
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 07 ISSUE: 05 | MAY - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 1

MVC FRAMEWORK

INDUSHREE H S

Information Science And Technology

Presidency University

Bangalore,India

indushrees99@gmail.com

Abstract—The features and the capabilities of web

applications are growing rapidly, and the complexities

and difficulties of web applications engineering are also

growing in parallel. If the architectural formalism of these

advanced web applications is well realized, the

complexities could be understood, thus the difficulties

could be reduced. Model-View-Controller (MVC) has

been recognized as a well-formed architectural style, and

has been widely used in web applications engineering in

various forms of implementations. These MVC

implementations are heavily dependent on specific set of

technologies and/or some other facts; hence, they do not

provide an abstract realization to be used in a wider range

of web application engineering. We propose an

implementation of MVC in more abstract form, which –

we think – will increase the realization of the advanced

web applications, thus lower the

engineering complexities and difficulties of web

applications. We believe that this implementation is more

applicable in a wider range of environments and

technologies, and will upturn the architectural properties

like performance and modifiability. Based on this

implementation we introduce an MVC based architectural

style for web applications.

I. TIINTRODUCON

The .NET Framework is a software development
framework developed by Microsoft that provides a
runtime environment and a set of libraries and tools for
building and running applications on Windows
operating systems. The framework includes a variety of
programming languages, such as C#, F#, and Visual
Basic, and supports a range of application types,
including desktop, web, mobile, and gaming
applications.

1.The .NET Framework includes two main components:

the Common Language Runtime (CLR) and the .NET

Framework Class Library. The CLR is responsible for

managing the execution of code written in any of the

supported languages, while the class library provides a

large set of pre-built functions and classes that can be

used to create a wide range of applications.

2.Another advantage of the .NET Framework is its

support for a variety of application types. The framework

includes libraries and tools for creating desktop, web,

mobile, and gaming applications, which makes it a

versatile choice for developers working on a wide range

of projects.

2. Problem and Motivation

The web applications have evolved into more

advancedsystems and their complexity has grown

significantly , where diverse types of components are

integrated into various ways in modern web applications,

therefore causing difficulties in understanding the

architectural formalism of

them. This setting affects the engineering processes of the

web-based systems in a negative manner. To address the

related issues and support web engineering, numerous

concepts, and TTs have been introduced. These

supporting

artifacts come with additional learning curves along with

their pros and cons.

However, the foundation of these advanced web

applications is still laid on the Client-Server (C-S) model,

II. METHODOLOGY

A literature survey was conducted to gain the

domainknowledge of the areas of the web applications,

software architecture and architectural styles, conceptual

abstraction

and TTs independency, MVC, and the TTs used to

develop MVC based web applications.

It was noted that there is lack of literature for TTs

independency and the concept abstraction. Therefore to

gain that related knowledge through experiencing the

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 07 ISSUE: 05 | MAY - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 2

utilization of available TTs into MVC based web

development – towards gaining empirical evidence – a

series of experiments

was conducted. The experiments were prototype based

and conducted in an incremental manner. Facts learned in

literature were tested in early iterations, in the direction of

identifying the bottlenecks and issues, then solutions for

the

identified problems were tested in later iterations.

Identified solutions were continuously refined to verify

that they do not conflict with the artifacts found in later

iterationssame as the “Heading 1” style but without

numbering.

3.Modules in MVC

MVC Framework:

 The MVC (Model, View,

Controller) framework is an architectural/design pattern

that separates an application into three main logical

components Model, View, and Controller. Each

architectural component is built to handle specific

development aspects of an application. It isolates the

business logic and presentation layer from each

other. MVC is one of the most frequently used industry-

standard web development frameworks to create scalable

and extensible projects.

The main advantage of using the MVC framework is that

it provides a clear separation of concerns between the

different components of the application. This makes the

application easier to develop, test, and maintain, as each

component can be developed independently of the others.

It also makes the application more scalable and

extensible, as new functionality can be added to the

application without affecting the existing code.

Another benefit of using the MVC framework is that it

supports the use of templates and partial views, which can

be used to create reusable UI components that can be

shared across multiple pages of the application. This can

help to improve the consistency and maintainability of the

application's user interface.

The MVC framework includes the following 3

components:

 1) Controller

 2) Model

 3) View

3.2 Controller:

The controller is the component that

enables the interconnection or the coordinator between

the View and the Model. The controller is responsible for

handling user requests and coordinating the interaction

between the Model and View components of the

application. When a user makes a request to the

application, the controller receives that request and

determines which action needs to be taken based on the

request parameters and other contextual information. The

controller then interacts with the Model component to

perform any necessary data retrieval or manipulation, and

passes the results of those operations back to the View

component for rendering and display to the user. In

addition to handling user requests, the controller also

typically handles any exceptions or errors that occur

during the processing of those requests, and may perform

other tasks such as authentication and authorization

checks.

One important aspect of the controller is that it should be

lightweight and focused on performing its coordinating

role, rather than containing complex business logic or

other application-specific functionality. This helps to

keep the application maintainable and modular, as it

allows for easier testing, reuse, and evolution of the

individual components.

3.3 Model:

 The Model component is responsible for

managing the application's data and business logic. It can

represent either the data being transferred between the

View and Controller components or any other data that is

related to the business logic of the application.One of the

key roles of the Model component is to interact with the

database or other data sources to retrieve and manipulate

data. This involves executing queries, updates, and other

database operations to retrieve or modify data as needed.

The Model component may also perform data validation

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 07 ISSUE: 05 | MAY - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 3

and other operations to ensure that the data is consistent

and accurate.

In addition to database interactions, the Model component

may also contain other business logic related to the

application's functionality. For example, it may perform

calculations, generate reports, or perform other operations

that are required by the application's requirements. One

important aspect of the Model component is that it should

be designed to be modular and extensible, so that it can

be adapted to different types of data sources or business

logic requirements. This may involve implementing

interfaces, abstract classes, or other design patterns that

allow for easy customization and extension of the Model

component.

There are 4 components of the Model in MVC :

• Entity Model

• View Model

• View Data

• Repository

3.3.1 Entity Model:

 It contains all the class object description

of all the instances that are created for the given screen. It

also maps the database tables. It is used to simplify the

process of accessing and manipulating data in the data

store, by providing a high-level abstraction of the data and

its relationships.

In the context of the MVC framework, an Entity Model

typically refers to the use of the Entity Framework, which

is a popular Object-Relational Mapping (ORM)

framework provided by Microsoft. The Entity Framework

enables developers to create a conceptual model of their

data store using Entity Data Models (EDMs), which are

representations of the entities and relationships in the data

store.

The Entity Framework then generates the necessary code

to access and manipulate the data in the data store, based

on the EDM. This can greatly simplify the development

process, as developers can work with objects and classes

rather than writing low-level SQL queries.

3.3.2 View Model:

 ViewModel is an intermediary between

the Model and the View components. Its purpose is to

provide a simplified, domain-specific representation of

the data that the View needs to display, while also keeping

the Model decoupled from the View. In other words, the

ViewModel is a specialized class that encapsulates the

data that the View needs to display, and provides a way

for the View to access that data without having direct

knowledge of the Model. This can be useful for a number

of reasons, such as:

• Separation of concerns: By using a ViewModel,

the View can be decoupled from the Model,

allowing the two components to be developed

independently and reducing the risk of breaking

changes when modifying one component.

• Data transformation: The ViewModel can

perform data transformation or formatting to

ensure that the data is displayed in the way that

the View requires.

• Domain-specific representation: The ViewModel

can provide a simplified, domain-specific

representation of the data that is tailored to the

needs of the View, making it easier for the View

to work with the data.

3.3.3 View Data:

 View Data is a way for the Controller component

to pass data to the View component. It provides a

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 07 ISSUE: 05 | MAY - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 4

mechanism for the Controller to share data with the View

without having to expose the Model directly to the View.

View Data can be used to pass any type of data from the

Controller to the View, such as strings, numbers, objects,

or collections. The data is typically stored in a dictionary-

like structure called ViewData or ViewBag, which can be

accessed in the View using Razor syntax or other

templating languages. One of the benefits of using View

Data is that it allows the Controller to customize the data

that is sent to the View based on the specific needs of the

View. For example, the Controller could use View Data

to pass a list of products to the View, but then filter or sort

the list before it is displayed in the View.

Another benefit of View Data is that it allows the

Controller to provide additional context or metadata about

the data being displayed in the View. For example, the

Controller could use View Data to pass information about

the current user, the current page, or other contextual

information that may be useful for rendering the View.

3.3.4 Repository:

 Repository is a design pattern that

provides an abstraction layer between the data access

layer and the rest of the application. The Repository

pattern is commonly used in web applications to simplify

the process of accessing and managing data from a

database or other data source. The basic idea behind the

Repository pattern is to encapsulate the logic for

accessing data into a single class or set of classes. This

allows the rest of the application to work with a consistent

and well-defined API, rather than having to deal directly

with the complexities of data access.

Repository typically provides a set of methods for

querying and manipulating data. These methods can

include basic CRUD (Create, Read, Update and Delete)

operations, as well as more complex queries and

transactions. The Repository also abstracts away the

specific implementation details of the data access layer,

such as the underlying database or ORM (Object-

Relational Mapping) framework being used.

Using a Repository can provide a number of benefits for

a web application, including:

• Improved code maintainability: By encapsulating

data access logic in a single place, it becomes

easier to modify and test the code.

• Better separation of concerns: The Repository

pattern helps to separate the data access layer

from the rest of the application, making it easier

to understand and modify both parts of the

application independently.

• Improved scalability: By providing a consistent

and well-defined API for accessing data, the

Repository pattern makes it easier to optimize

and scale the application's data access layer.

• Improved security: By centralizing the logic for

accessing and manipulating data, the Repository

pattern can help to prevent common security

issues such as SQL injection attacks.

3.4 Views:

 View is a component responsible for

displaying data to the user and capturing user input.

Views are responsible for rendering the user interface,

which the user interacts with The View component is

decoupled from the business logic, which is handled by

the Model and Controller components. Views typically do

not perform any data processing or manipulation, but

rather display data retrieved from the Model or user input

captured by the Controller.

Views can take many different forms depending on the

application requirements. They can be simple HTML,

CSS and JavaScript pages rendered by a web server,

desktop application windows, mobile app screens, or any

other interface used to interact with the user.

In the MVC pattern, the View is connected to the Model

and Controller through a series of well-defined interfaces.

The Model provides the data that the View displays, and

the Controller is responsible for updating the Model based

on user input received through the View.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 07 ISSUE: 05 | MAY - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 5

Views can also implement a variety of design patterns,

such as the ViewModel pattern, which provides a layer of

abstraction between the View and Model components.

This helps to separate the presentation logic from the

business logic, making it easier to maintain and extend the

application over time.

ACKNOWLEDGMENTS

Model–View–Controller is a popular software pattern

used to break up the logic of your application into three

different components.While the MVC pattern was

initially used in desktop applications, it became popular

to use in web applications during the late 1990's.The

Model is responsible for the data logic behind the

application.The View is what the user sees and interacts

with in the application.The Controller acts as the brains

behind the application and communicates with the Model

and View.Web frameworks that use the MVC pattern

include, Ruby on Rails, ASP.NET MVC, Laravel, and

Angular.

REFERENCES

BALANCED ABSTRACT WEB-MVC STYLE: AN

ABSTRACT MVC IMPLEMENTATION FOR WEB-BASED

APPLICATIONS

• May 2017

DOI:10.5176/2251-3043_5.3.375.

Make sure to remove all placeholder and explanatory

text from the template when you add your own text.

This text should not be here in the final version!

http://www.ijsrem.com/
http://dx.doi.org/10.5176/2251-3043_5.3.375

