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Abstract: A tool that can search over large code corpus directly 

and list ranked snippets can prove to be an invaluable resource to 

programmers looking for similar code snippets using natural 

language queries. It must have a deep understanding of the 

semantics of source code and queries to evaluate their intent 

correctly. Over the years, many tools that rely on the textual 

similarity between source code and query have proven to be 

ineffective as they fail to learn the high- level semantic 

understanding of source code and query. While the previous 

models for code search using deep neural networks do a good job 

but, most of them only evaluate their models on only a single 

programming language, mostly Java. In this paper, we propose a 

novel deep neural network model called Unified Code Net that can 

handle the intricacies of different programming languages. This 

model borrows several vital features from different previous 

models and builds on top of those ideas to make a unified model 

that can generate document vector embeddings from source code, 

and using similarity search with the query vector embedding can 

return the most similar code snippets in any language. This tool 

can drastically reduce the programmer’s efforts to look for an 

efficient and viable code snippet for problem at hand which ideally 

can replace use of search engines for the same.  

Keywords: semantic code search, natural language processing, 

information retrieval  

I. INTRODUCTION  

Code Search can provide a massive boost in productivity 

of programmers as the recent uptick in the use of deep 

learning for code search, and rise of computing power has 

made it possible to retrieve related code from a massive code 

corpus that matches programmer’s intent from natural 

language queries. This saves the programmer from the hassle 

of Google Searching for related code snippets to get 

something done or endless browsing of community forums 

like StackOverflow looking for possible usage of a 

proprietary API or some standard coding problems/algorithm 

implementation. This, even though troublesome might be 

fruitful for well-known and used languages like Python, Java, 

and C++, but for lesser-known languages or proprietary API 

with evolving communities, the answers may not exist at all 

in such forums. Semantic Code Search makes it possible to 

search for such snippets directly using natural language 

queries and get ranked semantically similar code snippets of 

a particular required language. In the implementation of the 

model, we leveraged the power of Open Source tools like 

FAISS [10], fastText [11] as well as Code Repositories like 

GitHub [4] to collect code snippets from public repositories 

using tools/techniques and benchmarks provided by  

CodeSearchNet [6].  

UnifiedCodeNet converts the code snippets into document 

vectors, and those vectors are mapped on a shared space 

where all the document vectors are mapped. When a user 

searches using a query, the query is also converted to a 

document vector and mapped to the same shared space and 

using similarity search [7] closest document vectors of 

required language are fetched and ranked according to 

similarity.   

For example, a simple query like "How to read text file 

line by line?" returns ranked snippets in the required 

language. Below are the actual top results from the query in 

three languages PHP, Go, and Java.  
1 public static function readLines(string $filePath):\Generator 

{  
2 if (! $fh = @fopen ( $filePath , ’r’)) {  
3 throw new \ InvalidArgumentException (’Error :’. $filePath );  
4 }  
5 return self :: read ($fh);  
6 }   

Top Result for PHP - Query: Read Text File Line 

by Line  

  

  
1 func (cr * countingReader ) Read (p [] byte ) (int , error ) 

{  
2 n, err := cr. readerImpl . Read (p)  
3 if recordInputHexdumpFlag && err == nil {  
4 fwColLog . Debugf ("Hex dump of %d input bytes :\n% sEnd dump 

of %d input bytes ",  
5 len(p), hex. Dump (p), len(p))  
6 }  
7 cr. inputBytes += int64 (n)  
8 return n, err  
9 }   

Top Result for Go - Query: Read Text File Line by 

Line  

  
1 public String readLine () throws IOException {  
2 StringBuilder result = new StringBuilder ();  
3 for (;;) {  
4 int intRead = read ();  
5 if ( intRead == -1) {  
6 return result . length () == 0 ? null : result . toString 

();  
7 }  
8 char c = ( char ) intRead ;  
9 if (c == ’\n’ || c == ’\r’) break ;  
10 result . append (c);  
11 }  
12 return result . toString ();  
13 }   

  

Top Result for Java - Query: Read Text File Line by Line 

In the above examples, the document vectors and query 

vector are semantically similar and are mapped closely, which 
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means that the model has a high-level understanding of what 

the function does and similarly what the query intends to find.  

II. DATASET 

For creating a dataset for our supervised learning model, we 

lever- aged the power of Open Source GitHub repositories. 

Source Code is fetched from GitHub using the tools and 

techniques specified in CodeSearchNet. The corpus we 

created contains about 6 million functions from open-source 

code spanning six programming languages (Go, Java, 

JavaScript, PHP, Python, and Ruby). More than 2 million 

functions in the dataset contain that description of the 

function in natural language, which is present in the source 

code in the form of comments or docstrings. The main reason 

for choosing this dataset for our model training is the scope 

of expanding the dataset with relative ease and still get the 

same quality of data as the current one. As our model is a 

supervised one, it will only perform better with a larger 

training set. However, we believe that for proof of concept, 

the current dataset will suffice.  

A. Preprocessing  

CodeSearchNet uses TreeSitter - GitHub’s universal parser to 

ex- tract pairs of functions and docstring. The parser focuses 

on extracting code and descriptions pairs from the source 

code if the description does not exist the description is 

scrapped from documentation of the software if one exists. 

For tokenization, Firstly, all the special characters are 

removed from the function as they are unnecessary and 

cannot be used for creating document embeddings of the 

code. Secondly, the tokens are broken into individual tokens 

from their representation in camelCase, which would be 

broken into [camel, case] or snake_case, which would split 

into [snake, case]. Also, during this, the tokens are converted 

to lowercase. Further, all the duplicate tokens are removed. In 

case of functions that are part of a class, the class name is also 

tokenized and added to the list of tokens as it helps in 

providing context to the function.  

B. Filtering  

To maintain the quality of the dataset, some filtering 

techniques are employed as duplicate code has adverse effects 

in the machine learning model of code [1]. As open-source 

codes are full of duplicates, whether it be the case of copy-

pasting or multiple versions of auto-generated code. Further, 

functions like constructors, destructors, getters, setters, or 

inbuilt functions are not included. Moreover, functions with 

short/poor descriptions are also not included as they are not 

informative.  

C. Limitations  

Even though this dataset is better than what the community 

has tried to conjure up over the years, it does have some 

shortcomings. Unsurprisingly, the scrapped dataset is quite 

noisy. Firstly, the description is fundamentally different from 

search queries as they are written by the same person mostly 

at the time of writing the code itself. It uses the same 

vocabulary as the code itself. Secondly, the description might 

not closely resemble the gist of the function to its entirety or 

might be an outdated description for the function even though 

the code is scrapped from popular and well-known 

repositories. Finally, the quality of the code can be sub-par at 

times, which would mean that there can be a faster and better 

implementation elsewhere. It might also be full of bad coding 

practices or antipatterns.  

III. MODEL  

Each entry in the dataset has a function snippet along with its 

description in natural language. It tokenizes and creates word 

embeddings of both the function and its description and the 

model trains such that the document embeddings of both the 

code and description are as same as possible. Our model uses 

bidirectional LSTM’s to capture the context of the function 

and description. The dissimilarity between those two 

document vectors is the loss, and   the model fits to minimize 

the loss.  

  
Fig. 1. Bidirectional LSTM Architecture A. Input  

All the tokens in the function are given sequentially to the 

input as the sequence in which the tokens appear in the list 

has semantic information. This what helps differentiate 

between functions with similar tokens, for example, the 

function names "convertStringToInt" and 

"convertIntToString" although having exact same tokens 

have different semantic contexts.  

B. Word Embeddings  

As the source code is broken up into snippets with the 

granularity of a function and further tokenized in the process 

specified above each of the tokens of the function converted 

to word embeddings using a Word2Vec model, called fastText 

[11] which uses a continuous skip-gram model with a window 

size of 5, which means the words in a sentence within a 

distance of 5 words are considered neighbors. Generated 

word embeddings are of 500 dimensions, which captures the 

full intent of each vocabulary.   

  

  

  

  

The word embeddings can be of higher dimensions, but 

embeddings of size 500 are optimized for both accuracy and 

speed.  

C. Encoder  

We used a bidirectional LSTM cell, specifically GRU cells 

to summarize the input sequence. Our model contains 3 
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hidden layers with 256 hidden units in each direction. The 

optimized used is Adam Optimizer, with a mini-batch size of 

128. The model was trained for 100 epochs lasting over 12 

hours on Nvidia RTX 2060, having compute capability of 7.5.  

  

  
Fig. 2. Unified Neural Network Model for Document 

Embeddings D. Pooling  

Max Pooling is used to combine the word embeddings into 

a sequence embedding to get a final document embedding to 

be mapped into the shared vector space for similarity search.  

E. Similarity Search  

When the user submits a query, the query is also converted 

to a document vector using the encoder, and then using 

Cosine Similarity k-nearest neighbors of the vector 

embedding is found for any particular programming language 

and returned to the user in descending order with code snippet 

with higher similarity values ranked higher.  

  
We used FAISS [10], an open-source implementation of the 

similarity search which leverages GPU and is the fastest k-

selection algorithm being 8.5x faster than any other 

implementation. FAISS helps in drastically reducing the 

training as well as search time for the queries as our dataset 

is enormous. higher similarity values ranked higher.  

IV. RESULTS  

A. Evaluation Metric  

Mean Reciprocal Rank (MRR) is a rank-aware 

evaluation metric; it is a measure of where does the first 

relevant item lies in a ranked list. MRR is easy to compute 

and evaluate and puts a high focus on ranking the best result 

at the top of the list. It is a go-to metric to evaluate 

navigational or factual ranked lists. The metric, however, 

does has a downside; it only evaluates the first relevant 

recommendation in the list and does not consider other 

results. Mathematically, it is the sum of the multiplicative 

inverse of rank of the most relevant result of the i-th query.  

  
Normalized Discounted Cumulative Gain (NDCG) is a 

qualitative ranking measure. Both MRR and NDCG values 

ranking relevant results top of the ranked list. However, 

NDGC quantifies the fact that some results are more 

important than others. NDCG can measure the usefulness and 

gain of the result accumulated over all the results with low 

ranked results having discounted gains. Simply put, highly 

relevant items must be ranked before medium relevant items 

and non-relevant items at last. It is often used to measure the 

effectiveness of web search engine ranking algorithms and 

such related query-based applications. To calculate NDCG, 

Discounted Cumulative Gain (DCG) is divided by the Ideal 

Discounted Cumulative Gain(IDCG) of the query. This is 

done to have an accurate evaluation of the ranking algorithm 

over a set of queries as this can’t be consistently achieved 

using DCG alone, NDCG is used. The mathematical formula 

for this metric is as follows:  

  

B. Evaluation Method  

The evaluation method comprises of 100 search queries 

with human ranked relevant code snippets and NDCG scores 

are calculated using the predicted ranked snippets vs. the 

ideally ranked snippets. This method is not perfect and might 

not correlate to the actual task of code search, but this method 

has been widely used as a proxy for training and evaluating 

similar models.  

Given below are the NDCG and MRR Results from the 

trained model on various languages and mean NDCG and 

MRR values of the model in its entirety.  
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Table I:  Measure of Search Relevance using Normalized 

Discounted Cumulative Gain (NDCG) and Mean 

Reciprocal Rank (MRR)  

Language  NDCG  MMR  

Python  0.2578  0.6673  

PHP  0.2925  0.5712  

Java  0.3159  0.6082  

Ruby  0.4612  0.7336  

JavaScript  0.2235  0.4704  

Go  0.2407  0.6985  

Mean  0.2925  0.6248  

  

  
Fig. 3. NDCG vs MRR for all languages  

V. THREATS TO VALIDITY  

Even though our model is significantly better than 

statistical models that rely on textual similarity and many of 

the simplistic deep neural network embedding models; 

however, our model is far from perfect. We cannot stress this 

enough, but understanding the context and intent of any code 

snippet is challenging, and there exists no perfect way to 

extract this information from the source code. Our model 

doing these embeddings on multiple languages is the step in 

the right direction, but there exist some threats to the validity 

of our results, which we will discuss below.  

Our model being a supervised learning model is hugely 

dependent on quality and quantity of data, and with noisy data 

or code with bad coding practices, the model will not be able 

to perform document embeddings with expected accuracy. In 

some cases, it was observed that the most relevant code 

snippet is ranked bellow some other non-relevant code 

snippets due to the code being semantically similar but not 

contextually similar.  

For the queries to return relevant results, the intended code 

snippet must exist in our code corpus. If not, then all the 

queries will return is similar code snippets, which will be of 

no exact use to the user. So for the model to perform as 

expected, it must be trained on a huge amount of good quality 

data to achieve its core function.  

VI. RELATED WORK  

Deep Code Search [5] uses a neural network called 

CODEnn (Code Description Embedding Neural Network) to 

embed code snippets in high-dimensional vector space.  

DeepCS breaks the inputs the code snippet in three ways 

Method Name, Tokens, and API Sequences are used as input. 

DeepCS is only trained and evaluated on Java/Android 

codebase. It uses bi-directional Recurrent Neural Network 

(RNN) for document embeddings. The predictions are 

evaluated against Lucene [2] and CodeHow [9] predictions 

for the same dataset.  

Neural Code Search [12] used Word2Vec to create word 

embeddings and using term frequency-inverse document 

frequency (TFIDF) method to calculate the weighted average 

of all the tokens in the code snippet to get document 

embedding and using these vectors to find similar code 

snippets to a query. Dataset [8] used is Android-related codes 

from GitHub and StackOverflow’s answers to Android 

related questions for evaluation.  

UNIF (Embedding Unification) [3] is a minimal extension 

to NCS, which provides an attention-based weighing scheme 

to improve the accuracy of unsupervised NCS method. 

Dataset used is a combination of CODEnn and NCS datasets. 

This research shows that even a simple solution can 

outperform complex models like CODEnn. Like the other 

related works, this also trains and evaluates only Java 

codebase.  

VII. CONCLUSION  

Our novel deep neural network model (UnifiedCodeNet) 

built using state of the art systems and techniques proves 

efficient in finding semantically similar code snippets from 

open-source code across six programming languages with a 

high level of accuracy and relevance. The effectiveness of the 

model across language differs understandably due to the 

difference in the quality of source-code and difference in 

coding practices. Python embedding model being the most 

efficient and Go embedding model being the least efficient 

model for the set of queries we used. This is not an exact 

indicator of the accuracy of the model as it is possible that 

there exists no exactly semantically similar code snippet for a 

particular set of the query in the evaluation set, which would 

skew the results significantly. Also, given a different set of 

evaluation queries, it is possible that the accuracy of models 

may vary depending on the queries. Our model is 

significantly better in ranking snippets in some areas; there 

exist areas of improvement like the model would perform 

significantly better on a uniform and larger dataset than the 

one we used. This dataset is huge; we were only able to train 

for 100 epoch; with more resources, the model is sure to 

perform significantly better.  

In the future, we will try to investigate on tree-LSTM 

model for token embeddings to get a better semantic 

representation of the code snippets as well as the query. This 

method can be by far the best method for semantic search, but 

this will require further study.  
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