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ABSTRACT: 

 

The purpose of this article is to compare  conventional machine learning with modern deep learning approaches for 

the task of detecting anomalies in self-organizing networks. While deep learning has gained a significant move, 

especially in application scenarios where large volumes of data can be collected and processed conventional methods 

can nevertheless offer strong statistical alternatives, especially when the right methods are used learning 

representations. For example, support vector machines have previously shown superior potential in many binary 

classification applications and can be further used with various representations such as single-class learning and data 

augmentation In four different application scenarios, we are presenting evidence for the first time that conventional 

machine learning can achieve superior performance compared to prior deep learning approaches by an average of 15%, 

as demonstrated on a publicly available dataset that has been previously published. Our results further indicate that the 

computational speed has improved by almost two orders of magnitude and an order of magnitude reduction in trainable 

parameters, conventional machine learning provides robust alternative for self-organizing 5G networks, especially 

when execution and detection times are critical.

INTRODUCTION 
 

As a next-generation telecommunication technology, 5G brings a new perspective and innovative solutions for the 

increased demand of people and autonomous devices [1]. Five areas are the main focus of this technology, which 

includes dense device structures, high-frequency carriers like millimetre wave (VMware), massive MIMO enabling 

multi-connectivity, smart devices, and massive machine-type communications. To meet these demands in such a 

dynamic digital world, next-generation cellular networks must be adaptable with predictive capabilities due to the 

ever-changing landscape of nested services that interact with each other [2]. Therefore, artificial intelligence (AI) has 

gained increased interest as a potential 5G technology to handle the dynamic environment in analyzing and 

contributing to network realization. Examples of intelligent applications for massive machine-type communication 

(mMTC) in 5G or massive MIMO in wireless sensor networks (WSNs) are provided by the Associate Editor 

responsible for overseeing the review of this manuscript. The primary objectives of such applications include 

improving IoT connectivity, extending battery life, and increasing spectral efficiency. These goals are achieved 

through the use of a channel-based decision fusion methodology, as described in references [3] and [4] approval for 

publication was by Bilal Alates. For example, Ericsson lost at least 100 million dollars because 61744 This work is 

licensed under a Creative Commons Attribution 4.0 License. AirHop's eSON technology is an example of autonomous 

mobile networks or self-organizing networks (SONs) with features such as self-scheduling, self-configuration, self-

optimization, and self-healing that have proven to be effective in reducing network failures and improving performance 

without the need for human intervention[5]. This was demonstrated in previous mobile networks like 4G, and further 

information can be found in volume 10 of 2022, which is available at https://creativecommons.org/licenses/by/4.0/. 

However, current solutions on the market generally lack smart features, especially for managing cell outage 
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(COM) to recover autonomously [6]. If there is no traffic due to a specific network problem, this indicates an anomaly 

where one or more cells may be out, and it is important to detect the outage and restore service as soon as possible. 

grid outage [7] that could have been prevented with AI- powered SONs. To tackle the challenges posed by anomaly 

detection in mobile networks, the Touchless Automation Research Group was established by the European 

Telecommunications Standards Institute (ETSI). This group is dedicated to advancing machine learning and artificial 

intelligence techniques, particularly in the area of deep learning, to improve the detection of anomalies in mobile 

networks. This paper has four main contributions to the field, as summarized below. A thorough examination of a 

conventional machine learning technique for detecting anomalies in 5G self-organizing networks (5G-SON) is 

provided in this article. We also compare this method to a widely-used deep learning alternative, utilizing various 

learning representations such as one-class and binary learning. Our article asserts that we achieve state-of-the-art 

performance on a publicly available dataset [8] that examines various usage scenarios for detecting anomalies in 5G 

self-organizing networks (5G-SON). Our method outperforms the best-performing autoencoder-based deep setup, 

achieving an average improvement of 15%. Our study demonstrates, for the first time, that the performance of binary-

mode anomaly detection can be further   enhanced by using data augmentation methods, even when employing 

conventional algorithmic techniques such as support vector machines on a sufficiently large dataset. Moreover, we 

achieve a significant improvement in computational speed, nearly two orders of magnitude, and a reduction in trainable 

parameters by an order of magnitude using conventional machine learning. This approach provides a robust alternative 

for 5G self-organizing networks, especially when the execution and detection times are crucial. The remainder of this 

article is organized as follows: Section II provides a brief overview of prior research on anomaly detection in modern 

mobile and self-organizing networks. Section III describes the methods employed in this study. Section IV explains 

the experimental setup and includes details about hyperparameters, dataset characteristics, implementation, evaluation 

metrics, and information necessary for repeatability. The results and discussion are presented in Section V, and the 

conclusions are summarized in Section VI. Additionally, Table 1 lists the abbreviations used in this article for easy 

reference. 

 

 II. RELATED RESEARCH 

 

 Anomaly detection in communications has been an active area of research in the last decade. For example, abnormal 

activity in the wireless spectrum was investigated in [9]. Specifically, the authors used Power Spectral Density (PSD) 

information to identify and determine anomalies in the form of either unwanted signals present in the licensed band or 

the absence of a desired signal. The information obtained from the PSD was processed using a combination of 

adversarial auto-encoders, convolutional neural networks and recurrent neural networks with long-term short-term 

memory. 

 

Abbreviations used in this study. In another example, [6] uses measurements and handover statistics (inHO) from 

neighbouring cells in a mobile communication network to detect abnormalities and outages. Monitoring in this manner 

provides a potential cell outage condition where the in HO information becomes zero. A novel online system for 

detecting anomalies in key performance indicators (KPIs) of mobile networks was proposed in reference [10]. The 

proposed system consists of a training and detection/tracking block. The system learns the most damaging anomalies 

in the training block while retrieving each last KPI and tracks its status until the end of the second block. Anomaly 

detection was thus set to prefer high-possible anomalies in the long run. Additionally, the system works against 

providing the minimum amount of anomalies by keeping the positive rate low in favor of network operators trying to 

resolve only true anomalies. In addition, the system can be extended to next-generation networks through automatic 

adaptation functions to the new network behavior profile. 

 

Anomaly detection in mobile and self-organizing networks has been an area of active research in recent years. For 

instance, in [9], abnormal wireless spectrum activity was investigated using Power Spectral Density (PSD) information 
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to identify unwanted signals or the absence of desired signals. Meanwhile, in [10], an online mobile network anomaly 

detection system was proposed to identify anomalies in key performance indicators (KPIs). 

 

Mobility-related anomalies were detected using unsupervised learning through Mobility Robustness Optimization 

(MRO) in [11], while in [12], reinforcement learning was used to reduce call drop rates. In [13], the authors utilized 

an autoencoder-based network anomaly detection method to detect nonlinearity changes in features, achieving better 

performance than conventional wireless communication methods for cyberattack detection. AI applications supporting 

5G technologies can be implemented in both the physical and network layers, as discussed in [14], where a 

comprehensive overview of deep learning (DL) applications is presented. 

 

In recent years, there has been an increasing interest in applying artificial intelligence (AI) to support 5G technologies, 

not only in the network layer but also in the physical layer. As an example, the authors in [14] provide a comprehensive 

overview of deep learning (DL) applications for the physical layer. One of the proposed applications is a modified 

version of the standard autoencoder, known as the "channel autoencoder." Unlike a typical autoencoder, the aim of the 

channel autoencoder is to find the most robust representations of the input signals to account for channel degradation 

by adding redundancies instead of removing them. The authors extend this concept to a multiple transmitter/receiver 

pairs adversarial network to increase capacity. Additionally, they introduce radio transformer networks (RTNs) that 

incorporate channel domain information and simplify symbol detection at the receiver's end by employing a neural 

network estimator to obtain the best detection parameters. 

 

The augmented DL models on complex I/Q samples for modulation classification demonstrated that the DL models 

outperformed the classification methods based on expert features. Another study discussed in [15] introduces designing 

mobile traffic classifiers based on the DL utilization. A systematic framework of new DL-adopted Traffic 

Classification (TC) structures is introduced and analyzed. Rather than mobility, the study includes a wide allocation 

range to encrypt the TC. 

 

Deep neural network methods have been widely used in studies that rely on multi-class applications, learning features 

such as key performance indicators, reference signal received power and quality (RSRP and RSRQ), handover 

statistics, and the number of connection drops and failures. However, there is ongoing discussion in the research 

community about the potential of other learning representations, such as one-class learning and deep unsupervised 

methods, to become strong alternatives for anomaly detection in SONs . Similarly, an ever-present debate investigates 

the comparative effectiveness of empirical deep learning models and conventional approaches such as feature 

engineering for a range of temporal applications [16]. A categorical analysis of literature discussed in this section can 

be found in Table 2, which displays the important characteristics and features such as the dataset type, topology of the 

network used, which learning methodology is applied for which application, etc. 

 

 

 

III. METHODS 

 

A. ANOMALY DETECTION PROBLEM DEFINITIONS 

 

In this study, we focus on anomaly detection scenarios in which 105 mobile users are evenly distributed among 7 base 

stations (BS). Each BS consists of 3 regularly spaced cells, resulting in a total of 21 cells, as shown in Figure 1.The 

objective is to detect anomalies where a BS fails to communicate with a user, resulting in below-par key performance 

indicator (KPI) margins. Data is collected using a Minimization of Drive Test (MDT) report, with KPIs such as 

Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ) collected from each of the 

7 BS at a 5kHz sampling rate for a total of 50 seconds. Each MDT report is assigned a class label from the set {0, 1, 

2, 3}, where labels 0, 1, and 2 indicate normal network status with varying levels of transmitter power, while label 3 
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indicates an anomaly where the BTS has failed to communicate with the user. The study includes three different 

scenarios with different numbers of users and cells to explore the AD application for a wider range of networks and 

users. 

 

Figure 1: 

 

 
 

To perform the AD task, we use the support vector machine (SVM), a popular machine learning algorithm that is often 

used in binary classification and unsupervised feature learning [17]. Regenerate response An SVM model represents 

and separates various classes by building a set of hyperplanes in a multi-dimensional space. Separation of the classes 

from each other is performed iteratively by the SVM algorithm through finding the optimal hyperplane (the decision 

region between a group of objects from different classes). In this context, the optimal hyperplane maximizes the 

distance gap (margin) between the two lines closest to the data points from different classes based on the support 

vectors (data sample points where the classification error is minimum) 

 

B. SUPPORT VECTOR MACHINE 

 

The support vector machine (SVM) [17] is a popular machine learning algorithm that plays important roles in binary 

classification and unsupervised feature learning. An SVM model represents and separates various classes by building 

a set of hyperplanes in a multi-dimensional space. Separation of the classes from each other is performed iteratively 

by the SVM algorithm through finding the optimal hyperplane (the decision region between a group of objects from 

different classes). In this context, the optimal hyperplane maximizes the distance gap (margin) between the two lines 

closest to the data points from different classes based on the support vectors (data sample points where the classification 

error is minimum). 
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 Summary of related research. 

We implement SVM in two different ways 

 

 

 

1) ONE CLASS ANOMALY DETECTION WITH SVM 

SVM with one-class classification is a well-known method for detecting anomalies in an unsupervised setting [18]–

[21]. Typically, SVM is utilized for binary classification tasks. However, in the context of one-class anomaly 

detection, the algorithm is trained solely on observations from the majority class in order to learn what constitutes 

"normal" samples. When new data is presented to the SVM algorithm, the decision probability for "anomalous" 

samples is lower in comparison to observations from the majority class under ideal conditions. 

 

 2) BINARY ANOMALY DETECTION USING SVM 

 

In the case of binary anomaly detection using SVM, a balanced dataset is necessary to achieve the most accurate 

results. When the dataset is imbalanced, the SVM classifier tends to favor the majority class, resulting in poor 

performance for the minority class and reduced generalization. Several techniques have been proposed to overcome 

data imbalance, with one of the most popular being the synthetic minority resampling technique (SMOTE) [22]. 

SMOTE aims to balance the class distribution by randomly generating "synthetic" patterns based on features rather 

than raw data, thereby increasing the minority class. The resampling process for the minority class (C) starts by 

selecting each sample (X) and interpolating synthetic instances along the lines connecting minority instances and their 

k-nearest neighbours x. The value of k is randomly chosen according to the hyperparametric resampling rate N based 

on the number of minority samples. First, a distance-based method such as "Euclidean Distance" is used to calculate 

the distance between a feature vector and its neighbours . Second, the distance is multiplied by a random number 

between (0,1] and added to the previous feature sample. Consequently, new and synthetic features are generated along 
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the lines between the two original samples, mathematically expressed as X0 = X + rand(0,1)∗|X − Xk (1), where X0 

represents the new set of synthetic samples and Xk is the set of randomly selected k-nearest neighbour samples. 

 

C. SMOTE ALGORITHM 

Autoencoder, a specific topology of an artificial neural network, is another method for anomaly detection. 

Autoencoder has the same input and output layer, where training is performed by simultaneously presenting the same 

input data to both layers. The general structure of an autoencoder includes a visible input layer x, a series of hidden 

layers h, and an output layer constructed from it with a series of nonlinear activation functions f applied in different 

layers. 

 

 

FIGURE 2. Dataset structure for the first use case. 

In the first use case, the dataset follows a specific structure. During the training process, the auto-encoder takes input 

data x that belongs to the real-valued space Ry. The auto-encoder then maps the input data to hidden layers with smaller 

dimensions compared to the input data. This results in a compressed representation of the original data, which is 

equivalent to the size of the code or latent layer represented by H in the real-valued space Rh. The encoder step is 

responsible for creating this compressed information, which is then used by the decoder to map it back to the output 

layer through a process called reconstruction. Mathematically, these two steps can be formulated as follows: 

H ≡ fWH (x) = f (WHx + bH) (2) 

z ≡ gWz(x) = g(WzH + bZ ) (3) 

In the first use case, the dataset follows a specific structure. During the training process, the auto-encoder takes input 

data x that belongs to the real-valued space Ry. The auto-encoder then maps the input data to hidden layers with smaller 

dimensions compared to the input data. This results in a compressed representation of the original data, which is 

equivalent to the size of the code or latent layer represented by H in the real-valued space Rh. The encoder step is 

responsible for creating this compressed information, which is then used by the decoder to map it back to the output 

layer through a process called reconstruction. Mathematically, these two steps can be formulated as follows: 

H ≡ fWH (x) = f (WHx + bH) (2) z ≡ gWz(x) = g(WzH + bZ )  

Given N samples of input data, the following loss function is used to determine the parameters "WH,WZ,bH, and bZ" 

using a backpropagation algorithm commonly used in feedforward neural networks: 

As previously mentioned, the main objective of autoencoding is to extract meaningful information at the coding layer 

by minimizing the reconstruction error. To achieve this, a backpropagation algorithm commonly used in feedforward 

neural networks is employed to determine the parameters "WH, WZ, bH, and bZ" using the following loss function: 
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L(WH,WZ,bH,bZ) = 1/N ∑i=1N ||x_i - g(f(x_i;WH,bH);WZ,bZ)||^2 

where N is the number of input samples, x_i is the i-th input sample, f(.) and g(.) are the encoding and decoding 

activation functions, such as a sigmoid function or a rectified linear unit, and ||.||^2 denotes the L2 norm. The 

parameters are updated iteratively using the gradient of the loss function with respect to the weights and biases. 

N 

X 2 

LAE||xk − zk|| (4) 

N 

k=1 

In the context of this application, the autoencoder is used for anomaly detection by training the network with normal 

observations and, after training, compares the reconstruction error of normal and anomalous samples with a threshold 

for detection. Normal samples are expected to provide smaller reconstruction errors compared to anomalous samples, 

which can be easily characterized using receiver operating characteristics (ROC In the research paper [8], an 

autoencoder model was used with a specific structure. The input vector size was 20, which corresponds to 10 RSRP 

and 10 RSRQ measurements. This was followed by four hidden layers consisting of 12, 6, 6, and 12 neurons, 

respectively. The overall topology of the model was 20-12-6-6-12-20. 

 

 

 

 

 

IV. EXPERIMENTAL SETUPS 
 

A. DATASETS 

 

For our study, we utilize a dataset that was generated by a SON simulator, as described in a previous publication [8]. 

This dataset has been made publicly available. We present ROC curves for the four datasets, which enable us to 

compare modern and conventional machine learning approaches with the results reported in the original paper. 
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For further research [23]. The dataset contains four different application scenarios where data is collected periodically 

(with a sampling frequency of 5 kHz) from the minimization of the drive test report [24], which contains mobile user 

information regarding user activities recorded in closed areas around base stations. (cells) in certain measurement 

periods. There are four different datasets with different numbers of users and use cases. Giant. 2 shows the basic 

structure of the data set for the first use case (data set 1), which consists of the time of measurement, the unique ID 

assigned to each user, the coordinates of the users' location in two dimensions at the time of measurement, the received 

reference signal power (RSRP), the quality of the received reference signal (RSRQ) and a label indicating whether the 

associated item (ie the collection of measurements associated with this user) is anomalous (1) or not (0). The LTE 

network KPIs RSRP and RSRQ are crucial measures of signal strength and quality. They are used to determine whether 

the collected information is anomalous. The first dataset used in this work is taken from a SON simulator introduced 

 

 

FIGURE 3. 

 The ROC curves for the four datasets for the 

comparative analysis of modern and conventional 

machine learning with the results reported in the 

source paper. 
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in [8], and it is publicly available. It consists of 11,674 observations with only 60 anomalous measurement samples, 

which accounts for a ratio of 1 in 200. The dataset includes 25 features, such as feature vector, user ID, location, and 

class labels. The second dataset has a similar number of features and measurements but a much lower anomaly rate, 

with 8382 observations and only eight anomalous samples, accounting for a ratio of approximately 1 in 1000. 

 

Datasets 3 and 4 have 114 features each and a longer recording time (80 s), resulting in a significantly larger 

observation base of 42,000. These datasets have different anomaly rates, with dataset 3 having a much larger number 

of anomalous measurements (9635) compared to dataset 4, where only items below the -120 dB RSRP measurement 

threshold were flagged as anomalous, resulting in only 22 anomalous measurements. 

B. HYPERPARAMETERS 

In this study, the resampling rate N and the number of nearest neighbors k are the most significant hyperparameters. 

These hyperparameters are particularly important for the SMOTE algorithm when applying resampling for binary 

classification. Two different sets of hyperparameters were tested for SMOTE, namely N=300 and k=4, and N=500 

and k=5. 

C. IMPLEMENTATION 

For this study, we used MATLAB 2020b to implement one-class and binary SVM models on all datasets. To address 

the issue of unbalanced datasets, we employed the SMOTE algorithm with a binary SVM model. Preprocessing was 

performed on the datasets, where time, user ID, and location features were excluded from the training process for 

fairness. About 10% of normal and abnormal samples were reserved for testing purposes. Normalization was also 

applied to both training and test samples within the range of (0,1). 

In the case of the one-class SVM model, only normal samples were used for training with Gaussian RBF kernels. After 

training, we obtained SVM probability outputs for both normal and anomalous test samples to generate ROC curves 

and calculate area under the curve (AUC) scores as a performance metric. 

For the binary SVM model, we followed the same process as the one-class SVM model, but with the additional step 

of using SMOTE to resample anomaly samples for generating balanced datasets before training and testing the 

algorithm. 

D. EVALUATION METRICS 

To evaluate the performance of the models in this study, we utilized ROC curves and AUC scores as metrics. The 

ROC curve illustrates the model's ability to identify the positive class accurately, with TPR on the y-axis and FPR on 

the x-axis. TPR represents the proportion of correctly classified positive outputs, while FPR represents the proportion 

of incorrectly classified positive outputs, as shown below: 

TP FP 

TPR = FPR = (5) 

TP + FP FP + TN 

AUC, on the other hand, provides a summary number as an indication of how strong the model is in distinguishing 

between classes with a mathematical expression as below: 
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TP + TN 

AUC = (6) 

TP + FP + FN + TN 

V. RESULTS  

Figure 3 displays the ROC curves for all four datasets, where the red curve represents the performance reported in [8] 

using a deep autoencoder. To compare the results, we applied various SVM models on the same datasets. Additionally, 

Figure 4 shows the area under the curve (AUC) scores across the different datasets. For comparison, different SVM 

implementations  

FIGURE 4. Area under curve (AUC) scores across different datasets. 

TABLE 3: 

The AUC scores for both one-class and binary SVM classifiers, with and without SMOTE augmentation, were 

graphed in various colours to depict their performance across all datasets. 

     

      

     

 
 

     

     

      

     

     
 

The outcomes were generally consistent, with the exception of dataset 4, where all SVM combinations outperformed 

the deep autoencoder at all levels of true positive rate and false positive rate. In datasets 1-3, the deep autoencoder 

yielded better results than the SVM implementations without augmentation. However, when SMOTE was applied, 

both one-class and binary SVM models demonstrated markedly improved performance compared to the original 

research paper, sometimes to a significant degree. 

In Figure 4, an overview of AUC scores across different datasets and algorithms is provided, with binary and one-class 

SVMs (depicted by the top three curves) showing superior performance over the deep autoencoder approach (indicated 

by the red curve). Table 3 furnishes the AUC values with a 5% significance level. The most effective combination of 
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SVM modality and SMOTE outperformed the deep autoencoder by 19.75%, 15.5%, 15.5%, and 13% for datasets 1, 2, 

3, and 4, respectively, resulting in an average improvement of over 15% across all scenarios. It is noteworthy that 

traditional machine learning utilizing SVMs still outperforms the previous state-of-the-art methods reported in the 

literature, even without artificial augmentation of the dataset. However, the disparity in performance was less 

noticeable. 

To assess whether SMOTE could offer a similar performance boost to the autoencoder setup, we focused on the first 

two datasets with significant class imbalance, as reported in the Asghar et. al. [8] study. Our findings indicate that the 

average detection accuracy using SMOTE with hyperparameters N=300, k=4 and N=500, k=5 was 64.03% and 57%, 

respectively, for dataset 1 and 68.87% and 51.64%, respectively, for dataset 2. These results reveal insignificant 

improvements over the baseline performance or, in some cases, even worse results compared to not utilizing SMOTE 

on the dataset. There could be various explanations for this outcome, but the most plausible explanation is that the 

operational structure of the latent space in an autoencoder closely resembles the way in which SMOTE generates 

augmented samples. In other words, the benefit of using SMOTE is diminished in the latent coding layer of the 

autoencoder itself. 

The lack of significant or even negative impact of SMOTE on the performance of one-class SVM topology is an 

important issue to consider. SMOTE generates samples by leveraging the nearest neighbour similarities of intraclass 

samples and differences of interclass samples. This approach works best when training a binary classifier where one 

class may be underrepresented compared to the other class, as demonstrated by the performance boost observed in 

binary SVM training. However, in one-class learning representation, only the majority class is utilized in training. 

Therefore, SMOTE can only have an indirect effect on the number and quality of samples generated for the normal 

class and does not directly contribute to performance improvement. The decline in performance, in some instances, 

can be attributed to the quality of the anomaly class samples being generated, which may not compensate for the 

additional information that cannot be utilized in the training process. 

A. COMPUTATIONAL COMPLEXITY ANALYSIS  

Computational complexity analysis is an important step in identifying the strengths and weaknesses of conventional 

algorithm such as one-class and binary SVMs compared to more modern approaches such as autoencoders used in 

anomaly detection. In this paper, we focused on both the raw computation times specific to the test phase for each of 

the four dataset scenarios, as well as the number of trainable parameters for both algorithms. We also compared how 

SMOTE affected complexity. [3] All measurements are performed using the latest version of MATLAB at the time of 

writing (2021b) using standard timing scripts. On the first dataset, for the one-class SVM Algorithm, the testing time 

took 90ms without SMOTE and 140ms with SMOTE, while the autoencoder took 9000ms to run, a nearly 100-fold 

increase. The additional complexity of SMOTE is more than outweighed by its significant contribution to accuracy. 

We observed similar computation times for the rest of the usage scenarios (i.e., for the second dataset, single class 

SVM test times were 110–130ms (SMOTE) compared to 7120 ms for AE), where there were orders of magnitude 

improvements in test times. We performed the computational speed analysis using a one-class SVM due to the fact 

that the implementation was done using a native script, while for the binary SVM a GUI toolbox was used with better 

visualization capabilities that affect the speed. However, there should be no difference in test times since the SVM 

topologies are identical, the only difference being the way the data is represented by the algorithms. By analysing the 

number of trainable parameters, we can gauge the computational complexity of an algorithm. In our study, we observed 

that the average number of support vectors for SVM models was 23, whereas the autoencoder required the training of 

660 weight and 76 bias parameters, which sums up to 736 parameters. Based on these measurements of computational 

time and complexity, we conclude that SVM-based approaches, even with the use of SMOTE, exhibit lower 
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complexity, have competitive AUC scores, and are more suitable for time-sensitive scenarios like anomaly detection 

and outage recovery compared to the autoencoder.  

 

VI. CONCLUSION 

 

The aim of our study was to compare the performance of conventional machine learning with deep learning for 

anomaly detection in SON. Although deep learning has been widely used in this field, traditional methods can still 

provide effective statistical alternatives for accurate learning representations. For our research, we examined SVMs 

with both one-class and binary learning scenarios using a publicly available dataset. Our findings indicate that while 

deep learning is highly competitive, standard SVMs with RBF kernels can be trained to outperform the deep 

autoencoder approach. Furthermore, we discovered that both single-class and binary classifications can significantly 

benefit from synthetic dataset augmentation using SMOTE, with an average improvement of up to 15% in detection 

accuracy across four different application scenarios. To expand the scope of this study, future research could explore 

the impacts of incorporating dataset augmentation into different types of machine learning algorithms, including those 

that use statistical methods such as variational autoencoders. Moreover, the outcomes of this research have broader 

implications and can be employed in other domains and applications beyond anomaly or outage detection .In particular, 

increased attention has been paid to modulation detection in next-generation mobile wireless networks, where fast, 

robust and lightweight machine learning models could enable time-critical applications in signal classification and 

modulation detection. Speed improvements can be realized both at the algorithm level and in the data pre-processing 

stages using techniques such as principal component analysis to identify the most important features for classification 

and detection. Finally, statistical learning algorithms such as Gaussian Process Regression, which have gained 

immense popularity as alternatives to deep learning, can be applied to various scenarios, especially when data is not 

present in large enough volumes to properly train DL models with many parameters. 
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