot behavior is not anomalous, 

despite the methodologies of traversability estimation and 

anomaly detection being identical. However, such behavior 

should be classified as an anomaly as the robot is deviating 

from the specified navigation task. In field environments, for 

example, a trajectory that drives off the trail from one to 

another due to large gaps between crops can be collision free 

and incur no additional traversal cost. 

 

 
 

 The camera-lidar fusion is a developing research 

theme that has been used in numerous robotics and 

autonomous driving projects [21]. Depth completion [22], 

object detection [23], object tracking [24], and simultaneous 

localization and mapping (SLAM) [25] are examples of 

common uses. However, The camera-lidar fusion is a 

developing research theme that has been used in numerous 

robotics and autonomous driving projects [21]. Depth 

completion [22], object detection [23], object tracking [24], 

and simultaneous localization and mapping (SLAM) [25] are 

examples of common uses. However, one typical assumption 
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that these application domains mak is that the camera and 

LiDAR data are consistent (i.e., the perceived worlds from 

the two modalities can be matched with each other). Such an 

assumption is false in a field setting since one of the sensors 

can frequently become obscured, which makes it more 

difficult to use earlier methods. The perception error caused 

by sensor occlusion is frequently treated as noise in 

agricultural settings and is handled by the Kalman filter [4], 

[5]. Although the issue of occlusion can be somewhat 

overcome by such filtering techniques, the necessary 

premise—for example, that the center line is unobstructed—

does not always hold true in practice. To tackle sensor 

occlusion in congested surroundings, we create a novel 

sensor fusion approach in this work. 

 

III. METHOD 

 

Our objective is to create an AD module that will 

allow a mobile robot to recognize unusual behaviors while 

navigating in the field. We suppose that the sensor 

observations at time t, ot, are multi-modal and comprise 

range data from a 2D LiDAR and an RGB picture from a 

camera, represented by xc RH W C. A predictive controller 

is used by the robot to prepare a series of actions for the 

following T time steps in a receding horizon fashion.The 

current intended path is further retrieved from future actions, 

and the resulting path is represented as a distinct picture (pt, 

RH, W1) with the path projected onto a clear front-view 

image plane.The job for the AD module is to map, for each 

time step along the path as indicated in Fig. 3, from a 

collection of current sensor observations and a planned path 

(ot, pt) RHW C RL RHW 1 to a sequence of navigation 

failure prob- abilities. 

PAAD may leverage the modality from the planning 

module to detect abnormal behaviors, which is superior to the 

current reactive anomaly detection method. Such a proactive 

nature of PAAD alerts the robot before entering critical states 

from which human interventions are required to recover the 

robot. Furthermore, resistance against uncertainty and sensor 

occlusion in complicated field situations is provided by the 

efficient merging of multi-modal perception signals. 

Contrarily, in anomaly detectors that utilise unimodal sensory 

signals, incorrect detection of an anomaly can be commonly 

generated by camera occlusion [11], [12]. Last but not least, 

the adopted visual representation of the planned path has less 

variance than the raw control actions, making the training 

process more effective. 

 

3.1 Data Collection 

 

The TerraSentia robot is a remarkably small, four-

wheeled, skid-steering mobile robot that can be used for 

automated phenotyping of crops [2]. A forward-facing 

monocular camera sensor (OV2710) and a 2D horizontal-

scanning LiDAR (Hokuyu UST-10LX) with a 270-degree 

field of view and 0.25-degree angular resolution are both 

installed on the robot. An RGB picture measuring 240 by 320 

pixels and a vector of 1081-dimensional LiDAR ranges make 

up the observation. Perspective projection is used to create an 

image representation of the intended path pt from the onboard 

model predictive controller's output. The robot is either in a 

normal state or fails the navigation task, according to the 

ground truth probability of failure yt. 

 The robot uses an autonomous control policy during 

data gathering; in this case, it is the LiDAR-based navigation 

algorithm for agricultural mobile robots [26]. The human 

deactivates the autonomy once the robot enters a failure mode, 

moves it back to the center line, and then activates it again. 

We define the failure mode as any condition that the robot 

enters and cannot leave without human assistance in order to 

complete the specified navigation job (such as following a 

crop row). At each time step t, the robot gathers the 

observations, planned trajectories, and drive modes (ot, pt, yt). 

We point out that PAAD does not demand for any 

information beyond what is normally gathered to assess robot 

autonomy. In actuality, the data gathering procedure outlined 

above is intended to demonstrate LiDAR-based autonomy for 

agricultural robots rather than PAAD [4], [26].  

 

3.2 Model Architecture 

 

We refer to PAAD as a function g: (ot, pt) yt:t+T 

that receives as input a collection of current observations and 

a planned path (ot, pt) and produces a series of failure 

probability. within the predicted horizon, yt:t+T. In Fig. 3, 

the network structure is displayed. For each modality, 

separate feature generators (FGs) are created to separate out 

reliable features from various inputs. We use feature-level 

camera-lidar fusion rather than signal-level fusion, which can 

struggle with inconsistent perception signals caused by 

frequent blockage of one of the sensors, to improve the 

perception capabilities in harsh and congested agricultural 

settings. The final result is an assessment of the likelihoods 

of navigation failure along the intended course over the 

following T time steps based on the most recent observations. 

The planned path and RGB image are processed by two 

distinct convolutional pipelines to provide, respectively, 

camera features fcamera and path features fpath. 

Following each CNN module comes a flattening process. We 

crop the path image based on the area of interest (ROI), 

preventing the model from receiving unnecessary 

information that does not pertain to the path. We adapt the 

concept from SVAEs [7] to extract features from the LiDAR 

point cloud. As a regularization [27]–[29], the reconstruction 

task in the LiDAR pipeline drives the encoder to learn 

representative characteristics of high-dimensional LiDAR 

data that are essential to both the downstream inference and 

generative model. The model tends to perform better at 

generalization on the inference task when the reconstruction 

task is given more focus [7]. We approximate the latent 

variable z's posterior distribution as a Gaussian with 

variational parameters: 

1) qφ(z|xl) = N (z | μφ(xl), diag(σφ(xl))), where μφ(xl) 

is a mean vector, σφ(xl) is a variance vector, and 

the nonlinear transformations μφ : RL 

 → Rd and σφ : RL 

 → Rd are parameterized by multilayer perceptrons 

(MLPs) in the encoder. For the downstream 

prediction task, we choose LiDAR features as: 

flidar = [μφ(xl), σφ(xl)]. For the reconstruction 

task,1 the decoder uses a generative model of the 

form: where MLP(z; θ) is a mean vector formed by 

http://www.ijsrem.com/
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a nonlinear transformation of the latent variable z, 

and σ is a hyperparameter.Here, we choose the 

nonlinear transformation to be an MLP 

parameterized by θ. Note that the reconstruction 

branch in LiDAR pipeline follows the structure of 

a vanilla variational autoencoder (VAE).pθ(xl|z) = 

N (xl | MLP(z; θ), σ2 · I).  

2) Fusion Module: To form observation features 

from sensors, we employ a feature-level camera-

lidar fusion by using a multi-head attention (MHA) 

with a residual connection [30]: which corresponds 

to the attention module in Fig. 3. fobs = [fcamera, 

flidar] + MHA(Q, K, V = [fcamera, flidar]. The 

concatenation of the terms fcamera and flidar, 

which can be thought of as a sequence of length 2, 

is chosen as the question, key, and value in the same 

way. 

For camera-lidar fusion, we prefer an MHA to an MLP 

because we anticipate the model to produce observation 

features dependent on the signal quality of each sensor. The 

point cloud should contribute more to observation features 

than the image, for instance, when the LiDAR view is clear 

but the camera is obscured by leaves. The estimated 

likelihood of failure in the following T time steps is produced 

by the final fusion of observation features and path features 

at time t: yt:t+T = Sigmoid (FusionFC ([fobs, fpath])). A 

sigmoid function is used to ensure that the final output 

probabilities are scaled into the valid range. 

 

3.3 Training 

 

Using a ResNet-18 backbone that has been trained on a 

visual navigation problem, the ImageCNN in camera pipeline 

can anticipate a robot's heading and placement in a crop row. 

Utilizing an RGB front-view picture [5]. We build the 

ImageCNN. Module by cutting off the visual navigation 

model just before completely interconnected layers. The 

ImageCNN's weights are  after  pretraining fixed Denoting 

the dataset collected in Section III-A by D, we specify the 

overall loss function for PAAD as: 

L = ∑(ot,pt,yt:t+T )∈D 

α · LBCE(g(ot, pt), yt:t+T ) 

− Eqφ(z|xl)[log pθ (xl|z)] + DKL[qφ(z|xl)‖pθ (z)], (6) 

 

 

 

where LBCE is the binary cross-entropy loss, α is a hyper 

parameter controlling the relative weight between the 

discriminative and generative learning, and pθ (z) is a prior 

distribution over the latent variable z. As in SVAEs, we 

choose pθ (z) to be a standardGaussian distribution z ∼ N (0, 

I) There are two tasks in the training objective: a prediction 

task and a task of reconstruction. The prediction error is 

penalized by the first term in (6). We established = 0.1 N, 

where N represents the total number of data points in [7] 

format. the loss function's final two terms, which the lower 

bound on the evidence (ELBO) is likewise the negative Plain 

VAEs punish the LiDAR data reconstruction mistake. 

 

The last KL divergence term can be viewed as a 

regularization. The inference model and the generative model 

can be optimized jointly by stochastic gradient descent of the 

overall objective function (6). To enable the backpropagation 

through the sampling layer within the network, a common 

reparameterization trick is used to move the sampling process 

to a stochastic input layer [31]. 

 

IV. EXPERIMENTAL ANALYSIS 

 

In our tests, we assess the performance of PAAD's 

anomaly identification on 4.1 km of real-world navigation 

data that the TerraSentia robot collected in corn fields 

between September 2018 and October 2020. Under a 

congested canopy, the robot maneuvers between rows of 

crops without harming the vegetation. Depending on the 

surrounding circumstances, the robot may or may not fail 

during a run. The robot's reference speed is set to 0.6 m/s, and 

the distance between any two points on its intended path from 

the onboard MPC is 0.2 meters. We subsample the data to 3 

Hz after data collection to align the ground truth failure 

probability with the expected one along the intended path. 

We employ a prediction horizon of T = 10 time steps (i.e., a 

lookahead distance of 1.8 meters) for all proactive anomaly 

detectors. Figure 4 shows a portion of our dataset 2 in visual 

form. We create the training set and test set from trials on 

independent days to reduce the unfavorable impact on the 

evaluation of various models introduced by the covariance of 

datapoints closely connected in time. The training set has 

29292 datapoints and 2258 aberrant behaviors that were 

gathered over five days, whereas the test set has 6869 

datapoints. datapoints and 689 unusual actions from the data 

collected over two more days. The information was gathered 

in part. At the Autonomous Farm of Illinois. We perform 

under-sampling of normal cases and over-sampling of 

anomalous cases on the training set to balance the learning of 

both types of behaviors while keeping the test set unchanged. 

In tests utilizing PAAD, we build the PathCNN with 

three convolutional layers and the following filter parameters: 

stride 2, filter number 8, and filter size 16 32. A max pooling 

layer comes after each convolutional layer. One hidden layer 

with 64 hidden units is how the ImageFC is implemented. 

Similar to SVAEs, the LiDAR pipeline's encoder is built from 

one hidden layer and 128 hidden units, while the decoder has 

a similar construction to the encoder. We select a latent space 

with 32 dimensions (z R32). The MHA has eight attention 

heads and the FusionFC has two hidden layers with 128 T 

hidden units each in the fusion module. The network is 

http://www.ijsrem.com/
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trained using ReLU activation functions and an Adam 

optimizer with a constant learning rate of 0.0005. 

 

4.1 Baselines and Numerical Evaluation 

 
We evaluate the performance of the proposed method on 

the test set, along with the following baseline methods: 

• CNN-LSTM: A convolutional recurrent deep neural 

network with an image-based, action-conditioned 

architecture that was first described in LaND [11] 

and BADGR [12]. Each of the future T control 

actions is progressively processed by an LSTM unit, 

which is initialized with image features produced by 

a backbone convolutional network, and the 

corresponding projected failure probability is output. 

• A feedforward convolutional neural network 

processing an image and a robot's actions for 

behavior prediction, according to Cui et al. [32]. A 

multimodal fusion network for robot navigation in 

challenging situations is NMFNet [33].  

• We take the two branches that process sensor 

observations using LiDAR data and 2D pictures to 

calculate future failure probabilities, and we swap 

out the 3D point cloud branch for an MLP that 

analyzes robot actions. The approaches listed above 

are cutting-edge, and to our knowledge, our study is 

the first to explore with sensor fusion of 

unprocessed camera and LiDAR data for proactive 

anomaly identification. For either unimodal 

perception tasks for anomaly detection tasks 

involving multimodal sensory signals or similar 

signals. For to make an accurate comparison, we use 

all of the backbone convolutional neural networks 

used in a variety of camera techniques. 

 

To our knowledge, our work is the first to experiment sensor 

fusion of raw camera and LiDAR data for proactive anomaly 

detection, and the above baselines are state-of-the-art 

methods for either anomaly detection tasks using unimodal 

perception signals or related tasks using multimodal 

perception signals. For a fair comparison, we implement all 

the backbone convolutional neural networks used across 

different methods for the camera image as the ResNet-18 

pretrained on visual navigation task, as described in Section 

III-C. All methods are trained on the same. 

Quantitatively, we compare different methods using the 

following two metrics: 

• F1-score: A comprehensive threshold-dependent 

index considering precision P and recall R, which 

can be expressed as 2PR/(P + R). We set the 

threshold to be 0.5, i.e., we declare a navigation 

failure if the predicted probability of failure is 

greater than that of being “normal” at a point in time. 

Dataset. 

• PR-AUC: A threshold-independent index indicating 

the area under the Precision-Recall Curve. PR-AUC 

describes the ability to distinguish between positive 

and negative samples for anomaly detection models. 

 

 

 
 

fit probability density functions (pdfs) for normal and failure 

samples on the test set, respectively. We use a Gaussian 

kernel and apply the transformation trick [35] to make sure 

that the estimated pdfs have support on [0,1]. The results are 

presented in Table I and Fig. 5. As shown, PAAD achieves 

the best F1-score and highest PR-AUC with a large margin 

over other baselines. Although the CNN-LSTM model has 

been shown to have reliable anomaly detection performance 

for navigation tasks on sidewalks and off-road environments 

with large free space [11], [12], the method has not been 

shown to generalize well to harsh and cluttered field 

environments with limited open space.  

We argue that this is due to the fact that the control 

actions in such uncertain environments are high variance, 

making the network struggle with identifying true anomalous 

actions from noises. In fact, all the three baselines, which take 

the future control actions as input, make overconfident 

predictions for false positives and false negatives as shown in 

Fig. 5. As a result, these three models in general show inferior 

F1-score and PR-AUC compared to PAAD, which makes use 

of the image representation of the planned path. Despite an 

additional sensor modality from LiDAR, NMFNet fails to 

provide a solid improvement over unimodal approaches, 

which highlights the importance of robust feature generator 

and fusion mechanism in highly uncertain environments. 

http://www.ijsrem.com/
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Fig. 6 shows the anomaly detection results of 

different methods in several challenging scenarios. In the first 

row, the LiDARbased navigation algorithm falsely predict 

the orientation of the crop rows, making the robot take a left 

turn. As is further illustrated in Fig. 7, CNN-LSTM and 

NMFNet make the prediction of navigation failure merely 

based on the image without considering the future behavior, 

thus refusing to declare failures in such a clear image near the 

center line. Cui et al. [32] successfully detects a failure at the 

end of the path; however, the failure alert is too late to prevent 

the catastrophic collision. By contrast, the start time of the 

collision is more accurately 

predicted by PAAD. The second row shows a near-miss case 

where the robot manages to recover to the center line from 

the edge. Although PAAD falsely predicts a failure at the last 

point with a score of 0.52, most part of the path is classified 

as normal correctly. However, all the other three methods 

generate overconfident scores for the entire path. The last row 

shows a normal case where the robot is tracking the center 

line while the camera is occluded by low-hanging leaves. The 

three baselines all failed while PAAD successfully 

distinguishes such normal behavior from an anomalous one. 

To further verify our hypothesis that noisy actions, as 

opposed to planned paths, hinder the network from learning 

useful features of robot’s behavior, we feed an image and 

several sequences of actions/paths sampled from the test set 

through different models to predict probability of failure 

within the horizon. As shown in Fig. 7(a), the three networks 

based on control actions always predict normal behaviors no 

matter how the future motion looks like, which indicates that 

the models are only making use of the image for anomaly 

detection. By contrast, PAAD can predict navigation failures 

based on the planned path, thus producing more promising 

results as shown in Fig. 7(b).  

We further conduct an ablation study to reveal the 

benefit of different components in PAAD. The ablated 

versions of PAAD that we consider include: 1) LiDAR only: 

only the LiDAR pipeline is used to generate the observation 

features; 2) camera only: only the camera pipeline is used to 

generate the observation features; 3) w/o MHA: the residual 

MHA module is replaced with a simple MLP; 4) w/o 

reconstruction: the reconstruction branch in LiDAR pipeline 

is removed during training; 5) BEV: the planned path is 

projected to bird’s eye view (BEV) instead of front view. The 

results are summarized in Table II. With an extra sensor 

modality, PAAD is able to correctly identify normal cases 

where either camera or LiDAR is occluded, which can 

otherwise be classified as anomalies by LiDAR-only or 

camera-only. Such strengthened perception capability results 

in a higher F1-score and higher PR-AUC. The ablation study 

on other key components indicates the importance of each 

design choice to the overall performance of PAAD. 

 

 

 
 

 
 

4.2 Real time Test 

 

To test the ability of PAAD to alert the robot before 

executing an anomalous behavior, we further perform a real-

time anomaly detection task on additional data.3 In this 

experiment, the robot was driven by the vision-based 

navigation algorithm [5] on 1.3 km of field trails, consisting 

of 750 m of common field environment and 550 m of densely 

weedy environment. Three and eight human interventions 

were required to reset the robot after an anomaly occurred in 

common and weedy environment, respectively. We define 

the current anomaly score as a linear combination of 

probabilities of failure within the prediction horizon:  

 
where γ is a discount factor compensating the uncertainty in 

the future, and β is a scaling factor ensuring that the 

summation ∑ 𝑦𝑘
𝑇−1

𝑘=0
 equals 1. At each time step t, we 

declare an anomaly if st is greater than 0.5. To calibrate the 

difficulty of the task, we implement a LiDAR baseline for the 

real-time test. Given range measurements within the forward-

facing 90◦ field of view, we declare an anomaly if 85% of the 

viewis blocked by objectswithin 0.3meters.We also compare 

http://www.ijsrem.com/
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PAAD against a unimodal approach, Cui et al. [32], and a 

multimodal approach, NMFNet [33], from Section IVA. To 

increase the robustness against frequent occlusions of camera 

and LiDARsensors in cluttered field environment, all the 

anomaly detectors declare an anomaly only when 3 

consecutive anomaly scores are over 0.5. We implement all 

the methods at a frequency of 10 Hz. Table III summarizes 

the results. As shown, PAAD is able to detect anomalies 

reliably in both environments while maintaining a low false 

detection rate. On the contrary, the three baselines struggle 

with sensor occlusions and noisy actions in such cluttered and 

uncertain environments, thus frequently intervene the 

navigation system during the normal operation of the robot. 

Furthermore, we observe that PAAD is able to 

 
capture some rare failure modes, such as driving off the trail 

due to large gaps between crops. Scenarios in which PAAD 

failed usually contain dense weeds on the path and/or the 

robot executing near-miss maneuvers (see video). The 

detection of these anomalies could be potentially improved 

with additional data. Lastly, the reliable anomaly detection 

performance of the PAAD shown in the LiDAR-based 

navigation system (Section IV-A) and the vision-based 

navigation system (Section IV-B) indicate that our method is 

agnostic to the underlying controller and can be applied to 

general systems that employ predictive control. 

 

V. CONCLUSION 

 

In this work, we presented a proactive anomaly 

detection method for robot navigation in challenging field 

environment usingmulti-sensor signals. Our approach 

predicts the probability of future failure based on the planned 

path and the current sensor observation. By introducing a 

feature-level camera-lidar fusion, the detector successfully 

detected navigation failures in agricultural environment with 

higher F1-score and PR-AUC than other previous state-of-

the-art methods. We also demonstrated the reliable anomaly 

detection performance of the PAAD with low false alarms in 

the real-time test. Although our method showed robustness in 

uncertain environments, false detection is unavoidable when 

both camera and LiDAR are blocked. Active perception, 

which encourages the robot to collect richer sensory signals 

through additional interaction with the environment, could 

decrease perception uncertainty in such cases of full sensor 

occlusion and would be a future work direction. 

 

 

REFERENCE 

 

[1] R. Xu, C. Li, and J. M. Velni, “Development of an 

autonomous ground robot for field high throughput 

phenotyping,” IFAC-PapersOnLine, vol. 51, no. 17, pp. 

70–74, 2018. [2] G. Balakrishnan, Y. Xiong, W. Xia, and 

P. Perona, “Towards causal benchmarking of bias in face 

analysis   algorithms,” in Proc. 16th Eur. Conf. Comput. 

Vis.,Glasgow, U.K., Aug. 2020, pp. 547–563 

[2]   Z. Zhang, E. Kayacan, B. Thompson, and G. Chowdhary, 

“High precision control and deep learning-based corn 

stand counting algorithms for agricultural robot,” Auton. 

Robots, vol. 44, no. 7, pp. 1289–1302, 2020. [4]   N. 

Almudhahka, M. S. Nixon, and J. S. Hare, “Human face 

identification via comparative soft biometrics,” in Proc. 

IEEE Int. Conf. Identity Security Behav. Anal. 2016, pp. 

1–6. 

[3]   E. Kayacan, Z.-Z. Zhang, and G. Chowdhary, “Embedded 

high precision control and corn stand counting algorithms 

for an ultra-compact 3D printed field robot,” in Proc. 

Robotics: Sci. Syst., 2018. [6]   F. Boutros, N. Damer, P. 

Terhörst, F. Kirchbuchner, and A. Kuijper, “Exploring 

the channels of multiple color spaces for age and gender 

estimation from face images,” in Proc. 22th Int. Conf. Inf. 

Fusion (FUSION), Ottawa, ON, Canada, Jul. 2019, pp.1–

8. 

[4]   A. E. B. Velasquez, V. A. H. Higuti, M. V. Gasparino, A. 

N. Sivakumar, M. Becker, and G. Chowdhary, “Multi-

sensor fusion based robust row following for compact 

agricultural robots,” 2021, arXiv:2106.15029. 

 [5]  A. N. Sivakumar et al., “Learned visual navigation for 

under-canopy agricultural robots,” in Proc. Robotics: Sci. 

Syst., Jul. 2021. 

[6]   R. Chalapathy and S. Chawla, “Deep learning for anomaly 

detection: A survey,” 2019, arXiv:1901.03407. 

[7]  T. Ji, S. T. Vuppala, G. Chowdhary, and K. Driggs-

Campbell, “Multimodal anomaly detection for 

unstructured and uncertain environments,” in Proc. Conf. 

Robot Learn., 2020, pp. 1443–1455. 

[8]   D. Park, Y. Hoshi, and C. C. Kemp, “A multimodal 

anomaly detector for robot-assisted feeding using an 

LSTM-based variational autoencoder,” IEEE Robot. 

Automat. Lett., vol. 3, no. 3, pp. 1544–1551, Jul. 2018. 

[9]   D. Park, H. Kim, and C. C. Kemp, “Multimodal anomaly 

detection for assistive robots,” Auton. Robots, vol. 43, no. 

3, pp. 611–629, 2019. 

[10] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. 

Agarwal, and G. Shroff, “LSTM-based encoder-decoder 

for multi-sensor anomaly detection,” 2016, 

arXiv:1607.00148. 

[11] G. Kahn, P. Abbeel, and S. Levine, “Land: Learning to 

navigate from disengagements,” IEEE Robot. Automat. 

Lett., vol. 6, no. 2, pp. 1872–1879, Apr. 2021. 

[12] G. Kahn, P. Abbeel, and S.Levine, “Badgr:An 

autonomous self-supervised learning-based navigation 

system,” IEEE Robot. Automat. Lett., vol. 6, no. 2, pp. 

1312–1319, Apr. 2021. 

[13] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly 

detection: A survey,” ACM comput. Surv., vol. 41, no. 3, 

pp. 1–58, 2009. 

[14] D. Park, Z. Erickson, T. Bhattacharjee, and C. C. Kemp, 

“Multimodal execution monitoring for anomaly detection 

during robot manipulation,” in Proc. IEEE Int. Conf. 

Robot. Automat., 2016, pp. 407–414. 

[15] D. Kappler, P. Pastor, M. Kalakrishnan, M. Wüthrich, and 

S. Schaal, “Datadriven online decision making for 

autonomous manipulation,” in Proc. Robotics: Sci. Syst., 

2015. 

http://www.ijsrem.com/


          INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

          VOLUME: 07 ISSUE: 08 | AUGUST - 2023                                               SJIF RATING: 8.176                               ISSN: 2582-3930                                                                                                                                               

 

© 2023, IJSREM      | www.ijsrem.com                           DOI: 10.55041/IJSREM25385                                                |        Page 8 
 
 

[16] L. Wellhausen, R. Ranftl, and M. Hutter, “Safe robot 

navigation via multi-modal anomaly detection,” IEEE 

Robot. Automat. Lett., vol. 5, no. 2, pp. 1326–1333, Apr. 

2020. 

[17] R. Hornung, H. Urbanek, J. Klodmann, C. Osendorfer, and 

P. Van Der Smagt, “Model-free robot anomaly 

detection,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots 

Syst., 2014, pp. 3676–3683. 

[18] D. C. Guastella and G. Muscato, “Learning-based methods 

of perception and navigation for ground vehicles in 

unstructured environments: A review,” Sensors, vol. 21, 

no. 1, p. 73, 2021. 

[19] M. A. Bekhti and Y. Kobayashi, “Regressed terrain 

traversability cost for autonomous navigation based on 

image textures,” Appl. Sci., vol. 10, no. 4, 2020, Art. no. 

1195. 

[20] D. Maturana, P.-W. Chou, M. Uenoyama, and S. Scherer, 

“Real-time semantic mapping for autonomous off-road 

navigation,” in Proc. Int. Conf.Field Service Robot., Sep. 

2018, pp. 335–350. 

 

 
 

 

 

 
 

. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijsrem.com/

