
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47878 | Page 1

Network Traffic Tracer: Analyzing and Monitoring Network

Traffic Using Python and Wireshark

Dr. Suma

Jain University

suma@jainuniversity.ac.in

M S S Lokesh

Jain University

mamidisettysrisailokesh@gmail.com

V J D Surendra Gowda

Jain University

surendragoudaveeri@gmail.com

Y Lokesh

Jain University

lokeshyedida1@gmail.com

Abstract - Performance and Secuity analysis is essential in the

communication systems in the digital world we live in today. This

paper discusses the creation of a Network Traffic Tracer, a network

system written in Python with integrated Wireshark for capturing

packets and performing automated traffic analysis. It employs

Scapy and PyShark libraries to capture, f ilter, and process network

packets to analyze crucial data about the traffic patterns, unusual

activities, and possible security threats. Furthermore, it uses

GeoLiteCity IP address geolocation database to enable visual

mapping of suspicious network activities all over the world. Such

visualization is plenty in identifying strange patterns such as

unauthorized invasion or flooding the network which is known as

Distributed Denial of Service (DDoS). Furthermore, the system

supports real-time monitoring along with statistical report

generation for traffic anomaly detection to increase the level of

secuity and optimize performance of the network. In this paper, we

show how effective the combination of automation in Python and

traditional network analysis methods is in addressing issues

pertaining to security and monitoring of networks.Keywords:

Network Traffic Analysis, Python, Wireshark, Cybersecurity,

Scapy, PyShark, Anomaly Detection.

Keywords: Network Traffic Analysis, Packet Capture, Python,

Wireshark, Scapy, PyShark, Cybersecurity, GeoIP, Anomaly

Detection

I. INTRODUCTION

As more and more dependence is being placed upon the use of

the internet and network-based services, it has become crucial to

monitor and analyze network traffic to identify cyber threats,

improve performance, and maintain data integrity. Network

traffic analysis is the process of capturing and examining

network packets to comprehend traffic flow, detect anomalies,

and prevent security threats. This paper introduces a Network

Traffic Tracer, an implementation using Python that combines

Wireshark and automated software tools to scan and analyze

network performance.

The design will

• Use real- time prisoner of network packets for analysis.

• Identify anomalies and possible security pitfalls.

• Offer geographical mapping of network business with

GeoLiteCity.

• Automatically sludge business and induce reports with Scapy

and PyShark

II. METHODOLOGY

The methodology of this project is structured around three

primary phases: packet acquisition, automated analysis, and

security inference through anomaly detection and

visualization. Each stage is powered by Python scripting and

open-source tools to ensure replicability, scalability, and real-

time responsiveness.

A. I. Packet Capture and Storage

Packet capturing is the foundational step where network traffic

is intercepted and saved for further inspection. Wireshark is

utilized in promiscuous mode to collect all network frames. These

packets are saved in PCAP (Packet Capture) format, which

preserves raw data, enabling future analysis without requiring

live monitoring.

Tool: Wireshark (GUI-based and TShark CLI alternative)

Data Format: PCAP

Capture Filter: Configurable BPF (Berkeley Packet Filter)

expressions to reduce unnecessary traffic

B. II. Packet Parsing and Feature Extraction

Scapy is used for Crafting and injecting test packets, Low-level

protocol dissection, Behavioral inspection of SYN, ACK, and

RST sequences

PyShark is used for Efficient parsing of PCAP files, Extracting

meta-information (packet length, TTL, time delta), Generating

flow summaries and statistics

This dual-library approach enables both live and offline

inspection modes.

C. III. Automated Traffic Classification and Monitoring

Automated logic is implemented to classify and monitor network

flows:

Port-based Classification: Traffic is sorted into categories such

as HTTP, FTP, DNS, etc.

Temporal Patterns: The script calculates packet rate,

burstiness, and time-based anomalies (e.g., night-time surges).

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47878 | Page 2

Entropy Metrics: Optionally, entropy in destination IPs and port

numbers is calculated to detect DDoS and scanning attempts.

The parsed data is stored in structured logs or optionally

streamed to external dashboards or SIEM tools.

D. IV. Geolocation and Visualization

 To contextualize traffic behavior, geolocation is integrated

using the GeoLiteCity database. This maps IP addresses to

approximate city and country-level locations.

IP Lookup: Conducted via MaxMind’s free GeoLiteCity

database, Visualization Tool: Google Maps API, Output:

Heatmaps and path-tracing visuals that depict traffic origin and

destination flows.

This helps in identifying malicious or suspicious sources based

on unusual geography (e.g., sudden traffic from unknown

regions).

E. V. Security and Anomaly Detection

Anomaly detection is carried out based on heuristics and

threshold models: Signature Matching: Known attack patterns

like SYN flood, UDP flood, and port scans are matched against

packet sequences, Behavioral Profiling: Repetitive access

attempts, protocol misuse, or packet size anomalies are flagged,

Alert Generation: Logs and alerts are generated in case of

detected threats for security personnel to act upon.

Additionally, experimental support for logging in JSON format

is integrated for compatibility with third-party alerting systems

like ELK Stack or Splunk

III. IMPLEMENTATION

The implementation of the Network Traffic Tracer system

involves integrating several open-source tools and Python

libraries to create a modular framework for capturing, analyzing,

and visualizing network traffic. The implementation is divided

into key components, each focusing on specific aspects of traffic

analysis and security monitoring.

A. I. Development Environment

Programming Language: Python 3.10+

Operating System: Ubuntu Linux 22.04 LTS (preferred for

compatibility with packet capture tools)

Dependencies:

• scapy – for low-level packet manipulation

• pyshark – for parsing .pcap files

• geolite2 and geoip2 – for geolocation

• matplotlib, seaborn – for data visualization (optional)

• folium – for map rendering of IP locations

• tshark – command-line interface of Wireshark

B. II. Packet Capture Module

The packet capture is performed using Wireshark or its

command-line counterpart tshark. Network interfaces are put in

promiscuous mode to listen to all traffic.

• A cron job or background service can be set up to

capture traffic at regular intervals.

• The following command captures live packets to a .pcap

file:

 Figure 1. Sample Wireshark Packet Capture.

This provides a 5-minute capture session stored for analysis.

Packet Analysis and Feature Extraction

Once the packets are captured, the .pcap file is analyzed using

PyShark. The script extracts various traffic features:

• Source and destination IP

• Protocol (TCP, UDP, ICMP)

• Packet length

• Timestamps

• TCP flags (e.g., SYN, ACK)

• Port numbers

Traffic Classification and Pattern Detection

Using Scapy, packet sequences are inspected to identify:

• Port scanning attempts (e.g., multiple SYN packets to

sequential ports)

• SYN flood attacks (high volume of SYN packets

without ACKs)

IP Geolocation and Visualization

To provide geographical context:

• Extracted IPs are passed to the MaxMind GeoLite2

database.

• The corresponding city, country, and coordinates are

fetched.

• Folium is used to generate interactive maps with

markers and paths.

C. III. Integration and Testing

The entire system is integrated using modular Python scripts

orchestrated via a master script or scheduler. Unit tests and

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47878 | Page 3

packet replay were used for validation. Custom test traffic (e.g.,

using Nmap or hping3) was generated to simulate attacks and

verify detection accuracy.

Tools and Technologies: Wireshark: Packet inspection and

capture. Python (Scapy, PyShark): For analysis and automation.

GeoLiteCity & Google Maps: For IP geo-mapping and

visualization.

Workflow: Capture traffic with Wireshark, Store as PCAP,

Parse with PyShark and Scapy, Extract traffic features, Map IPs

to locations, Analyze anomalies.

Figure 2. Whole project using python in vs code.

Figure 3. GeoIP Traffic Mapping Output.

IV. LITERATURE REVIEW

Numerous studies have explored network traffic analysis

for performance enhancement and threat detection. Tools

like Snort and Bro (now Zeek) have been widely adopted

in the industry for real-time intrusion detection. These tools

use predefined rule sets to monitor traffic and flag

anomalies. While effective, these systems often require

complex setup.

Python-based tools, particularly using Scapy and PyShark,

have gained popularity for their flexibility and ease of

scripting. According to Paxson (1999), early detection

systems relied heavily on static patterns, which limited

their ability to detect zero-day attacks. Modern techniques

incorporate behavioral analysis and statistical modeling,

enhancing detection rates. Alshamrani et al. (2019)

emphasized the importance of anomaly detection in

Industrial Control Systems, noting its applicability across

various networktypes.

Recent works have started integrating machine learning

models for predictive analysis. These models require

extensive datasets and computational resources, making

them less feasible for small-scale

implementations.However,lightweight implementations

using Python offer a balance between functionality and

resource efficiency.
.

V. DATA ANALYSIS AND VISUALIZATION

To better understand the traffic patterns, data was analyzed

over a 48-hour period on a local test network. Using

PyShark, key traffic metrics like packet count, protocol

distribution, and average packet size were computed. The

results indicated that TCP was the most dominant protocol,

followed by UDP and ICMP. Unusual spikes were

observed from non-local IPs, hinting at potential scanning

activities.

GeoIP visualization using Google Maps API displayed the

global distribution of incoming packets. The majority of

traffic originated from known sources, but a cluster of

connections from unexpected regions flagged further

investigation. These visualizations were crucial in

correlating temporal spikes with geographic origins,

assisting in the assessment of potential threats.

VI. CASE STUDY: DETECTING PORT SCANNING

A specific scenario was simulated where a port scanning

attempt was launched using Nmap. The Network Traffic

Tracer successfully flagged this activity based on the

repetitive connection requests across a range of ports

within a short time span. Using Scapy, the system analyzed

the SYN packets and logged the time stamps and port

ranges targeted.

This case study validated the system's efficacy in

identifying reconnaissance behavior, a precursor to larger

attacks. Such detection plays a vital role in preemptive

cybersecurity strategies.

VII. LIMITATIONS

While the system is effective in real-time monitoring and

basic anomaly detection, there are limitations to its

capabilities. The reliance on signature-based thresholds for

anomaly detection can result in false positives.

Additionally, while PyShark and Scapy are powerful, they

are constrained by the Python GIL and may not scale well

under very high traffic loads.

Furthermore, geolocation accuracy is dependent on the

GeoLiteCity database, which may not always reflect

precise IP locations, especially for mobile networks or

VPN users.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47878 | Page 4

VIII. RESULTS AND DISCUSSION

The developed Network Traffic Tracer system was tested on a

local network environment over a period of 48 hours. The focus

was on measuring the effectiveness of packet capture, accuracy

of anomaly detection, responsiveness of geolocation mapping,

and the overall reliability of the automated analysis modules.

Traffic Capture Results

Using Wireshark and TShark, the system successfully captured

over 120,000 packets during peak traffic hours. The captured

traffic included diverse protocols such as TCP, UDP, ICMP,

ARP, and DNS. The capture logs were analyzed for:

• Protocol distribution: TCP accounted for

approximately 70% of the traffic, followed by UDP at 22%, and

ICMP at 6%.

• Top communicating hosts: Local DNS and gateway

IPs were expectedly the most frequent.

• Peak hours: The system recorded the highest traffic

volumes between 6:00 PM and 9:00 PM, aligning with typical

network usage trends.

Anomaly Detection Performance

The anomaly detection module was evaluated through both

passive monitoring and simulated attack scenarios:

• Port Scanning: Using Nmap, a scan was launched from

a secondary machine. The system flagged the activity based on

the pattern of repetitive SYN packets across a wide port range in

a short timeframe.

• SYN Flood Simulation: A simulated SYN flood using

hping3 generated 5,000 SYN packets per minute. The Tracer

correctly identified the anomaly and generated alerts within 10

seconds.

• UDP Flood: Detected based on abnormally high traffic

volume from a single source using UDP packets without a valid

response.

The detection logic achieved a true positive rate of ~95%, with

a false positive rate below 5%, which is acceptable for non-AI-

based heuristic monitoring.

Visualization Insights

The geolocation module accurately resolved IPs to their

geographic origins using the MaxMind GeoLite2 database:

• Majority of traffic originated from within the country

(local ISPs).

• Anomalous connections from regions such as Eastern

Europe and Southeast Asia were flagged due to their unexpected

presence and timing.

• Google Maps & Folium outputs provided visual

heatmaps and line traces that helped correlate time-based

anomalies with geographic patterns.

These visual aids proved valuable for understanding traffic

sources and spotting potential reconnaissance or attack vectors.

Usability and Performance

• Processing Time: The analysis of a 100MB .pcap file

took less than 15 seconds using PyShark.

• System Resource Usage: The tool maintained low

memory and CPU usage, making it suitable for continuous

background execution on low-spec machines.

• Scalability: While effective for small-to-medium scale

networks, the current implementation using Python and PyShark

may face limitations when dealing with high-throughput

enterprise traffic due to Python’s GIL (Global Interpreter Lock).

Real-world Relevance

The tool demonstrated practical use cases for academic labs,

small enterprise networks, and cybersecurity training

environments. Its modularity makes it extendable—for instance,

integrating machine learning classifiers or exporting data to

SIEM tools for enterprise use.

IX. CONCLUSION AND FUTURE WORK

The Network Traffic Tracer presents a modular and

extensible platform for traffic monitoring and analysis

using Python. It integrates real-time packet capture,

automated filtering, anomaly detection, and geolocation-

based visualization, proving valuable in academic,

research, and enterprise contexts.

Future enhancements could include integrating a machine

learning module to classify traffic types and predict

malicious patterns. A web-based dashboard can be

developed for better visualization and alerting, coupled

with cloud storage for log retention and remote analysis.

Additionally, support for encrypted traffic analysis using

SSL fingerprinting and deep packet inspection (DPI) could

significantly improve detection accuracy.

X. REFERENCES

1. T. Oetiker, "Monitoring Network Traffic with MRTG,"

IEEE Internet Computing, vol. 2, no. 1, pp. 50–55, Jan. 1998.

2. G. Combs, Wireshark Network Analysis Guide, Wireshark

Foundation, 2015.

3. V. Paxson, "Bro: A System for Detecting Network Intruders

in Real-Time," Computer Networks, vol. 31, no. 23–24, pp.

2435–2463, Dec. 1999.

4. A. Alshamrani et al., "A Survey on Anomaly Detection in

Industrial Control Systems," IEEE Transactions on Emerging

Topics in Computing, vol. 7, no. 3, pp. 744–759, Jul.–Sept. 2019.

5. M. Roesch, "Snort: Lightweight Intrusion Detection for

Networks," Proceedings of the 13th USENIX Conference on

System Administration (LISA ’99), pp. 229–238, 1999.

6. W. Stallings, Network Security Essentials: Applications and

Standards, 6th ed., Pearson Education, 2017.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 09 ISSUE: 05 | MAY - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM47878 | Page 5

7. A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani,

"Toward Developing a Systematic Approach to Generate

Benchmark Datasets for Intrusion Detection," Computers &

Security, vol. 31, no. 3, pp. 357–374, May 2012.

8. Scapy Documentation – https://scapy.readthedocs.io/

9. M. L. Goldstein and S. A. Uchida, "A Comparative

Evaluation of Unsupervised Anomaly Detection Algorithms for

Multivariate Data," PLOS ONE, vol. 11, no. 4, Apr. 2016.

10. Y. Meidan et al., "N-BaIoT: Network-Based Detection of

IoT Botnet Attacks Using Deep Autoencoders," IEEE Pervasive

Computing, vol. 18, no. 1, pp. 12–22, Jan. 2019.

11. R. Sommer and V. Paxson, "Outside the Closed World: On

Using Machine Learning for Network Intrusion Detection,"

IEEE Symposium on Security and Privacy, pp. 305–316, 2010.

12. B. Mukherjee, L. T. Heberlein, and K. N. Levitt, "Network

Intrusion Detection," IEEE Network, vol. 8, no. 3, pp. 26–41,

May/June 1994.

13.PySharDocumentation-

https://github.com/KimiNewt/pyshark

http://www.ijsrem.com/
https://scapy.readthedocs.io/
https://github.com/KimiNewt/pyshark

