
International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 1

Neural Code Search with Unified Deep Semantic

Asst. Prof. Ms. Suvarna Unde – RGCOE Karjule Harya, Computer Engineering

Mr. Parshuram Pathave – RGCOE Karjule Harya, Computer Engineering

Mr. Harshal Kanwade – RGCOE Karjule Harya, Computer Engineering

Mr. Sandesh Dhonge – RGCOE Karjule Harya, Computer Engineering

Ms. Komal Gadakar – RGCOE Karjule Harya, Computer Engineering

Abstract: A tool that can search over large code corpus directly

and list ranked snippets can prove to be an invaluable resource to

programmers looking for similar code snippets using natural

language queries. It must have a deep understanding of the

semantics of source code and queries to evaluate their intent

correctly. Over the years, many tools that rely on the textual

similarity between source code and query have proven to be

ineffective as they fail to learn the high- level semantic

understanding of source code and query. While the previous

models for code search using deep neural networks do a good job

but, most of them only evaluate their models on only a single

programming language, mostly Java. In this paper, we propose a

novel deep neural network model called Unified Code Net that can

handle the intricacies of different programming languages. This

model borrows several vital features from different previous

models and builds on top of those ideas to make a unified model

that can generate document vector embeddings from source code,

and using similarity search with the query vector embedding can

return the most similar code snippets in any language. This tool

can drastically reduce the programmer’s efforts to look for an

efficient and viable code snippet for problem at hand which ideally

can replace use of search engines for the same.

Keywords: semantic code search, natural language processing,

information retrieval

I. INTRODUCTION

Code Search can provide a massive boost in productivity

of programmers as the recent uptick in the use of deep

learning for code search, and rise of computing power has

made it possible to retrieve related code from a massive code

corpus that matches programmer’s intent from natural

language queries. This saves the programmer from the hassle

of Google Searching for related code snippets to get

something done or endless browsing of community forums

like StackOverflow looking for possible usage of a

proprietary API or some standard coding problems/algorithm

implementation. This, even though troublesome might be

fruitful for well-known and used languages like Python, Java,

and C++, but for lesser-known languages or proprietary API

with evolving communities, the answers may not exist at all

in such forums. Semantic Code Search makes it possible to

search for such snippets directly using natural language

queries and get ranked semantically similar code snippets of

a particular required language. In the implementation of the

model, we leveraged the power of Open Source tools like

FAISS [10], fastText [11] as well as Code Repositories like

GitHub [4] to collect code snippets from public repositories

using tools/techniques and benchmarks provided by

CodeSearchNet [6].

UnifiedCodeNet converts the code snippets into document

vectors, and those vectors are mapped on a shared space

where all the document vectors are mapped. When a user

searches using a query, the query is also converted to a

document vector and mapped to the same shared space and

using similarity search [7] closest document vectors of

required language are fetched and ranked according to

similarity.

For example, a simple query like "How to read text file

line by line?" returns ranked snippets in the required

language. Below are the actual top results from the query in

three languages PHP, Go, and Java.
1 public static function readLines(string $filePath):\Generator

{
2 if (! $fh = @fopen ($filePath , ’r’)) {
3 throw new \ InvalidArgumentException (’Error :’. $filePath);
4 }
5 return self :: read ($fh);
6 }

Top Result for PHP - Query: Read Text File Line

by Line

1 func (cr * countingReader) Read (p [] byte) (int , error)

{
2 n, err := cr. readerImpl . Read (p)
3 if recordInputHexdumpFlag && err == nil {
4 fwColLog . Debugf ("Hex dump of %d input bytes :\n% sEnd dump

of %d input bytes ",
5 len(p), hex. Dump (p), len(p))
6 }
7 cr. inputBytes += int64 (n)
8 return n, err
9 }

Top Result for Go - Query: Read Text File Line by

Line

1 public String readLine () throws IOException {
2 StringBuilder result = new StringBuilder ();
3 for (;;) {
4 int intRead = read ();
5 if (intRead == -1) {
6 return result . length () == 0 ? null : result . toString

();
7 }
8 char c = (char) intRead ;
9 if (c == ’\n’ || c == ’\r’) break ;
10 result . append (c);
11 }
12 return result . toString ();
13 }

Top Result for Java - Query: Read Text File Line by Line

In the above examples, the document vectors and query

vector are semantically similar and are mapped closely, which

http://www.ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 2

means that the model has a high-level understanding of what

the function does and similarly what the query intends to find.

II. DATASET

For creating a dataset for our supervised learning model, we

lever- aged the power of Open Source GitHub repositories.

Source Code is fetched from GitHub using the tools and

techniques specified in CodeSearchNet. The corpus we

created contains about 6 million functions from open-source

code spanning six programming languages (Go, Java,

JavaScript, PHP, Python, and Ruby). More than 2 million

functions in the dataset contain that description of the

function in natural language, which is present in the source

code in the form of comments or docstrings. The main reason

for choosing this dataset for our model training is the scope

of expanding the dataset with relative ease and still get the

same quality of data as the current one. As our model is a

supervised one, it will only perform better with a larger

training set. However, we believe that for proof of concept,

the current dataset will suffice.

A. Preprocessing

CodeSearchNet uses TreeSitter - GitHub’s universal parser to

ex- tract pairs of functions and docstring. The parser focuses

on extracting code and descriptions pairs from the source

code if the description does not exist the description is

scrapped from documentation of the software if one exists.

For tokenization, Firstly, all the special characters are

removed from the function as they are unnecessary and

cannot be used for creating document embeddings of the

code. Secondly, the tokens are broken into individual tokens

from their representation in camelCase, which would be

broken into [camel, case] or snake_case, which would split

into [snake, case]. Also, during this, the tokens are converted

to lowercase. Further, all the duplicate tokens are removed. In

case of functions that are part of a class, the class name is also

tokenized and added to the list of tokens as it helps in

providing context to the function.

B. Filtering

To maintain the quality of the dataset, some filtering

techniques are employed as duplicate code has adverse effects

in the machine learning model of code [1]. As open-source

codes are full of duplicates, whether it be the case of copy-

pasting or multiple versions of auto-generated code. Further,

functions like constructors, destructors, getters, setters, or

inbuilt functions are not included. Moreover, functions with

short/poor descriptions are also not included as they are not

informative.

C. Limitations

Even though this dataset is better than what the community

has tried to conjure up over the years, it does have some

shortcomings. Unsurprisingly, the scrapped dataset is quite

noisy. Firstly, the description is fundamentally different from

search queries as they are written by the same person mostly

at the time of writing the code itself. It uses the same

vocabulary as the code itself. Secondly, the description might

not closely resemble the gist of the function to its entirety or

might be an outdated description for the function even though

the code is scrapped from popular and well-known

repositories. Finally, the quality of the code can be sub-par at

times, which would mean that there can be a faster and better

implementation elsewhere. It might also be full of bad coding

practices or antipatterns.

III. MODEL

Each entry in the dataset has a function snippet along with its

description in natural language. It tokenizes and creates word

embeddings of both the function and its description and the

model trains such that the document embeddings of both the

code and description are as same as possible. Our model uses

bidirectional LSTM’s to capture the context of the function

and description. The dissimilarity between those two

document vectors is the loss, and the model fits to minimize

the loss.

Fig. 1. Bidirectional LSTM Architecture A. Input

All the tokens in the function are given sequentially to the

input as the sequence in which the tokens appear in the list

has semantic information. This what helps differentiate

between functions with similar tokens, for example, the

function names "convertStringToInt" and

"convertIntToString" although having exact same tokens

have different semantic contexts.

B. Word Embeddings

As the source code is broken up into snippets with the

granularity of a function and further tokenized in the process

specified above each of the tokens of the function converted

to word embeddings using a Word2Vec model, called fastText

[11] which uses a continuous skip-gram model with a window

size of 5, which means the words in a sentence within a

distance of 5 words are considered neighbors. Generated

word embeddings are of 500 dimensions, which captures the

full intent of each vocabulary.

The word embeddings can be of higher dimensions, but

embeddings of size 500 are optimized for both accuracy and

speed.

C. Encoder

We used a bidirectional LSTM cell, specifically GRU cells

to summarize the input sequence. Our model contains 3

http://www.ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 3

hidden layers with 256 hidden units in each direction. The

optimized used is Adam Optimizer, with a mini-batch size of

128. The model was trained for 100 epochs lasting over 12

hours on Nvidia RTX 2060, having compute capability of 7.5.

Fig. 2. Unified Neural Network Model for Document

Embeddings D. Pooling

Max Pooling is used to combine the word embeddings into

a sequence embedding to get a final document embedding to

be mapped into the shared vector space for similarity search.

E. Similarity Search

When the user submits a query, the query is also converted

to a document vector using the encoder, and then using

Cosine Similarity k-nearest neighbors of the vector

embedding is found for any particular programming language

and returned to the user in descending order with code snippet

with higher similarity values ranked higher.

We used FAISS [10], an open-source implementation of the

similarity search which leverages GPU and is the fastest k-

selection algorithm being 8.5x faster than any other

implementation. FAISS helps in drastically reducing the

training as well as search time for the queries as our dataset

is enormous. higher similarity values ranked higher.

IV. RESULTS

A. Evaluation Metric

Mean Reciprocal Rank (MRR) is a rank-aware

evaluation metric; it is a measure of where does the first

relevant item lies in a ranked list. MRR is easy to compute

and evaluate and puts a high focus on ranking the best result

at the top of the list. It is a go-to metric to evaluate

navigational or factual ranked lists. The metric, however,

does has a downside; it only evaluates the first relevant

recommendation in the list and does not consider other

results. Mathematically, it is the sum of the multiplicative

inverse of rank of the most relevant result of the i-th query.

Normalized Discounted Cumulative Gain (NDCG) is a

qualitative ranking measure. Both MRR and NDCG values

ranking relevant results top of the ranked list. However,

NDGC quantifies the fact that some results are more

important than others. NDCG can measure the usefulness and

gain of the result accumulated over all the results with low

ranked results having discounted gains. Simply put, highly

relevant items must be ranked before medium relevant items

and non-relevant items at last. It is often used to measure the

effectiveness of web search engine ranking algorithms and

such related query-based applications. To calculate NDCG,

Discounted Cumulative Gain (DCG) is divided by the Ideal

Discounted Cumulative Gain(IDCG) of the query. This is

done to have an accurate evaluation of the ranking algorithm

over a set of queries as this can’t be consistently achieved

using DCG alone, NDCG is used. The mathematical formula

for this metric is as follows:

B. Evaluation Method

The evaluation method comprises of 100 search queries

with human ranked relevant code snippets and NDCG scores

are calculated using the predicted ranked snippets vs. the

ideally ranked snippets. This method is not perfect and might

not correlate to the actual task of code search, but this method

has been widely used as a proxy for training and evaluating

similar models.

Given below are the NDCG and MRR Results from the

trained model on various languages and mean NDCG and

MRR values of the model in its entirety.

http://www.ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 4

Table I: Measure of Search Relevance using Normalized

Discounted Cumulative Gain (NDCG) and Mean

Reciprocal Rank (MRR)

Language NDCG MMR

Python 0.2578 0.6673

PHP 0.2925 0.5712

Java 0.3159 0.6082

Ruby 0.4612 0.7336

JavaScript 0.2235 0.4704

Go 0.2407 0.6985

Mean 0.2925 0.6248

Fig. 3. NDCG vs MRR for all languages

V. THREATS TO VALIDITY

Even though our model is significantly better than

statistical models that rely on textual similarity and many of

the simplistic deep neural network embedding models;

however, our model is far from perfect. We cannot stress this

enough, but understanding the context and intent of any code

snippet is challenging, and there exists no perfect way to

extract this information from the source code. Our model

doing these embeddings on multiple languages is the step in

the right direction, but there exist some threats to the validity

of our results, which we will discuss below.

Our model being a supervised learning model is hugely

dependent on quality and quantity of data, and with noisy data

or code with bad coding practices, the model will not be able

to perform document embeddings with expected accuracy. In

some cases, it was observed that the most relevant code

snippet is ranked bellow some other non-relevant code

snippets due to the code being semantically similar but not

contextually similar.

For the queries to return relevant results, the intended code

snippet must exist in our code corpus. If not, then all the

queries will return is similar code snippets, which will be of

no exact use to the user. So for the model to perform as

expected, it must be trained on a huge amount of good quality

data to achieve its core function.

VI. RELATED WORK

Deep Code Search [5] uses a neural network called

CODEnn (Code Description Embedding Neural Network) to

embed code snippets in high-dimensional vector space.

DeepCS breaks the inputs the code snippet in three ways

Method Name, Tokens, and API Sequences are used as input.

DeepCS is only trained and evaluated on Java/Android

codebase. It uses bi-directional Recurrent Neural Network

(RNN) for document embeddings. The predictions are

evaluated against Lucene [2] and CodeHow [9] predictions

for the same dataset.

Neural Code Search [12] used Word2Vec to create word

embeddings and using term frequency-inverse document

frequency (TFIDF) method to calculate the weighted average

of all the tokens in the code snippet to get document

embedding and using these vectors to find similar code

snippets to a query. Dataset [8] used is Android-related codes

from GitHub and StackOverflow’s answers to Android

related questions for evaluation.

UNIF (Embedding Unification) [3] is a minimal extension

to NCS, which provides an attention-based weighing scheme

to improve the accuracy of unsupervised NCS method.

Dataset used is a combination of CODEnn and NCS datasets.

This research shows that even a simple solution can

outperform complex models like CODEnn. Like the other

related works, this also trains and evaluates only Java

codebase.

VII. CONCLUSION

Our novel deep neural network model (UnifiedCodeNet)

built using state of the art systems and techniques proves

efficient in finding semantically similar code snippets from

open-source code across six programming languages with a

high level of accuracy and relevance. The effectiveness of the

model across language differs understandably due to the

difference in the quality of source-code and difference in

coding practices. Python embedding model being the most

efficient and Go embedding model being the least efficient

model for the set of queries we used. This is not an exact

indicator of the accuracy of the model as it is possible that

there exists no exactly semantically similar code snippet for a

particular set of the query in the evaluation set, which would

skew the results significantly. Also, given a different set of

evaluation queries, it is possible that the accuracy of models

may vary depending on the queries. Our model is

significantly better in ranking snippets in some areas; there

exist areas of improvement like the model would perform

significantly better on a uniform and larger dataset than the

one we used. This dataset is huge; we were only able to train

for 100 epoch; with more resources, the model is sure to

perform significantly better.

In the future, we will try to investigate on tree-LSTM

model for token embeddings to get a better semantic

representation of the code snippets as well as the query. This

method can be by far the best method for semantic search, but

this will require further study.

http://www.ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 5

REFERENCES

1. Miltiadis Allamanis. 2018. The Adverse Effects of Code Duplication in

Machine Learning Models of Code. arXiv:1812.06469 [cs.SE]
2. Apache. 2020. Lucene. https://lucene.apache.org/
3. Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish

Chandra. 2019. When Deep Learning Met Code Search.

arXiv:1905.03813 [cs.SE]
4. GitHub. [n.d.]. https://github.com/
5. Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep Code

Search. In Proceedings of the 40th International Conference on
Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association

for Computing Machinery, New York, NY, USA, 933–944.

https://doi.org/10.1145/3180155.3180167
6. Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and

Marc Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the

State of Semantic Code Search. ArXiv abs/1909.09436 (2019).
7. Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale

similarity search with GPUs. arXiv:1702.08734 [cs.CV]
8. Hongyu Li, Seohyun Kim, and Satish Chandra. 2019. Neural Code

Search Evaluation Dataset. arXiv:1908.09804 [cs.SE]
9. F. Lv, H. Zhang, J. Lou, S.Wang, D. Zhang, and J. Zhao. 2015.

CodeHow: Effective Code Search Based on API Understanding and

Extended Boolean Model (E). In 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE). 260–270.
10. Facebook Research. 2020. FAISS.

https://github.com/facebookresearch/faiss

11. Facebook Research. 2020. fastText. https://fasttext.cc/
12. Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen,

and Satish Chandra. 2018. Retrieval on Source Code: A Neural Code

Search. In Proceedings of the 2nd ACM SIGPLAN International

Workshop on Machine Learning and Programming Languages

(Philadelphia, PA, USA) (MAPL 2018). Association for Computing
Machinery, New York, NY, USA, 31–41.

https://doi.org/10.1145/3211346.3211353

http://www.ijsrem.com/
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1145/3180155.3180167

