

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48681 | Page 1

Network Sniffing Tool

#1Subramanian.PL, ASSISTANT PROFESSOR,

#2Kishore S, #3Arjun Babu GG, B.Tech Students,

#1-4Department of Information Technology

KLN COLLEGE OF ENGINEERING (AUTONOMOUS) , POTTAPALAYAM, SIVAGANGAI DISTRICT, TAMILNADU,

INDIA.

---***---

Abstract -In today's interconnected digital landscape, network

security and traffic monitoring are critical for ensuring the integrity,

confidentiality, and availability of data. A Network Sniffing Tool is a

utility designed to capture, analyze, and log packets transmitted over a

network. This project presents the design and implementation of a

lightweight and efficient network sniffing tool capable of real-time

packet inspection, protocol analysis, and traffic visualization.

Developed using Python and libraries such as Scapy and Wireshark’s

TShark backend, the tool provides insights into network behavior by

detecting anomalies, unauthorized access, and potential vulnerabilities.

It supports filtering by protocol types (TCP, UDP, ICMP, etc.),

source/destination IPs, and ports, thus enabling targeted traffic

monitoring. The tool can be utilized for both educational purposes and

as a diagnostic aid for network administrators. Emphasis is placed on

user-friendly interfaces, logging mechanisms, and adherence to ethical

use standards. This work contributes to the growing need for accessible

and effective cybersecurity instrumentation.

Key Words: Packet Sniffing, Packet Capture, Traffic
Monitoring, Protocol Analysis, Network Inspection

1.INTRODUCTION

In the modern digital age, where data transmission over networks is

ubiquitous, monitoring and analyzing network traffic has become

essential for maintaining security, performance, and compliance.

Network sniffing, also known as packet sniffing, is the process of

intercepting and capturing data packets that traverse a network. A

Network Sniffing Tool serves as a diagnostic and analytical instrument

that enables users to inspect data in real time, providing deep visibility

into network operations, including protocol behavior, latency,

throughput, and potential intrusions.

Network sniffers are widely used by network administrators for

troubleshooting, by security analysts for detecting threats, and by

researchers for studying traffic patterns. These tools can operate in both

promiscuous mode—where all packets on the network segment are

captured—and non-promiscuous mode, where only packets addressed

to the host are monitored. Depending on the implementation, sniffers

can also reconstruct data streams, inspect application-layer protocols

(like HTTP, FTP, DNS), and identify anomalies that may indicate

malicious activity.

This project aims to develop a custom network sniffing tool that

leverages open-source libraries such as Scapy and TShark for packet

capture and analysis. The tool will offer functionality such as real-time

traffic monitoring, protocol-based filtering, and logging of captured

data. Its intuitive interface and extensibility make it suitable for

educational use, penetration testing (within legal boundaries), and basic

network auditing tasks.

Given the increasing sophistication of cyber threats and the growing

complexity of networks, having accessible and customizable tools for

traffic analysis is more important than ever. This work contributes to the

field of network forensics and security by providing a modular and

lightweight alternative to existing commercial sniffers.

2.LITERATURE REVIEW

The study of network sniffing tool has evolved significantly over the

years due to the growing complexity of networks and the increasing

demand for cybersecurity. This section reviews relevant research

papers, technical reports, and existing tools to understand the

foundational technologies, limitations, and trends in network sniffing

systems.

1. Overview of Packet Sniffing Techniques

Packet sniffing, or packet capturing, is a technique for intercepting and

logging traffic on a network. The research by Singh et al. (2013)

emphasizes that packet sniffers operate by placing the network interface

card (NIC) in promiscuous mode, allowing the tool to capture all traffic

on the network, not just that addressed to the host.

Reference:

Singh, R., Kaur, G., & Singh, H. (2013). Packet Sniffing Tools: A

Comparative Study. International Journal of Computer Applications,

76(11).

https://doi.org/10.5120/13250-0652

2. Open-Source Network Sniffing Tools

Tools like Wireshark, Tcpdump, and Kismet are widely recognized in

both academic and professional circles.

• Wireshark is discussed extensively in multiple studies,

including its use in real-time analysis, protocol dissection, and

educational training.

• Tcpdump offers command-line flexibility and is ideal for

automation and scripting in Linux environments.

Reference:

Bace, R., & Mell, P. (2001). Intrusion Detection Systems. NIST Special

Publication 800-31.

https://csrc.nist.gov/publications/detail/sp/800-31/archive/2001-11-01

3. Security Implications of Sniffing

Research has explored how sniffing tools can be used for both defensive

and offensive purposes. Tools like Ettercap can demonstrate ARP

poisoning and man-in-the-middle (MITM) attacks, showcasing the

importance of secure network configurations and encryption.

http://www.ijsrem.com/
https://csrc.nist.gov/publications/detail/sp/800-31/archive/2001-11-01

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48681 | Page 2

Reference:

Chaudhary, M., & Sharma, M. (2018). Analysis of Network Security

Threats and Preventive Measures. International Journal of Computer

Sciences and Engineering, 6(4).

https://www.ijcseonline.org/full_paper_view.php?paper_id=2682

4. Real-Time Network Monitoring

A study by Subramanian & Venkataraman (2019) highlights the use

of sniffing tools in real-time traffic monitoring and anomaly detection.

They found that when integrated with visual interfaces and analytics,

sniffers become valuable for identifying bottlenecks and unauthorized

usage.

Reference:

Subramanian, G., & Venkataraman, S. (2019). Real-Time Network

Traffic Analysis using Packet Sniffers. International Journal of Scientific

& Technology Research, 8(9).

https://www.ijstr.org/final-print/sep2019/Real-Time-Network-Traffic-

Analysis-Using-Packet-Sniffers.pdf

5. Sniffing in Wireless Environments

Wireless network sniffing is gaining more attention due to increased

usage of Wi-Fi. Tools like Aircrack-ng and Kismet are designed to

work in monitor mode and are often used in penetration testing and

wireless audits.

Reference:

Conti, M. et al. (2016). A Survey on Man-in-the-Middle Attacks. IEEE

Communications Surveys & Tutorials, 18(3).

https://doi.org/10.1109/COMST.2016.2548426

3.EXISTING SYSTEM

An existing system for a network sniffing tool typically includes

both hardware and software components that enable the real-time

capture, monitoring, and analysis of data packets transmitted

over a network. Among the most widely used tools is

Wireshark, an open-source packet analyzer that allows users to

inspect the details of various network protocols with a graphical

interface. It utilizes the libpcap (on Linux/macOS) or

WinPcap/Npcap (on Windows) libraries to access network

traffic directly from the system's network interface card (NIC).

Another popular tool is tcpdump, a lightweight command-line

utility that provides similar functionality and is ideal for scripting

and automation in Unix-like systems. TShark, a terminal-based

variant of Wireshark, provides full packet decoding in a non-GUI

environment, while tools like Scapy allow for programmatic

sniffing and manipulation of packets using Python, making them

suitable for research and penetration testing. Additionally,

Nmap, although primarily a port scanner, can be combined with

Ncat to perform network traffic redirection and basic sniffing

tasks. These systems rely heavily on packet capture libraries and

protocol dissection engines to decode, filter, and log network

traffic, and are extensively used in network diagnostics, security

audits, and forensic investigations. .

4.PROPOSED SYSTEM

A proposed system for a network sniffing tool aims to enhance

current capabilities by integrating intelligent traffic analysis,

user-friendly interfaces, and real-time threat detection

features. Unlike traditional tools that primarily focus on packet

capture and static inspection, the proposed system will

incorporate machine learning algorithms to automatically

classify and flag suspicious network behaviors such as

anomalies, unauthorized access attempts, and potential

malware communication. It will feature a modular

architecture comprising a packet capture module (based on

updated libraries like Npcap), a real-time analytics engine, a

visualization dashboard, and a secure cloud-based log storage

option for remote access and auditing. The system will support

multi-platform deployment (Windows, Linux, and Android)

and offer both GUI and CLI modes to cater to diverse user

preferences—from beginners to cybersecurity professionals.

Enhanced filtering, protocol parsing, and encrypted traffic

analysis (with proper decryption support where authorized)

will be prioritized. Moreover, integration with SIEM systems

(e.g., Splunk or ELK Stack) and alerting mechanisms like

email, SMS, or push notifications will help in rapid incident

response. This intelligent and user-centric design will not only

improve usability and accuracy but also make the sniffing tool

suitable for modern networks with high-speed traffic and

complex architectures.

 Advantages :

1. High Detection Accuracy – Machine learning-

based models outperform traditional methods by detecting

phishing attacks even before they are widely reported.

2. Real-Time Protection – Unlike blacklists that

may take time to update, this tool provides immediate threat

detection, preventing users from accessing fraudulent

websites.

3. Automated Learning & Adaptability – The

system evolves continuously by analyzing new phishing

patterns, improving its accuracy with time.

4. Reduced False Positives – By leveraging

advanced feature engineering, the system minimizes

incorrect classifications, making phishing detection more

reliable.

5. Scalability & Enterprise Integration – The

system is scalable and can be integrated with enterprise

security solutions to protect organizations from phishing

attacks.

6. User Awareness & Reporting Mechanism – The

tool generates detailed reports and security alerts, helping

organizations educate users about potential threats,

enhancing cybersecurity awareness.

7. Protection Against Evolving Phishing Attacks –

The system is designed to detect new and sophisticated

phishing techniques, ensuring longterm protection against

cyber threats.

. 5.SYSTEM OVERVIEW

The network sniffing tool is designed to monitor, capture, and analyze

data packets transmitted across a network in real time. The system

consists of several core components working together to provide

detailed insights into network activity, making it valuable for network

diagnostics, performance monitoring, and cybersecurity.

 1. Packet Capture Module

• Function: Captures raw packets directly from the

network interface.

http://www.ijsrem.com/
https://doi.org/10.1109/COMST.2016.2548426

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48681 | Page 3

• Technology: Utilizes libraries like libpcap

(Linux/macOS) or Npcap (Windows).

• Features: Supports promiscuous mode to capture

all packets, not just those addressed to the host.

 2. Packet Analysis Engine

• Function: Parses and decodes packets into readable

protocol layers (Ethernet, IP, TCP, UDP, HTTP, etc.).

• Features:

o Displays header information and payload

content.

o Identifies protocol-specific anomalies.

o Decodes encrypted traffic where

authorized (e.g., using SSL keys).

 3. Intelligent Traffic Analysis (Proposed Enhancement)

• Function: Uses machine learning or rule-based

logic to detect suspicious behaviors, such as port scanning or

unusual data transfers.

• Integration: Can be linked with IDS/IPS systems

or SIEM platforms.

 4. User Interface Layer

• GUI Mode: Displays captured traffic in an

organized, color-coded layout (similar to Wireshark).

• CLI Mode: Provides terminal-based command-

line access for scripting and automation (like tcpdump or

TShark).

 5. Storage & Logging Module

• Function: Logs traffic data to local storage or

secure cloud services.

• Format Support: Exports data in formats like

PCAP, CSV, or JSON for post-analysis.

 6. Alerting & Reporting System

• Function: Generates real-time alerts for predefined

anomalies or security events.

• Methods: Sends notifications via email, SMS, or

dashboard alerts.

 7. Modular Architecture

• Each module (capture, analysis, logging, etc.) is

independently upgradable and customizable.

• Supports plug-in extensions for protocol decoders

and threat signatures.

 8. Security & Access Control

• Enforces role-based access to ensure only

authorized users can view or manipulate network data.

• Captured data is encrypted before storage to ensure

data integrity and confidentiality.

6.SYSTEM IMPLEMENTATION

The system implementation of a network sniffing tool involves

developing and integrating several key components to enable efficient

packet capture, decoding, analysis, and user interaction. The process

typically begins with the packet capture module, which is

implemented using packet capture libraries such as libpcap for Unix-

like systems or Npcap for Windows. This module interacts directly with

the network interface card (NIC) in promiscuous mode to intercept all

network traffic passing through the device. Captured raw packets are

then passed to the packet parsing and analysis engine, where protocol

layers are dissected and interpreted using protocol dissectors—these can

be implemented either by leveraging existing open-source libraries (like

Wireshark’s dissectors) or custom-built for specific protocols. The

system also integrates a user interface, which can be graphical (using

frameworks like Qt or GTK) or command-line based, allowing users to

view, filter, and search through captured packets. For storage and

logging, the implementation includes mechanisms to save captured data

in standardized formats such as PCAP, enabling offline analysis and

interoperability with other tools. To enhance functionality, advanced

implementations may incorporate an intelligent detection module

using machine learning models or heuristic algorithms to flag suspicious

patterns or anomalies. The system is built with modularity in mind to

allow easy updates and addition of new protocols or detection rules.

Security features, including access controls and encrypted storage, are

also implemented to protect sensitive captured data. Finally, thorough

testing is performed to ensure the tool operates correctly across different

network environments and traffic loads, ensuring stability and accuracy.

import org.pcap4j.core.*;

import org.pcap4j.packet.Packet;

import org.pcap4j.packet.TcpPacket;

import org.pcap4j.packet.IpPacket;

import org.pcap4j.packet.namednumber.TcpPort;

import java.util.regex.Pattern;

public class LoginSniffer {

 public static void main(String[] args) throws

PcapNativeException, NotOpenException {

 PcapNetworkInterface nif = Pcaps.findAllDevs().get(0);

// Choose first available network device

System.out.println("Using: " + nif.getName());

 int snapshotLength = 65536;

 int timeout = 10; PcapHandle handle =

nif.openLive(snapshotLength,

PcapNetworkInterface.PromiscuousMode.PROMISCUOUS,

timeout);

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48681 | Page 4

 PacketListener listener = new PacketListener() {

6.1 DETECTION MODULE

• Monitor captured packets to analyze

traffic patterns, protocols, and frequency of

connections.
• Identify suspicious behaviors such as SYN

floods,port scan

Implementation Steps:

1. Create a raw socket to capture incoming
and outgoing packets from the network interface
using Python libraries like socket. Checks for the
presence of username/email input fields and
password fields.

2. Continuously receive and parse
packets,extracting protocol header(ip,tcp/udp)

import socket

import struct

from collections import defaultdict

Create raw socket (Linux - AF_PACKET)

s = socket.socket(socket.AF_PACKET,

socket.SOCK_RAW, socket.ntohs(3))

Track SYN packet count per IP

syn_counter = defaultdict(int)

SYN_THRESHOLD = 100 # adjust based on testing

while True:

 raw_data, addr = s.recvfrom(65535) # Ethernet

header: first 14 bytes

 eth_proto = struct.unpack('!6s6sH',

raw_data[:14])[2]

 # IPv4 (eth_proto == 0x0800)

 if eth_proto == 0x0800:

 ip_header = raw_data[14:34]

 iph = struct.unpack('!BBHHHBBH4s4s',

ip_header)

 protocol = iph[6]

 # TCP protocol

 if protocol == 6:

 src_ip = socket.inet_ntoa(iph[8])

 tcp_header = raw_data[34:54]

 tcph = struct.unpack('!HHLLBBHHH',

tcp_header)

 flags = tcph[5]

 SYN = 0x02

 if flags & SYN:

 syn_counter[src_ip] += 1

 if syn_counter[src_ip] >

SYN_THRESHOLD:

 print(f"⚠️ ALERT: Possible SYN flood

detected from {src_ip}")

6.2 SYSTEM EXECUTION

• Initialize a raw socket to capture all
incoming and outgoing network packets from the
interface.

• Continuous receive and decode packets
extracting protocal headers
like(tcp/udp/icmp/ethernet)

import socket

import struct

Create raw socket (Linux-specific)

s = socket.socket(socket.AF_PACKET,

socket.SOCK_RAW, socket.ntohs(3))

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48681 | Page 5

print("🔎 Network Sniffing Tool Started...\n")

while True:

 raw_data, addr = s.recvfrom(65535)

 # Unpack Ethernet header

 eth_header = raw_data[:14]

 eth = struct.unpack('!6s6sH', eth_header)

 eth_proto = socket.ntohs(eth[2])

 # Check for IPv4

 if eth_proto == 0x0800:

 # Unpack IP header

 ip_header = raw_data[14:34]

 iph = struct.unpack('!BBHHHBBH4s4s', ip_header)

 protocol = iph[6]

 src_ip = socket.inet_ntoa(iph[8])

 dst_ip = socket.inet_ntoa(iph[9])

 # TCP

 if protocol == 6:

 tcp_header = raw_data[34:54]

 tcph = struct.unpack('!HHLLBBHHH', tcp_header)

 src_port = tcph[0]

 dst_port = tcph[1]

 print(f"[TCP] {src_ip}:{src_port} →

{dst_ip}:{dst_port}")

 # UDP

 elif protocol == 17:

 udp_header = raw_data[34:42]

 udph = struct.unpack('!HHHH', udp_header)

 src_port = udph[0]

 dst_port = udph[1]

 print(f"[UDP] {src_ip}:{src_port} →

{dst_ip}:{dst_port}")

 # ICMP

 elif protocol == 1:

 print(f"[ICMP] {src_ip} → {dst_ip}")

 else:

 print(f"[Other] Protocol {protocol} from {src_ip} to

{dst_ip}")

 Flowchart:

Main Features of the Project:

 Real-Time Packet Capture

Captures live network traffic from one or multiple network interfaces

using promiscuous mode, enabling detailed monitoring of all data

packets transmitted on the network.

 Multi-Protocol Support

Decodes and analyzes a wide range of network protocols, including

Ethernet, IP, TCP, UDP, HTTP, DNS, FTP, SSL/TLS, and more,

providing comprehensive visibility into network communication.

 User-Friendly Interface

Offers both graphical (GUI) and command-line (CLI) interfaces to

cater to different user needs—interactive packet inspection for

beginners and scriptable automation for advanced users.

 Advanced Filtering and Search

Enables users to apply complex filters based on protocol types, IP

addresses, ports, and packet contents to isolate relevant traffic from

high-volume data.

 Packet Analysis and Visualization

Presents detailed packet headers and payload data in a structured,

color-coded format, helping users quickly identify anomalies or

patterns.

 Data Export and Logging

Supports exporting captured packets to standard file formats such as

PCAP for offline analysis, sharing, or integration with other tools.

 Alerting and Notification

Implements customizable alerts to notify users of suspicious or

abnormal network activities, potentially integrating with email, SMS,

or dashboard notifications.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48681 | Page 6

 Encrypted Traffic Handling

Includes capabilities to analyze encrypted traffic when provided with

decryption keys or certificates, enabling deeper inspection of secure

communications.

 Modular and Extensible Architecture

Designed to allow easy addition of new protocol parsers, detection

rules, or user interface enhancements without overhauling the entire

system.

 Cross-Platform Compatibility

Runs on multiple operating systems such as Windows, Linux, and

macOS, ensuring wide usability.

 Security and Access Control

Protects sensitive captured data with encryption and enforces role-

based access to prevent unauthorized use.

7. RECOMMENDATIONS
To enhance the functionality of a network sniffing
tool, it is recommended to implement packet filtering
and structured logging. Filtering allows users to
focus on specific protocols, ports, or IP addresses,
which significantly improves efficiency and relevance
during traffic analysis. Additionally, storing captured
data in structured formats like CSV or JSON not only
helps in organizing the information but also enables
easier integration with data analysis or visualization
tools for deeper inspection Another important
improvement is the integration of a real-time
detection and alerting system. This involves
monitoring traffic patterns for suspicious activities
such as SYN floods, port scanning, or unauthorized
access attempts. When a predefined threshold is
exceeded or unusual behavior is detected, the tool can
immediately log the event or notify the user. This
proactive feature transforms the tool from a passive
sniffer into a basic intrusion detection system (IDS),
increasing its usefulness in cybersecurity scenarios
Lastly, it is crucial to consider ethical and legal
aspects while deploying or testing the tool. Network
sniffers can capture sensitive data, so their use should
be restricted to authorized networks with proper
permissions. Educational and research-based
implementations must always comply with local laws
and institutional guidelines. Emphasizing responsible
use ensures the tool contributes positively to network
security and does not become a source of misuse or
privacy violations.

8. RESULTS AND ACTIONS

8.1 Original Output

The network sniffing tool successfully captures and displays
live network traffic, providing detailed information about
packet headers such as source and destination IP addresses,
ports, and protocol types (TCP, UDP, ICMP). During testing,
the tool was able to identify common network events like TCP
connection attempts, UDP data transmissions, and ICMP
echo requests (pings). The real-time display of this
information enables users to monitor network activity
effectively and diagnose connectivity or security issues..

8.2 SECURITY AND PRIVACY CONSIDERATIONS

While developing and using a network sniffing tool, it
is essential to consider the associated security and
privacy implications. Packet sniffers can capture
sensitive information such as IP addresses, login
credentials, and unencrypted communication, which
poses a significant risk if misused. Therefore, such tools
must be used strictly in authorized environments, such
as educational labs or private networks, with proper
permissions. To enhance privacy and ethical usage, the
tool should avoid storing payload data unless explicitly
required for analysis, and should implement basic
access controls to prevent unauthorized usage
Additionally, informing all users on the monitored
network and complying with institutional and legal
regulations helps ensure ethical deployment.
Addressing these considerations is critical to ensuring
the tool contributes positively to cybersecurity learning
and awareness without violating user privacy or
network integrity.

8.2 COMPARISON WITH EXISTING TOOLS

The network sniffing tool developed in this project offers a

simplified yet effective approach to packet capture and

analysis compared to established tools like Wireshark,

tcpdump, and Snort. While Wireshark provides a

comprehensive graphical interface with deep protocol

analysis and extensive filtering capabilities, it requires

significant system resources and user expertise. Tcpdump

offers powerful command-line packet capture but lacks real-

time alerting and automated detection features. Snort,

primarily an intrusion detection system, excels in complex

threat detection but has a steep learning curve and requires

continuous rule updates. In contrast, this tool focuses on ease

of use, real-time traffic monitoring, and basic detection

mechanisms, making it suitable for educational purposes and

small-scale network monitoring.

In conclusion, a network sniffing tool is essential

for monitoring, analyzing, and securing network traffic.

Through comprehensive testing—including compatibility,

usability, and performance—it ensures reliable operation

across diverse environments. A well-tested tool enhances

network visibility, aids in troubleshooting, and supports

robust cybersecurity practices.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48681 | Page 7

9. CONCLUSION

In conclusion, the network sniffing tool developed in this

project provides a practical and lightweight solution for

capturing and analyzing real-time network traffic. Through

the use of raw sockets and basic packet parsing, the tool

effectively identifies and displays key information about IP,

TCP, UDP, and ICMP protocols. The integration of a simple

detection module enables real-time alerts for common threats

such as SYN floods, demonstrating its potential for basic

network security monitoring. Although it does not match the

complexity and feature set of professional tools like

Wireshark or Snort, its simplicity, portability, and educational

value make it ideal for students and beginners in the field of

cybersecurity. With further improvements such as advanced

filtering, GUI support, and performance optimization, this

tool can evolve into a more comprehensive and useful utility

for network analysis and intrusion detection.

10. FUTURE ENHANCEMENTS

Future enhancements for network sniffing tools could include
the integration of AI-powered traffic analysis, which would
allow the tool to automatically detect unusual patterns and
potential security threats, reducing the need for manual
monitoring. Additionally, incorporating cloud integration
would enable seamless monitoring across hybrid and cloud
environments, making it easier for users to capture data from
distributed infrastructures. Expanding support for mobile
platforms could allow network administrators to monitor
traffic from smartphones or tablets, providing greater
flexibility. Enhanced visualization features, such as

interactive dashboards and real-time traffic maps, would offer
more intuitive insights into network performance and
security. Finally, the introduction of automated reporting
capabilities could streamline compliance processes by
generating scheduled, customizable reports for audits and
network performance reviews. These enhancements would
significantly improve the tool’s efficiency, scalability, and
usability for modern, dynamic networks. .

11. REFERENCES

[1] Kurose, J. F., & Ross, K. W. (2021). Computer Networking: A Top-

Down Approach (8th

 ed.). Pearson.

[2] Bejtlich, R. (2004). The Tao of Network Security Monitoring:

Beyond Intrusion

 Detection. Addison-Wesley.

[3] Scapy Project: https://scapy.net/

[4] Wireshark Project: https://www.wireshark.org/

[5]Scapy Documentation: https://scapy.readthedocs.io/

[6] TShark User Guide – https://www.wireshark.org/docs/man-

pages/tshark.html

[7] ENISA (European Union Agency for Cybersecurity). (2020).

Network Traffic Analysis

 Tools Guidelines. https://www.enisa.europa.eu/

[8] tcpdump Official Site: https://www.tcpdump.org/

[9] Scapy Documentation: https://scapy.readthedocs.io/

[10] OWASP Network Security Tools: https://owasp.org/www-

community/Network_Security_Tools

http://www.ijsrem.com/
https://scapy.net/
https://www.wireshark.org/
https://scapy.readthedocs.io/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.enisa.europa.eu/
https://www.tcpdump.org/
https://scapy.readthedocs.io/
https://owasp.org/www-community/Network_Security_Tools
https://owasp.org/www-community/Network_Security_Tools

