
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34235 | Page 1

Nature-inspired approaches in Software Fault

Prediction

Vidhi Jain1, Harshit Kumar2, Tushar Gupta3
 , Nidhi Sengar4, Amita Goel5, Vasudha Bahl6

1,2,3,4,5,6
 Department of Information Technology, Maharaja Agrasen Institute of Technology affiliated to

Guru Gobind Singh Indraprastha University, Rohini, Delhi

ABSTRACT

In software engineering, predicting software faults is a

crucial task for ensuring high software quality and

reducing costs. In recent years, nature inspired

approaches have been increasingly used in software

fault prediction. In this paper, we explore the

effectiveness of six nature inspired algorithms,

namely Ant Colony, Particle Swarm Optimization,

Firefly, Bat, Harris Hawks, and Genetic Algorithm,

for software fault prediction. We evaluate the

algorithms using three commonly used datasets, JM1,

CM1, and PC1. Our experimental results show that

nature inspired approaches can effectively predict

software faults, with some algorithms performing

better than others depending on the dataset used. Our

findings suggest that these approaches have potential

to be used as a practical and efficient means for

software fault prediction.

Keywords— nature inspired algorithms; PSO; Ant

Colony Optimization; Harris Hawks; Genetic

Algorithm (GA); python programming; Jupyter

Notebook; confusion matrix;

1. INTRODUCTION

Software fault prediction is an important research area

in software engineering, which aims to identify

potential faults in software systems before they occur.

This can help developers take preventive measures to

improve the quality and reliability of their software. In

recent years, there has been growing interest in using

nature-inspired algorithms for software fault

prediction. These algorithms are based on natural

phenomena and processes, such as the behavior of

ants, bees, birds, and other animals, to optimize

complex problems.

In this paper, we explore the effectiveness of six

different nature-inspired algorithms for software fault

prediction: Ant Colony Optimization, Particle Swarm

Optimization, Firefly Algorithm, Bat Algorithm,

Harris Hawks Optimization, and Genetic Algorithm.

We conduct experiments on three commonly used

software engineering datasets: JM1, CM1, and PC1,

and compare the performance of these algorithms

with traditional machine learning algorithms such as

decision trees and random forests.

Our experimental results show that the nature-inspired

algorithms outperform the traditional machine

learning algorithms on all three datasets, achieving

higher prediction accuracies and lower false positive

rates. Moreover, the results demonstrate that each

nature inspired algorithm has its own strengths and

weaknesses, and can be applied in different scenarios

depending on the specific characteristics of the dataset

and the problem at hand.

This paper provides insights into the effectiveness of

nature-inspired algorithms for software fault

prediction and can serve as a guide for researchers and

practitioners working in this field.

2. LITERATURE REVIEW

Nature-inspired algorithms draw inspiration from

natural systems and phenomena, such as ant colonies,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34235 | Page 2

particle swarms, fireflies, bats, hawks, and genetic

evolution. These algorithms mimic the behavior and

adaptive characteristics of these natural systems to

solve complex optimization and prediction problems.

In the context of software fault prediction, these

algorithms offer the potential to overcome the

limitations of traditional techniques and provide more

accurate and efficient predictions.

Several studies have investigated the effectiveness of

nature-inspired algorithms in software fault

prediction. To predict and prevent bugs in production

researchers have implemented and worked on various

machine learning approaches. It is known that

software maintenance is the most expensive phase in

the software development lifecycle [4].

A software defect predictive model enables

organizations to help to reduce the maintenance effort,

time and cost overall on a software project [3] [4]. The

various researched algorithms are a result of various

findings and correlations between some software

metrics and fault proneness [11].This paper uses 4 of

many ML classifiers as suggested by a recent

systematic literature study [4]. As two studies stated

that machine learning- based models for software fault

prediction [11] [12].

3. MATERIALS & METHODS

3.1 Data Collection

In this project, we have used 3 open source publicly

available data from PROMISE Software Engineering

Database. These datasets. have been used in their

research paper (Tim Menzies et al., 2004). In another

study (Jureczko and Madeyski 2010) have been

assembled a software fault prediction model to predict

the software defects using discussed in their paper

about 8 projects (PROMISE Repository) data and by

taking 19 CK metrics and McCabe metrics for

constructed a predictive model. In our study, we have

used 22 attributes for building our automated fault

predict model. Table 1 shows 22 different attributes

from software defect datasets including 21

independent metrics and one is outcome information.

i.e. which is faulty and no-fault.

Table 1 shows 22 different attributes from software

defect datasets including 21 independent metrics and

one is outcome information. i.e. which is faulty and no

fault.

We are using JM1, CM1, PC1 datasets which were

implemented in C language. Table 2 depicted details

about all datasets with their features.

3.2 Classification Techniques

Machine learning algorithm has been creating a

significant role in software engineering fields. In

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34235 | Page 3

recent years, machine learning techniques are one of

the most operational techniques which gained

significantly high performance in real-world

problems for the research and technical community.

(Tanwar, and Kakkar 2019) discussed in their review,

there are common use of machine learning techniques

for constructing software fault prediction models such

as fuzzy logic-based software defect prediction, Naïve

Bayes (NB), neural network (NN), random forest

(RF), support vector machine (SVM), P-SVM, k-

nearest neighbour's (KNN), etc. (Malhotra 2015)

described in her systematic mapping study, the top

five machine learning techniques were used to

software defect

analysis such as DT (46%), NB (74%), MLP in NN

(85%), RF (59%), SVM (27.7%), etc.

3.3 Nature Inspired Approaches

Algorithms can be classified as either deterministic or

meta-heuristic. A deterministic algorithm always

produces the same solution if the initial conditions are

the same, while a meta-heuristic algorithm introduces

randomness in its solution and often yields better

results. Recently, nature-inspired algorithms have

become popular for optimization in many engineering

fields. Meta-heuristics have been applied to optimize

test cases in both black box and white box testing for

early fault detection. Various algorithms, such as

genetic algorithm, particle swarm optimization, and

ant colony optimization, have been used for test case

optimization. However, the genetic algorithm is the

most commonly used algorithm in the literature for

solving the test case optimization problem for fault

detection purposes.

A. Genetic Algorithm

Genetic algorithms are search techniques that mimic

the process of natural and genetic selection. They are

inspired by the theory of evolution proposed by

Charles Darwin. A population of solutions, called

chromosomes, is created at the start of the algorithm.

Solutions from this population are used to create a new

population, with the aim of improving it.

The selection of solutions for the new population is

based on their fitness. Crossover and mutation

operators are employed to increase the diversity of the

population. The genetic algorithm is commonly used

for test case optimization, which involves generating,

selecting, and prioritizing test cases. This approach has

been applied in various studies and validated with

different datasets

B. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a recent

optimization technique that can be used for solving

complex problems such as the traveling salesman

problem and job sequencing problem. PSO has also

been applied in software testing, which is a complex

problem, and generating test cases is a problem that

belongs to the NP-complete class. PSO can be used for

solving single or multiple objectives. The PSO

optimization technique is relatively simple and only

requires two basic equations, one for velocity and one

for new position.

The velocity equation includes constant variables w,

c1, c2, r1, and r2. The particle in PSO represents the

test case, and the test case is managed by the objective

function that focuses on satisfying the requirement. In

comparison to genetic algorithms, PSO produces

better results in terms of convergence speed. Test case

optimization using PSO has been found to be effective

in fault detection in less time. In terms of the

comparison between PSO and genetic algorithms, a

particle in PSO is equivalent to a chromosome in

genetic algorithms.

C. Ant Colony Optimization

Ant colony optimization (ACO) is a technique that

helps solve computational problems using meta

heuristics. It is particularly useful in path reduction

and finding optimal paths. This technique was

proposed by Marco Dorigo and is based on the

behavior of ants in finding the shortest path between

their colony and the source of food. In ACO, ants

cannot see and use chemical pheromones to

communicate with their colony.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34235 | Page 4

The application of ACO in test case optimization

involves using ants as a solution to find the maximum

fault in the shortest time possible. The test suite is

represented by a collection of ants. The authors of this

paper have used ACO to optimize test cases and

achieve better results. Several studies have been

conducted on ACO for optimization purposes, and the

results have been reported in previous literature.

D. Firefly Algorithm

The Firefly Algorithm (FA) is a metaheuristic

optimization algorithm inspired by the flashing

behavior of fireflies. Each firefly represents a potential

solution and the brightness of the firefly is determined

by its fitness value. The algorithm works by iteratively

moving the fireflies towards brighter individuals in the

population, simulating the process of flashing and

attraction observed in real fireflies. The attractiveness

of a firefly decreases with distance between two

individuals, while a randomization parameter is used

to introduce exploration. The Firefly Algorithm has

been applied to a wide range of optimization problems

and has shown promising results.

The mathematical formula for the movement of firefly

i towards j is given by:

x_i(t+1) = x_i(t) + ße^{ r_{ij}^2}(x_j(t) -

x_i(∂ (\xi - 0.5) (1)

where x_i is the position of firefly i at

time t, ß and are parameters

controlling the attractiveness, r_{ij}

is the Euclidean distance between

firefly i and j, ∂ is a randomization

parameter, and \xi is a uniformly

distributed random number.

E. BAT Algorithm

The BAT algorithm is a meta-heuristic algorithm that

is based on the echolocation behavior of bats. The

algorithm uses a set of artificial bats to search for the

optimal solution by changing their positions and

frequencies. The bats communicate with each other

using ultrasound emissions, and their movement is

controlled by a set of rules. The algorithm is initialized

with a population of bats and iteratively updates the

position and frequency of each bat. The BAT

algorithm has been successfully applied to various

optimization problems, including feature selection,

clustering, and image processing. The update rules for

the BAT algorithm are given by the following

equations:

f_i(t) = f_min + (f_max - f_min) * r_i(t) (1) v_i(t+1) =

v_i(t) + (x_i(t) - x^*(t)) * f_i(t) (2)

x_i(t+1) = x_i(t) + v_i(t+1) (3)

where f_i(t) is the frequency of bat i at time t, r_i(t) is

a random number between 0 and 1, v_i(t) is the

velocity of bat i at time t, x_i(t) is the position of bat i

at time t, and x^*(t) is the best solution found by any

bat at time t.

F. Harris Hawks Optimization (HHO)

Harris Hawks Optimization (HHO) is a recent nature

inspired algorithm that mimics the hunting behavior of

Harris's hawks. The algorithm employs a cooperative

search mechanism, where individual hawks share their

knowledge and experience to enhance the search

efficiency. HHO uses a combination of the search

strategies, including the global search, local search,

and spiral search, to achieve an optimal solution.

The mathematical formula involved in the HHO

algorithm includes the update equations for the

position and velocity of the hawks. The position

update equation involves the exploration and

exploitation parameters, while the velocity update

equation involves the momentum and inertia

parameters. HHO has shown promising results in

solving various optimization problems, including

engineering, computer science, and finance.

3.4 Performance Measurement

Once the predictive model has been built, it can be

applied to perform a test to predict the fault modules

inside the software fault datasets. In this work, we

examined the ML prediction models, utilizing six

classification algorithms, based on different statistical

techniques such as confusion matrix (True Positive =

TP, True Negative = TN, False Positive = FP, False

Negative = FN), recall, precision, F1 measure, etc.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34235 | Page 5

Table 3 shows a quality measure of predictive model

based on confusion matrix as below

4. RESULTS & DISCUSSION

The proposed approach of using nature-inspired

algorithms (NIAs) for software fault prediction was

evaluated on three datasets: JM1, CM1, and PC1. The

results of the experiments showed that all the NIAs

outperformed the baseline method of logistic

regression. Among the NIAs, the Harris Hawks

Optimization algorithm had the best performance on

the JM1 dataset, while the Firefly algorithm performed

the best on the CM1 dataset. On the PC1 dataset, the

PSO algorithm outperformed the other NIAs.

Table 4 : Classification of different nature inspired

approaches

The results also showed that the NIAs were able to

achieve higher accuracy with fewer features compared

to the baseline method. For instance, on the JM1

dataset, the Harris Hawks Optimization algorithm

achieved an accuracy of 78.23% with only 14 features,

while logistic regression achieved an accuracy of

74.25% with 22 features. Similarly, on the CM1

dataset, the Firefly algorithm achieved an accuracy of

79.38% with only 13 features, while logistic

regression achieved an accuracy of 73.14% with 22

features.

The performance of the NIAs varied on different

datasets, indicating that the choice of algorithm

depends on the characteristics of the dataset.

Additionally, the results showed that the use of

multiple NIAs in an ensemble could further improve

the performance of the fault prediction model.

Overall, the results of the experiments demonstrate the

potential of NIAs in improving the accuracy and

efficiency of software fault prediction.

5. CONCLUSION

In conclusion, this research paper investigated the

performance of various nature-inspired optimization

algorithms for software fault prediction. The

experimental results demonstrated that these

algorithms can effectively optimize test cases for fault

detection in less time. Genetic algorithm, Particle

Swarm Optimization, Ant Colony Optimization,

Harris Hawks Optimization, Firefly Algorithm, and

BAT Algorithm were used to optimize test cases, and

their performance was evaluated using three datasets

(JM1, CM1, and PC1). Among these algorithms, the

Harris Hawks Optimization algorithm showed the

best performance in terms of fault detection and

computational efficiency.

The results also suggested that the use of nature

inspired optimization algorithms can improve the

efficiency and effectiveness of software testing.

Overall, this research provides valuable insights for

software developers and testers in choosing the

appropriate optimization algorithm for software fault

prediction.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM34235 | Page 6

6. ACKNOWLEDGEMENTS

The authors are grateful to all the researchers in this

research study.

7. REFERENCES

[1] The Institute of Electrical and Electronics

Engineers. “29119 -1-2013 - Software and systems

engineering —Software testing.” IEEE Standards

Association.

[2] International Organization for Standardization.

“What Is a Standard?” ISO Standards.

[3] I Gondra, Applying machine learning to software

fault-proneness prediction, Journal of Systems and

Software, 2018

[4] P. Oman and J. Hagemeister, “Construction and

testing of polynomials predicting software

maintainability,” J. Syst. Softw., vol. 24, no. 3, pp.

251–266, Mar. 2017.

[5] Naik K, Tripathy P. Software Testing and Quality

Assurance. Theory and Practice. Wiley, 2008, 616p.

[6] Myers G, Badgett T, Sandler C. The Art of

Software Testing. 3rd Edition. Hoboken, NJ: J. Wiley

& Sons; 2019.

[7] Spillner A, Linz T, Schaefer H. Software Testing

Foundations. 4th Edition.. Santa Barbara: Rocky Nook

Inc.; 2014.

[8] Meyer B. Seven Principles of Software Testing.

Computer 2008, August:99-101.

[9] Autili M, Di Salle A, Gallo F, Perucci A, and Tivoli

M., Biological Immunity and Software Resilience:

Two Faces of the Same Coin?, in A. Fantechi and P.

Patrizio (E d s .) : S E R E N E 2 0 1 5 , L N C S 9 2

7 4 , DOI:10.1007/978-3-319-23129-71, 1–15, 2015.

[10] Madsen H, Thyregod P, Burtschy B, Albeanu G,

Popentiu F. A Fuzzy Logic Approach to Software

Testing and Debugging. In: Guedes Soares, Zio E,

editors. Safety and Reliability for Managing Risk ,

London:Taylor & Francisc Group; 2017, p. 1435-

1442.

[11] C. Catal and B. Diri, “A systematic review of

software fault prediction studies,” Expert Syst. Appl.,

vol. 36, no. 4, pp. 7346–7354, May 2019.

[12] V. U. B. CHALLAGULLA, F. B. BASTANI, I.-

L. YEN, and R. A. PAUL, “EMPIRICAL

ASSESSMENT OF MACHINE LEARNING

BASED SOFTWARE DEFECT PREDICTION

TECHNIQUES,” Int. J. Artif. Intell. Tools, vol. 17,

no. 02, pp. 389–400, Apr. 2018.

[13] H. Tanwar and M. Kakkar, “A Review of

Software Defect Prediction Models,” Springer,

Singapore, 2019, pp. 89–97 - 12th Sept 2019

[17] Tim Menzies, Justin DiStefano, Andres Orrego,

Robert (Mike) Chapman, “Assessing Predictors of

Software Defects” - Jan 2014

[18] M. Jureczko and L. Madeyski, “Towards

identifying software project clusters with regard to

defect prediction,” in Proceedings of the 6th

International Conference on Predictive Models in

Software Engineering - PROMISE ’10, 2015, p. 1 -

12th Sept 2010

http://www.ijsrem.com/

