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ABSTRACT 

Neural Architecture Search (NAS) is an emerging 

subfield of automated machine learning (AutoML) 

that seeks to automate the design of deep neural 

networks. Traditional manual and heuristic-based 

architecture design is labor-intensive, time-

consuming, and dependent on expert knowledge. 

NAS algorithms aim to minimize human 

involvement by automatically discovering 

architectures that achieve state-of-the-art 

performance across diverse tasks. This survey 

presents a comprehensive review of NAS 

methodologies, including reinforcement learning-

based, evolutionary algorithm-based, gradient-

based, and one-shot approaches. We examine the 

key components of NAS frameworks—search space 

formulation, search strategy design, and 

performance estimation methods—along with their 

computational costs, benchmark datasets, and 

evaluation protocols. Furthermore, we analyze 

scalability challenges, generalization capabilities, 

and deployment considerations, particularly for 

resource-constrained environments. Finally, we 

outline open research problems and promising 

future directions, with emphasis on hardware-

aware, explainable, and zero-shot NAS paradigms. 
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1. Introduction 

Deep learning models have achieved remarkable 

results in computer vision [15], natural language 

processing, and speech recognition. However, the 

manual design of high-performing architectures 

remains a resource-intensive process requiring 

domain expertise. Neural Architecture Search 

(NAS) addresses this challenge by automating 

architecture discovery through data-driven search 

strategies [16]. Recent advances in NAS have 

reduced search cost, improved scalability, and 

expanded applicability to various domains. 

This survey consolidates existing NAS techniques, 

analyzes their strengths and limitations, and 

identifies open challenges. By systematically 

examining search space design, search strategies, 

and performance estimation techniques, we provide 

researchers and practitioners with a structured 

understanding of the current NAS landscape. 

2. NAS Framework and Components 

A general NAS framework consists of three major 

components [16]: 
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1. Search Space — Defines the set of possible 

architectures, including chain-structured, cell-

based, and hierarchical designs. 

2. Search Strategy — Determines how to explore 

the search space, using: 

o Reinforcement Learning (e.g., NASNet [1], 

ENAS [3]) 

o Evolutionary Algorithms (e.g., AmoebaNet 

[4]) 

o Bayesian Optimization 

o Gradient-Based Methods (e.g., DARTS [5]) 

o Differentiable NAS and One-Shot Models [10] 

3. Performance Estimation Strategy — Predicts 

candidate architecture quality using: 

o Full training 

o Early stopping 

o Weight sharing [3] 

o Zero-cost proxies [12] 

 

Fig 1: NAS Framework 

 

 

3. NAS Search Strategies 

3.1 Reinforcement Learning-Based NAS 

NAS can be framed as a sequential decision process, 

where a controller samples architectures and 

updates its policy based on validation performance 

rewards [1], [2]. NASNet [2] demonstrated state-of-

the-art results on ImageNet while reducing 

parameter count. ENAS [3] improved efficiency via 

parameter sharing, drastically cutting computational 

cost. 

Challenges in RL-based NAS include high GPU 

resource demands, sparse rewards, and large 

discrete action spaces. Recent work addresses these 

with multi-objective rewards [9], early stopping, 

and transfer learning. 

Workflow: Controller initialization → Architecture 

sampling → Model instantiation → Proxy/full 

training → Reward computation → Policy update 

→ Iteration until budget exhaustion. 

3.2 Evolutionary Algorithms (EAs) 

EAs evolve populations of architectures through 

mutation and crossover [4], [18]. They are robust, 

parallelizable, and effective for large search spaces 

but require careful tuning of fitness functions. 

3.3 Differentiable NAS 

Methods such as DARTS [5] convert discrete search 

spaces into continuous relaxations, enabling 

gradient descent optimization. While faster, they 

may converge to suboptimal architectures [11]. 

3.4 One-Shot NAS 

One-shot methods train a supernet encompassing all 

possible subnets [10], allowing rapid architecture 

evaluation through weight sharing. However, this 

can introduce performance estimation bias [13]. 
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               Fig 2: NAS Search Strategies 

4. Benchmarking and Evaluation 

4.1 Evaluation Metrics 

• Accuracy / Error Rate [15] 

• Search Cost (GPU-days, FLOPs) [3] 

• Model Complexity (parameters, FLOPs) [17] 

• Latency & Energy Efficiency (measured on 

target hardware) [8], [20] 

• Multi-Objective Trade-offs via Pareto 

analysis [9] 

4.2 Benchmark Datasets 

• Image Classification: CIFAR-10/100 [14], 

ImageNet [15] 

• Object Detection: COCO, Pascal VOC 

• NLP: Penn Treebank, Wikitext-2 [6] 

• Speech: Librispeech, TIMIT 

4.3 Evaluation Protocols 

1. Proxy evaluation [3] 

2. Weight sharing [10] 

3. Full retraining [2] 

4. Cross-dataset validation [7] 

5. Hardware-aware evaluation [8], [20] 

4.4 NAS Benchmarks 

• NAS-Bench-101 [7] 

• NAS-Bench-201 [6] 

• NAS-Bench-301 

• NAS-Bench-NLP 

• ProxylessNAS benchmark [8] 

4.5 Challenges in NAS Evaluation 

Despite advancements, benchmarking in NAS faces 

challenges: 

• Reproducibility Issues: Variations in training 

pipelines can lead to inconsistent results. 

• Overfitting to Benchmarks: Excessive tuning 

on fixed datasets may reduce real-world 

applicability. 

• Search Space Bias: Results depend heavily on 

the predefined search space. 

• Hardware-Specific Optimizations: An 

architecture optimal for one device may 

underperform on another. 

5. Challenges in NAS 

Although Neural Architecture Search has matured 

significantly over the past few years, several critical 

challenges hinder its scalability, reproducibility, 

and real-world applicability. This section discusses 

these challenges in depth. 

5.1 Scalability and Computational Cost 

A major barrier to adopting NAS in both academia 

and industry is its extremely high computational 

demand. Early approaches such as NASNet [2] 

required over 1,800 GPU-days to complete a single 

search, making them impractical for most 

researchers and organizations. 
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Even with advancements like weight sharing in 

ENAS [3] and differentiable search in DARTS [5], 

the cost of exploring large search spaces remains 

significant. 

The problem is exacerbated when: 

• The search space contains billions of possible 

architectures. 

• Multiple objectives (accuracy, latency, energy) 

are optimized simultaneously [9], [20]. 

• Search must be repeated for different datasets 

or hardware targets. 

This challenge motivates research into zero-cost 

proxies [12], surrogate models, and progressive 

search space pruning to reduce evaluation overhead 

without sacrificing accuracy. 

5.2 Generalization Across Tasks and Datasets 

Many NAS-discovered architectures perform well 

on the dataset they were optimized for (e.g., CIFAR-

10) but fail to generalize to different datasets or 

modalities [16]. 

This is often due to: 

• Overfitting to specific benchmark datasets. 

• Search space bias toward architectures that 

exploit dataset-specific characteristics. 

• Lack of cross-domain evaluation during search. 

Potential remedies include cross-dataset validation 

[7], meta-learning approaches for NAS, and 

incorporating transferability constraints into the 

search objective. 

5.3 Search Space Bias and Limitations 

The design of the search space heavily influences 

NAS performance. A poorly designed search space 

may exclude optimal architectures entirely. 

Examples of bias include: 

• Restricting to only convolutional operators, 

ignoring attention-based or graph-based modules. 

• Imbalanced operator choices leading to 

convergence toward certain patterns (e.g., skip 

connections in DARTS [5] dominating results [11]). 

Mitigation strategies involve: 

• Expanding the diversity of search operators 

(convolutions, transformers, attention blocks). 

• Hierarchical search spaces to explore macro- 

and micro-architectural variations. 

• Regularization techniques to encourage fair 

operator selection [13]. 

5.4 Reproducibility and Benchmarking Issues 

NAS reproducibility remains a significant concern 

[16]. Different implementations of the same 

algorithm can yield vastly different results due to: 

• Variations in training pipelines and 

hyperparameters. 

• Non-deterministic GPU computations. 

• Omission of crucial details in published works. 

NASBench datasets [6], [7], [8] have improved 

reproducibility by providing standardized search 

spaces and pre-computed performance data, but 

many NAS methods still lack open-source code or 

detailed experimental protocols. 

5.5 Multi-Objective Optimization 

Real-world deployments rarely optimize for 

accuracy alone. Constraints such as inference 

latency, energy consumption, and model size must 

also be considered [8], [9], [20]. 

Challenges include: 

• Defining meaningful and balanced objective 

functions. 

• Handling trade-offs via Pareto-optimal search. 

• Dynamically adapting objectives for different 

deployment environments (e.g., edge devices vs. 

cloud). 
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Emerging work in hardware-aware NAS integrates 

real device measurements into the search loop [8], 

but this increases search time and complexity. 

5.6 Hardware Dependency and Deployment 

Constraints 

Architectures optimized for one hardware platform 

(e.g., GPU) may underperform on another (e.g., 

ARM CPU, FPGA) [20]. 

This is due to: 

• Different compute-memory bottlenecks. 

• Hardware-specific acceleration features. 

• Variation in parallelization efficiency. 

Solutions include: 

• Platform-specific NAS [9]. 

• Multi-platform profiling during search. 

• Use of hardware simulators to predict cross-

platform performance. 

 

5.7 Interpretability and Explainability 

Most NAS methods treat architectures as black 

boxes, making it difficult to explain why certain 

architectures perform better than others. 

This lack of interpretability: 

• Hinders trust in automatically discovered 

models. 

• Limits adoption in domains with safety-critical 

requirements (e.g., healthcare, autonomous 

driving). 

Research into explainable NAS [16] seeks to 

identify key architectural features contributing to 

performance and to visualize decision boundaries in 

search space exploration. 

 

 

5.8 Evaluation Bias and Overfitting to 

Benchmarks 

NAS research heavily relies on a small set of 

benchmarks (CIFAR-10, ImageNet, NASBench). 

While convenient, this can lead to: 

• Over-tuning algorithms to fixed datasets. 

• Reduced applicability to real-world, noisy, or 

imbalanced datasets. 

• Underestimation of robustness in unseen 

scenarios. 

Adopting diverse evaluation datasets, real-world 

benchmarks, and task-specific validation protocols 

can mitigate this risk. 

 

6. Future Directions 

Key future research directions in NAS include: 

Hardware-Aware NAS 

• Integrate real-time latency and energy profiling 

during search to optimize architectures for specific 

deployment platforms (e.g., mobile, embedded, 

FPGA). 

Zero-Shot NAS 

• Develop predictive models that estimate 

architecture performance without training, 

significantly reducing search cost. 

Neuro-Symbolic NAS 

• Combine symbolic reasoning with neural 

search methods to incorporate prior knowledge and 

improve interpretability. 

 Explainable NAS 

• Design tools and frameworks that provide 

human-interpretable insights into why certain 

architectures are selected and how they achieve high 

performance. 

Meta-NAS 
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• Create NAS algorithms that can automatically 

adapt their own search strategies, enabling cross-

task and cross-domain generalization. 

Continual and Lifelong NAS 

• Enable architectures to evolve incrementally in 

dynamic environments without complete retraining. 

Multi-Modal NAS 

• Extend NAS techniques to jointly optimize 

architectures for multi-modal tasks, such as vision–

language or sensor fusion applications. 

7. Conclusion 

Neural Architecture Search (NAS) has emerged as 

a transformative approach in Automated Machine 

Learning, offering the potential to automate deep 

neural network design and reduce reliance on 

expert-driven engineering. This survey has 

reviewed major NAS paradigms—reinforcement 

learning, evolutionary algorithms, differentiable 

methods, and one-shot approaches—highlighting 

their search strategies, performance estimation 

techniques, and benchmark datasets. We also 

discussed key challenges, including scalability, 

generalization, search space bias, reproducibility, 

and multi-objective optimization. While significant 

progress has been made toward efficiency and 

hardware-awareness, further advances are required 

for robust cross-domain generalization and 

deployment in real-world, resource-constrained 

environments. Future research will likely focus on 

hardware-aware optimization, zero-shot 

performance prediction, explainable NAS, and 

adaptive search strategies. By addressing these 

challenges, NAS can accelerate the democratization 

of deep learning, enabling practical, efficient, and 

widely deployable AI solutions across diverse 

applications and computational platforms. 
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