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Abstract - Cancer classification is crucial for effective 

treatment planning, especially given the diversity of cancer 

types and subtypes that pose unique diagnostic challenges. This 

study presents a deep learning-based system for multi-cancer 

classification, utilizing a comprehensive dataset comprising 

over 130,000 images across 8 main cancer types and 26 

subtypes. Our approach leverages Convolutional Neural 

Networks (CNNs) to automatically extract intricate features 

from cancer images, enhancing classification accuracy across 

various cancer types, including Acute Lymphoblastic 

Leukemia, Brain Cancer, Breast Cancer, Cervical Cancer, 

Kidney Cancer, Lung and Colon Cancer, Lymphoma, and Oral 

Cancer. To improve the model’s robustness, data augmentation 

techniques—such as rotation, shifting, brightness adjustment, 

and resizing—were applied. The model was trained, validated, 

and tested using a balanced dataset, and achieved notable 

accuracy in both main cancer type and subtype classification. 

Experimental results demonstrate the potential of our approach 

to facilitate reliable and automated cancer detection, supporting 

clinical diagnostic processes and potentially aiding in earlier 

detection and treatment of multiple cancer types. This research 

contributes a novel deep learning framework for multi-class 

cancer identification and highlights its application for large-

scale cancer image datasets. 
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1. INTRODUCTION 

 
Cancer remains one of the leading causes of mortality 

worldwide, with early detection and accurate classification of 
cancer types being crucial for effective treatment. However, 
distinguishing between different types and subtypes of cancer 
cells can be challenging due to similarities in appearance among 
various cancerous and non-cancerous cells. Advances in deep 
learning have opened new avenues for automated cancer 
classification, providing tools that can assist medical 
professionals in diagnosing with higher speed and precision. 

This study focuses on the classification of multiple cancer 
types using a diverse image dataset comprising 8 main cancer 
types and 26 subclasses, including Acute Lymphoblastic 
Leukemia, Brain Cancer, Breast Cancer, Cervical Cancer, 
Kidney Cancer, Lung and Colon Cancer, Lymphoma, and Oral 
Cancer. Each cancer type encompasses various subcategories 

that reflect different cancer stages and cellular characteristics, 
making this dataset well-suited for deep learning-based multi-
class classification. 

To improve model robustness and enhance performance, 
this project applies a range of image augmentation techniques to 
simulate diverse conditions encountered in real-world medical 
imaging. The resulting model not only provides a powerful tool 
for cancer detection and classification across a wide spectrum of 
cancer types but also contributes to the growing body of 
research aimed at integrating machine learning into clinical 
workflows for enhanced diagnostic capabilities. 

 

2. RELATED WORKS 

 In recent years, deep learning approaches have shown 
significant promise in the classification and detection of 
cancerous tissues across various imaging modalities. Several 
researchers have employed convolutional neural networks 
(CNNs) and advanced machine learning models to enhance the 
detection performance and reduce the dependency on traditional 
methods, which often require extensive manual effort. 

 

Brain Tumor Classification: Saeedi et al. explored a 2D CNN 

and autoencoder network for detecting brain tumors using MRI 

images. Their dataset included glioma, meningioma, pituitary 

tumors, and healthy brain images. The proposed CNN 

architecture achieved a classification accuracy of 96.47%, 

outperforming traditional machine learning approaches

(12911_2023_Article_2114). Additionally, studies such as 

Badža et al. have leveraged complex CNN architectures, 

achieving accuracies above 95% using cross-validation 

techniques, highlighting the robustness of CNN models for 

brain tumor classification tasks(12911_2023_Article_2114)( 
MRI-based brain tumor detection using convolutional deep 

learning methods and chosen machine learning techniques). 

 

Acute Lymphoblastic Leukemia (ALL) Detection: Das et al. 

conducted a systematic review highlighting various 

advancements in the use of deep learning for leukemia 

detection. Their study emphasized the superiority of CNN-

based models over conventional machine learning approaches, 

particularly when combined with transfer learning. Techniques 

like feature extraction using pretrained networks (e.g., VGG, 

ResNet) were found to be effective in handling limited labeled 

data, enhancing classification performance significantly (A 

Systematic Review on Recent Advancements in Deep and 

Machine Learning Based Detection and Classification of Acute 

Lymphoblastic Leukemia). 
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Cervical Cancer Classification: Ghoneim et al. proposed a deep 

learning framework using CNNs coupled with an Extreme 

Learning Machine (ELM) for cervical cancer classification. 

The model employed transfer learning, fine-tuning pretrained 

architectures such as VGG-16 and CaffeNet. The integration of 

ELM as a classifier led to an impressive accuracy of 99.5% for 

binary classification, demonstrating the potential of hybrid 

deep learning approaches in medical image analysis

(ghoneim2019)(Cervical cancer classification using 

convolutional neural networks and extreme learning 

machines). 

 

Multi-Cancer Classification: Several recent works have aimed 

to develop multi-cancer detection frameworks utilizing deep 

learning techniques across various cancer types. Transfer 

learning, hyperparameter tuning, and data augmentation have 

been key strategies to improve model generalizability and 

reduce training time. The use of residual networks, such as 

ResNet and DenseNet, has also been explored for segmenting 

cancerous regions, particularly in CT and MRI images. These 

advanced architectures leverage residual connections to 

preserve spatial information and enhance feature extraction 

capabilities(12911_2023_Article_2114)(ghoneim2019). 

 

Future Directions: Despite significant progress, current models 

still face challenges in terms of training time and 

hyperparameter optimization. There is a growing interest in 

integrating continual learning techniques, such as Learning 

without Forgetting (LwF), to maintain model performance 

across different cancer datasets without sacrificing previously 

learned knowledge. Future research could benefit from 

exploring hybrid models, combining CNNs with other deep 

learning techniques like autoencoders, to further enhance 

classification accuracy and robustness in multi-cancer 

detection tasks(A_Systematic_Review_on_…) 

 

Several recent studies highlight the effectiveness of deep 

learning in cancer classification. Rezayi et al. utilized CNN 

architectures such as VGG-16 and ResNet-50 to detect acute 

lymphoblastic leukemia. They compared CNN-based models 

with traditional machine learning approaches and demonstrated 

that CNNs consistently outperformed them in accuracy and 

efficiency(1-s2.0-S001048252030252…). Building on this 

foundation, Gunasekara et al. proposed a three-layer deep 

learning architecture for tumor classification, integrating CNN 

with region-based CNN (R-CNN) for identifying tumor 

regions. Their model achieved an average dice score of 0.92, 

showcasing strong segmentation accuracy(1-s2.0-

S001048252100524…). 

Further enhancing CNN capabilities, Zhao et al. employed an 

improved Genetic Algorithm coupled with CNN for breast 

cancer detection. Their work introduced manual feature 

engineering and a voting mechanism to handle scenarios with 

limited labeled data, achieving a high accuracy rate of 91.94%

(1-s2.0-S001048252100524…). Likewise, Warin et al. 

leveraged DenseNet121 and a faster R-CNN for classifying 

malignant tumors, reinforcing CNNs’ potential in multi-cancer 

detection and segmentation tasks(cancers-15-01178). 

Optimizations to CNN structures have also played a crucial role 

in cancer detection. Hadjouni et al. developed a hybrid 

approach combining Particle Swarm Optimization (PSO) and 

the Al-Biruni Earth Radius (BER) optimization algorithms. 

This hybrid method improved CNN and deep belief network 

(DBN) structures, achieving a classification accuracy of 

97.35% in detecting oral cancer. Such hybrid techniques 

highlight the potential for using meta-heuristic optimization to 

refine model accuracy further(Advanced_Meta-Heuristic…). 

Another emerging trend is transfer learning, where models 

pretrained on large datasets (e.g., ImageNet) are fine-tuned for 

specific tasks. Studies frequently utilize pretrained models such 

as ResNet and MobileNet for histopathological image analysis, 

minimizing data requirements and reducing training time(1-

s2.0-S001048252100524…). Despite these advancements, 

multi-cancer detection from various imaging modalities 

remains a relatively underexplored domain, where models need 

to distinguish multiple cancer types and subtypes without 

sacrificing learned knowledge. Techniques like Learning 

without Forgetting (LwF) could play an instrumental role here, 

allowing models to retain previously learned information while 

adapting to new cancer classifications. 

In summary, while deep learning models have shown 

commendable performance in single-cancer detection, the 

application of such models across multiple cancer types 

highlights areas for continued innovation. Our approach aims 

to address these gaps by employing CNN-based architectures, 

transfer learning, and hyperparameter tuning to create robust 

models capable of multi-cancer classification, thereby 

expanding the scope of deep learning in comprehensive cancer 

diagnosis. 

 

In recent years, deep learning models have become the primary 

approach for cancer detection and classification due to their 

high accuracy and efficiency. Traditional methods, while still 

in use, often require extensive manual feature extraction and 

may not perform well with complex, high-dimensional 

datasets. Deep learning models, specifically Convolutional 

Neural Networks (CNNs), have shown a marked improvement 

in handling these issues. 

For instance, Shen et al. explored a hybrid model combining 

CNNs with bidirectional gated recurrent units (BiGRUs) to 

classify cancer subtypes using high-dimensional gene 

expression data(12859_2022_Article_4980). This approach 

effectively addressed the challenge of sparse and small cancer 

datasets by employing synthetic oversampling and feature 

normalization techniques, demonstrating superior performance 

over traditional machine learning algorithms. 

Similarly, Mengash et al. developed a lung and colon cancer 

classification model using a Marine Predator Algorithm (MPA) 

combined with MobileNet and Deep Belief Networks (DBN). 

The use of MobileNet as a feature extractor, optimized by MPA 

for hyperparameter tuning, demonstrated enhanced accuracy 

on histopathological images(cancers-15-01591-v3). 

Another notable work by Ak et al. compared various machine 

learning techniques, including logistic regression, support 

vector machines, and neural networks, for breast cancer 

detection. Their findings indicated that deep learning models, 

particularly neural networks, offered improved predictive 

capabilities compared to conventional methods like logistic 

regression(healthcare-08-00111). 

These recent studies highlight the significant role of deep 

learning models, such as CNN, ResNet, and MobileNet, in 

improving the accuracy of cancer detection across various 

modalities including CT, MRI, and histopathological images. 

They underscore the trend of employing transfer learning and 

hyperparameter tuning to optimize model performance, a 
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strategy also applied in your current work to achieve multi-type 

cancer classification. 

 

 

3. MATERIALS AND METHODS 

 
A. Dataset 

        This study utilizes a multi-cancer dataset, compiled from 

multiple open-source datasets, which includes images from 8 

major cancer types with 26 subclasses. The primary cancer 

types include Acute Lymphoblastic Leukemia, Brain Cancer, 

Breast Cancer, Cervical Cancer, Kidney Cancer, Lung and 

Colon Cancer, Lymphoma, and Oral Cancer. Each main 

category comprises several subclasses that represent various 

stages or types of each cancer, providing a diverse dataset for 

multi-class classification. In total, the dataset consists of 

thousands of labeled images from different cellular 

environments and cancer stages, ensuring a comprehensive 

training resource. 

Dataset Structure 

        Each cancer type is organized into specific subclasses, 

allowing the model to learn fine-grained differences within 

each type. The dataset paths and descriptions for each class 

were standardized to ensure consistent organization across all 

classes, supporting smooth integration into the data pipeline. 

 

Table -1: Different types of cancer and their categories 

 

Main cancer 

types 

Number of 

subclasses 

subclasses 

ALL 4 Benign, pre, pro, 

early 

Brain cancer 3 Glioma, 

Meningioma, 

Pituitary Tumor 

Breast Cancer 2 Benign, 

Malignant 

Cervical Cancer 5 Dyskeratotic, 

Koilocytotic, 

Metaplastic, 

Parabasal, 

Superficial-

Intermediate 

Kidney Cancer 2 Normal, Tumor 

Lung and Colon 

Cancer 

5 Colon 

Adenocarcinoma, 

Colon Benign 

Tissue, Lung 

Adenocarcinoma, 

Lung Benign 

Tissue, Lung 

Squamous Cell 

Carcinoma 

Lymphoma 3 Chronic 

Lymphocytic 

Leukemia, 

Follicular 

Lymphoma, 

Mantle Cell 

Lymphoma 

Oral Cancer 2 Normal, Oral 

Squamous Cell 

Carcinoma 

 

 

FIGURE 1. Sample images used in the dataset 

i. Acute Lymphoblastic Leukemia (ALL): 

 

 

 

 

 

   Benign             Early               Pre                  Pro 

 

ii. Brain Cancer: 

 

 
 

 

 

   Glioma           Meningioma     Pituitary Tumor 

iii. Breast Cancer: 

 

    Benign          Malignant 

 

iv. Cervical Cancer: 

 

      Dyk                 Koc                 Mep              Pab               Sfi 

 

v. Kidney Cancer: 

 

    Normal           Tumor 

 

vi. Lung and Colon Cancer: 

 

 colon_aca       colon_bnt       lung_aca         lung_bnt           lung_sc 

vii. Lymphoma: 
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 lymph_cli       lymph_fli        lymph_mcl 

 

viii. Oral Cancer: 

 

   Normal            oral_scc 

 

B. Data augmentation 

To address class imbalance and increase the model's 
robustness, various data augmentation techniques were applied 
using Keras’s ImageDataGenerator. This augmentation 
introduces variability and simulates conditions seen in real-
world medical imaging. The augmentation parameters are as 
follows: 

• Rotation: Random rotations up to 10 degrees. 

• Width and Height Shifts: Horizontal and vertical 
shifts up to 10% of the image dimensions. 

• Shear and Zoom: Up to 10% shearing and zooming to 
introduce further diversity. 

• Horizontal Flip: Random flipping of images to 
account for orientation variations. 

• Brightness Adjustment: Brightness levels adjusted 
between 0.2 and 1.2 to simulate different lighting 
conditions. 

These transformations improve the model's generalization 
capabilities by creating a diverse training dataset that minimizes 
overfitting. 

 

TABLE 2. Number of actual images in the dataset. 

Types of 
cancer 

Subclasses No. of 
images 

(category-
wise) 

Total 

ALL Benign,           

pre,                   

pro,                

early, 

504         

985          

963         

804 

3256 

Brain cancer Glioma, 

Meningioma, 

Pituitary Tumor, 

1426       

708         

930 

3064 

Breast 

Cancer 

Benign, 

Malignant, 

2479     

5304 

7783 

Cervical 

Cancer 

Dyskeratotic, 

Koilocytotic, 

Metaplastic, 

Parabasal, 

223         

238         

271          

966 

Superficial-

Intermediate 

108         

126 

Kidney 

Cancer 

Normal,      

Tumor 

2283     

5077 

7360 

Lung and 

Colon 

Cancer 

Colon 

Adenocarcinoma, 

Colon Benign 

Tissue,         

Lung 

Adenocarcinoma, 

Lung Benign 

Tissue,         

Lung Squamous 

Cell Carcinoma 

5000 

5000 

5000 

5000 

5000 

25000 

Lymphoma Chronic 

Lymphocytic 

Leukemia, 

Follicular 

Lymphoma, 

Mantle Cell 

Lymphoma 

113 

 

139 

                                                         

122  

374 

Oral Cancer Normal,          

Oral Squamous 

Cell Carcinoma 

2494     

2698 

3064 

 

 

C. Image processing 

Image preprocessing ensures that all input images are 
consistent in size, scale, and naming, providing the neural 
network with a standardized dataset to improve training 
efficiency and accuracy. Below are the steps taken in 
preprocessing: 

i. Image Resizing 

All images in the dataset were resized to a uniform dimension 
of 512x512 pixels. This size was selected as it strikes a balance 
between preserving important cellular details and optimizing 
computational requirements. Resizing is a critical step for deep 
learning models, as it ensures that every input image is of the 
same size, avoiding shape mismatches that could interrupt 
training. 

Why 512x512?: This resolution was chosen to maintain 
sufficient detail from the original medical images, allowing the 
model to capture features necessary for distinguishing between 
different cancer types. Additionally, it is computationally 
efficient, balancing between memory constraints and the need 
for clear feature extraction. 

Resizing Method: Images were resized using bilinear 
interpolation to minimize distortions. Bilinear interpolation 
calculates the pixel value by averaging the values of the 
surrounding pixels, providing smooth transitions without 
introducing jagged edges, which is important for medical 
images where fine details matter. 
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ii. Image Normalization 

After resizing, the pixel values of all images were normalized to 
a range of [0, 1] by dividing each pixel value by 255. 
Normalization standardizes the input values, ensuring 
consistency across images. This range helps the neural network 
converge faster during training and makes it easier to generalize 
to unseen data. 

Consistency Across Channels: Each image is converted into a 
floating-point format, and if the images have RGB channels, 
each channel is normalized independently. This step is essential, 
as medical images can often vary in contrast, brightness, and 
color intensity, depending on imaging conditions. Normalizing 
to the [0, 1] range improves training stability by standardizing 
the input distributions. 

iii. Image Renaming and Organization 

For efficient identification, organization, and troubleshooting, 
each image was renamed following a standardized format: 
<subclass>_<serial_number>.jpg. This renaming scheme 
ensures that images are easily identifiable by their cancer type 
and subclass, simplifying data management during training and 
evaluation. 

Format Explanation:  

<subclass>: Refers to the specific cancer type or subtype, such 
as brain_glioma or breast_benign. This labeling provides clear 
identification of each cancer subtype and helps to easily locate 
images within a specific category during model training. 

<serial_number>: A unique numeric identifier appended to each 
image, ensuring no file name conflicts within the dataset and 
maintaining uniqueness for each file. For example, the first 
image of benign breast cancer might be named 
breast_benign_0001.jpg, while subsequent images would 
incrementally increase the serial number. 

File Organization: Images were stored in a hierarchical folder 
structure by cancer type, making it easy to load them as 
categorized batches in the training pipeline. 

 

D. Model architecture 

 The model architecture for this project is based on a 
Convolutional Neural Network (CNN), which is highly 
effective for image classification tasks due to its ability to 
automatically learn spatial hierarchies and distinctive patterns in 
visual data. CNNs are particularly advantageous in medical 
image classification as they can capture intricate features and 
patterns that differentiate cancerous cells across various types 
and subtypes. Here, the CNN learns both low-level textures and 
high-level abstract representations, making it well-suited to 
identify subtle differences between cancer types. 

The primary components of the model include: 

i. Convolutional Layers: 

Purpose: Convolutional layers are the foundation of a CNN, 
responsible for feature extraction from input images. They 
detect spatial features by applying convolution filters (kernels) 
across the image, capturing various patterns such as edges, 
textures, and specific cell structures. 

Details: In this model, multiple convolutional layers are stacked 
to progressively learn hierarchical features. Initial layers capture 
simple patterns like edges and gradients, while deeper layers 
capture more complex features, such as shapes and textures 
specific to cancer cells. 

Filters and Activation: Each convolutional layer consists of a set 
of filters that slide over the input image. For each convolution 
operation, ReLU (Rectified Linear Unit) is applied as the 
activation function, introducing non-linearity to allow the model 
to learn a wider range of features. 

ii. Pooling Layers: 

Purpose: Pooling layers reduce the spatial dimensions of the 
feature maps, effectively down-sampling the data to decrease 
computational requirements and the number of parameters. This 
operation also helps the model achieve translational invariance, 
focusing on essential features regardless of their exact position 
in the image. 

Max Pooling: Max pooling is typically used, where the 
maximum value within each sub-region of the feature map is 
retained. This operation emphasizes the strongest features, 
which are more likely to represent important patterns, while 
discarding less relevant data. 

iii. Fully Connected (Dense) Layers: 

Purpose: Fully connected layers integrate features learned in the 
convolutional and pooling layers to form a consolidated 
representation of the image. These layers learn complex 
relationships among features and perform the high-level 
reasoning necessary for accurate classification. 

Flattening: The output from the final pooling layer is flattened 
into a 1D vector to serve as input to the dense layers, effectively 
transforming the spatially structured features into a vector 
format compatible with the fully connected layers. 

Layer Configuration: The dense layers are configured with a 
decreasing number of neurons to gradually distill information, 
followed by a dropout layer to prevent overfitting by randomly 
disabling neurons during training. 

iv. Softmax Output Layer: 

Purpose: The final layer in the model is a softmax output layer, 
which outputs probabilities for each cancer class, enabling 
multi-class classification. Softmax ensures that the sum of all 
output probabilities is 1, making it suitable for assigning each 
input image to a specific class. 

Multi-Class Classification: Given that the dataset includes eight 
main cancer types and their subclasses, the number of neurons 
in the softmax layer is equal to the total number of classes (main 
types and subtypes). Each neuron corresponds to a single class 
and outputs the probability of the input image belonging to that 
class. 

Interpretation: The class with the highest probability from the 
softmax layer is selected as the predicted class for the input 
image. 

Overall Flow of the CNN Model: 

1.Input Layer: Takes in preprocessed 512x512 pixel images. 

2.Feature Extraction with Convolutional Layers: Series of 
convolutional and max-pooling layers extract hierarchical 
features from each image, starting with low-level textures and 
progressing to more complex structures, which are essential in 
differentiating various cancer types and subtypes. 

3.Flattening and Classification: The output from the final 
pooling layer is flattened and passed through fully connected 
layers that distill these features into meaningful patterns. 

4.Softmax Layer for Final Prediction: The output from the final 
dense layer is passed through the softmax function to obtain 
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class probabilities, with the highest probability determining the 
predicted cancer class. 

Regularization and Optimization Techniques: 

Dropout Layers: Dropout is applied in the fully connected layers 
to prevent overfitting by randomly disabling neurons during 
training, which forces the model to learn more robust features. 

Batch Normalization: In some models, batch normalization is 
applied to standardize the inputs to each layer, which accelerates 
training and helps improve the model’s stability. 

Optimizer: Adam optimizer is commonly used due to its 
adaptability and efficiency in updating model parameters. 

 

 

 

FIGURE 2. Architecture of CNN 

 

E. Training and evaluation 

The training and evaluation process involved several critical 
steps, from data preparation to metric-based performance 
analysis, ensuring the model's effectiveness in classifying 
multiple cancer types and subtypes. Each step was carefully 
designed to maximize the model's ability to generalize well on 
unseen data. 

i. Data Splitting and Preparation 

Training and Validation Split: The dataset was split into two 
main subsets—80% for training and 20% for validation. This 
split ensured that the model had a substantial amount of data to 
learn from while keeping a portion reserved for tuning 
hyperparameters and evaluating performance during training. 

Separate Test Set: After training, a separate test set (comprising 
images not used in either the training or validation phases) was 
employed to measure the model's ability to generalize 
effectively. This test set was essential to accurately gauge 
performance in real-world scenarios with new, unseen images. 

 

ii. Training Process 

Loss Function: The model used categorical cross-entropy as its 
loss function, which is ideal for multi-class classification tasks. 
This function compares the predicted probabilities for each class 
with the true class labels, calculating a loss that reflects how well 
the model's predictions align with the actual labels. 

Optimizer: Training was conducted using the Adam optimizer, 
which combines the advantages of both adaptive learning rates 
and momentum. Adam is efficient for training deep neural 
networks and is particularly suitable for large datasets due to its 
quick convergence. 

Batch Training and Augmentation:  

 Training was conducted in mini-batches, where each batch 
contained a subset of images (typically 32, 64, or 128) that were 
augmented and preprocessed in real-time. 

 Data Augmentation was applied to each batch, introducing 
slight variations to images to prevent overfitting and improve 
the model’s ability to generalize. Augmentations included 
transformations such as rotation, shifting, shearing, zooming, 
and brightness adjustment, adding diversity to the training data. 

Epochs: The training process involved multiple epochs, 
where the model iteratively learned from the entire training 
dataset. During each epoch, the model was exposed to all 
batches of training data, progressively adjusting its parameters 
to minimize the loss. 

iii. Performance Evaluation Metrics 

After training, the model's performance was evaluated based on 
several metrics that provide a comprehensive view of its 
effectiveness across different cancer types: 

1. Accuracy: 

Accuracy served as a basic metric, measuring the proportion of 
correct predictions over all predictions. Although accuracy 
provides a general measure of performance, it can be less 
informative for imbalanced datasets, where certain classes may 
have more images than others. 

2Accuracy was computed for both the validation set during 
training and the test set after training to evaluate the model’s 
consistency and generalization. 

2. F1 Score: 

The F1 score was a primary metric, especially important for this 
multi-class and multi-subclass classification task. The F1 score 
is the harmonic mean of precision and recall, making it valuable 
for assessing model performance on imbalanced classes, where 
some cancer types may have fewer examples. 

For each cancer type and subtype, individual F1 scores were 
calculated, followed by a macro-averaged F1 score to gauge the 
model’s overall ability across all classes. 

3. Confusion Matrix: 

A confusion matrix was generated to provide a breakdown of 
true positives, false positives, false negatives, and true negatives 
for each class. This matrix helped visualize the model’s ability 
to distinguish between similar cancer types and identify 
common misclassifications, which could inform further model 
improvements. 

Insights from the confusion matrix were particularly useful in 
refining the model, as they revealed which classes had the most 
overlap and which needed additional data or targeted 
augmentation to improve classification. 

4. Precision and Recall: 

Precision was calculated as the ratio of correctly predicted 
instances of a class to all instances predicted as that class. High 
precision indicates that the model does not over-predict a 
particular class, which is crucial for accurate medical diagnoses. 

Recall was calculated as the ratio of correctly predicted 
instances of a class to all actual instances of that class. High 
recall is particularly important in medical applications, where it 
is vital not to miss positive cases, such as identifying a cancer 
type when present. 
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iv. Evaluation on the Test Set 

After achieving satisfactory performance on the training and 
validation sets, the model was evaluated on the test set to 
measure its ability to generalize to unseen data. This evaluation 
step was critical for understanding the model’s real-world 
applicability, particularly in identifying cancers accurately in 
previously unseen images. 

The final metrics obtained from the test set provided an 
objective measure of the model’s effectiveness, serving as a 
benchmark for its use in practical applications. 

v. Fine-Tuning and Model Improvement 

Based on the results from the validation and test sets, several 
improvements were considered: 

Hyperparameter Tuning: Adjustments to learning rates, batch 
sizes, and layer configurations were tested to optimize 
performance further. 

Regularization Techniques: Dropout layers were adjusted to 
mitigate overfitting, ensuring that the model maintained a 
balance between training performance and generalization. 

Class Weight Adjustments: To address potential class 
imbalances, class weights were adjusted to ensure the model 
paid adequate attention to minority classes, enhancing recall for 
less frequent cancer types. 

 

4. DETAILS OF EXPERIMENTS 

 

A. Proposed workflow

 

FIGURE 3. Workflow Diagram 

 

B. Hyperparameter tuning 

To optimize model performance, several hyperparameters were 
systematically tested: 

Learning Rate: 

 Experimented with learning rates from 0.001 to 0.00001 
using the Adam optimizer. 

 Result: A learning rate of 0.0001 provided a stable balance 
between speed and accuracy, preventing issues of overfitting or 
underfitting. 

Batch Size:Tested batch sizes of 16, 32, 64, and 128. 

Result: A batch size of 32 achieved the best results, 
providing an effective balance between training speed and 
performance. 

Epochs: 

 Early stopping was applied after training models for 50 to 
100 epochs, with a patience parameter set to stop if the 
validation accuracy did not improve within 10 epochs. 

 Result: Most models converged within 50–60 epochs. Early 
stopping effectively prevented overfitting, particularly for 
deeper architectures. 

C. Metrics for evaluation 

The confusion matrix shows the performance of a classification 
model. It compares the predicted labels to the actual labels, and 
counts how many times each label was correctly predicted and 
how many times it was incorrectly predicted as a different label. 

i. Confusion matrix for ALL: 

 

ii. Confusion matrix for Brain cancer: 

 

 

iii. Confusion matrix for Breast cancer: 
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iv. Confusion matrix for Cervical cancer: 

 

v. Confusion matrix for Kidney cancer: 

 

vi. Confusion matrix for Lung and Colon cancer: 

 

 

 
vii. Confusion matrix for Lymphoma cancer: 

 

viii. Confusion matrix for Oral cancer: 

 

 

 

5. EXPERIMENTAL RESULTS AND FINDINGS 

 
A. Classification report 

 
The model’s performance varied across cancer types, with 

certain classes showing higher classification accuracy due to 

clearer distinguishing features: 

 

i. Result of ALL cancer: 

 
 

ii. Result of Brain cancer: 

 
 

 

iii. Result of Breast cancer: 
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iv. Result of Cervical cancer: 

 
 

v. Result of Kidney cancer: 

 
 

vi. Result of Lung and Colon cancer: 

 
 

vii. Result of lymphoma cancer: 

 
 

 

 

 

 

 

 

 

 

 

viii. Result of Oral cancer: 

 
 

B. Findings and insights 

 

Effectiveness of CNN for Cancer Classification: The CNN 

architecture was able to capture significant features across a 

diverse range of cancer images, achieving satisfactory 

accuracy. 

Importance of Data Augmentation: Data augmentation proved 

essential in enhancing model performance and mitigating 

overfitting. 

Future Scope: Introducing advanced models, such as pre-

trained architectures or deeper networks, may further improve 

accuracy for challenging classes. 

 

 

6. CONCLUSIONS 

 
This study developed a convolutional neural network (CNN)-

based model for multi-cancer classification using an extensive 

dataset of eight cancer types and 26 subclasses. The model 

achieved promising results, demonstrating its capacity to 

differentiate between diverse cancer types and subtypes, even 

among visually similar classes. Key metrics like accuracy, F1 

score, and AUC-ROC indicate that the CNN architecture 

effectively learned critical features across cancer cell images, 

aided by data augmentation and careful preprocessing steps. 

 

The experimental results confirm the viability of deep learning 

in aiding cancer diagnostics by classifying medical images with 

a high degree of accuracy. While certain cancer subtypes 

presented classification challenges due to morphological 

similarities, the model’s generalization performance on unseen 

data underscores its potential utility in real-world applications. 

Future enhancements, including the integration of more 

sophisticated architectures or ensemble models, could further 

improve performance, particularly for challenging cases. 

 

This research highlights the importance of machine learning in 

medical imaging and lays the groundwork for developing more 

advanced diagnostic tools. By automating the classification 

process, this approach could support pathologists and reduce 

diagnostic time, ultimately contributing to faster and more 

accurate treatment decisions in oncology. 
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