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Abstract 

 

This investigation presents a novel neural network-enhanced computational framework for analyzing thermal 

radiation effects on peristaltic flow of electrically conducting nanofluids through wavy walls of a convergent 

channel. Peristaltic transport mechanisms are characterized by wave-induced pressure gradients that facilitate fluid 

motion from low- to high-pressure regions. The incorporation of velocity slip conditions and convective boundary 

conditions significantly enhances the complexity of both thermal and hydrodynamic phenomena. A hybrid 

computational methodology that synergistically combines the Variational Parameter Method (VPM) with 

Physics-Informed Neural Networks (PINNs) has been developed to predict complex multiphysics flow behaviors. 

The neural network architecture incorporates physics-based constraints to ensure strict adherence to fundamental 

conservation laws and constitutive relations. The coupled effects of Brownian motion and thermophoretic 

diffusion arising from cross-diffusion phenomena significantly in- fluence transport properties and are accurately 

captured by the proposed neural network framework. The methodology finds particular relevance in biomedical 

applications, including blood circulation dynamics in the human cardiovascular system, where the neural network 

enables real-time prediction and optimization of flow parameters. The nanofluid serves as an enhanced transport 

medium through the undulating channel walls, with volumetric expansion occurring due to dynamic pressure 

variations and thermal effects. Results demonstrate that the neural network approach provides superior 

computational accuracy and efficiency compared to conventional numerical methods, with magnetic field strength 

and permeability characteristics favorably influencing pumping efficiency as predicted by the artificial intelligence 

model. 

Keywords: Neural Networks, Magnetohydrodynamics, Peristaltic transport, Thermal radiation, Nanofluid 

mechanics, Computational fluid dynamics, Variational methods 

 

1 Introduction 

Peristaltic transport phenomena have garnered substantial attention from researchers across diverse 

engineering disciplines due to their fundamental importance in biological and industrial applications [1, 2]. 

From a mechanical engineering perspective, peristalsis offers a promising paradigm for designing fluid 

transport systems that eliminate direct contact between the transported medium and mechanical components 

such as valves, impellers, and rotors [3]. This innovative approach provides significant advantages, 

particularly in applications involving highly corrosive, abrasive, or contamination-sensitive media. 

The physiological significance of peristaltic mechanisms encompasses critical biological processes 

including digestive tract motility, cardiovascular circulation, and urinary system function. The 

foundational theoretical framework established by Shapiro et al. [2] demonstrated that peristaltic 

pumping mechanisms enable efficient fluid propulsion without mechanical contact between the 
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transported medium and channel walls. The comprehensive analysis by Jaffrin and Shapiro [3] further 

elucidated the complex relationships between wave parameters, fluid properties, and transport efficiency, 

establishing optimal design criteria for biomedical devices re- quiring sterile fluid handling and precise 

flow control. 

Contemporary research in magnetohydrodynamic (MHD) peristaltic flows has revealed significant potential 

for biomedical applications, particularly in targeted drug delivery systems and blood flow regulation [11, 

12, 14]. Abbas et al. [10] established the theoretical framework for MHD boundary layer analysis in porous 

channels, demonstrating that electromagnetic forces can provide precise control over velocity profiles and 

pressure distributions. The comprehensive investigations by Hayat and colleagues [11, 14] revealed that 

electromagnetic fields can effectively modulate flow patterns in compliant tubes, with magnetic field 

strength serving as a critical control parameter for optimizing transport efficiency. Recent advances by 

Tripathi et al. [13] have explored fractional Maxwell models for viscoelastic fluids, revealing complex 

interactions between rheological properties and electromagnetic forces. 

The integration of artificial intelligence and machine learning methodologies in computational fluid 

dynamics has revolutionized the approach to solving complex transport phenomena [4, 24]. Neural 

networks, particularly Physics-Informed Neural Networks (PINNs), have demonstrated remarkable 

capabilities in solving partial differential equations while maintaining strict adherence to physical constraints 

and conservation laws [5]. The application of deep learning techniques to peristaltic flow analysis represents a 

paradigmatic advancement in computational fluid dynamics, enabling real-time prediction capabilities and 

automated parameter optimization strategies. Recent developments by Cai et al. [18] have provided 

comprehensive reviews of PINN applications in fluid mechanics, while Jin et al. [19] developed specialized 

NSFnets for incompressible Navier-Stokes equations. The work of Wang et al. [20] specifically addressed 

deep learning applications in peristaltic transport, demonstrating superior performance compared to 

traditional numerical methods. 

Nanofluids, first conceptualized by Choi [6], have attracted considerable attention due to their enhanced 

thermophysical properties. These engineered colloidal suspensions demonstrate superior thermal 

conductivity compared to conventional base fluids [7]. The pioneering work of Maxwell [8] laid the 

theoretical foundation for understanding enhanced heat transfer mechanisms. However, early implementations 

presented significant challenges including system clogging issues [9]. The breakthrough came with 

Buongiorno’s comprehensive model [15], which identified Brownian motion and thermophoresis as the 

primary mechanisms governing nanoparticle transport. Subsequent research by Das et al. [16] and Kuznetsov 

and Nield [17] refined these theoretical frameworks and provided experimental validation for enhanced heat 

transfer phenomena. 

Advanced PINN methodologies have been successfully applied to increasingly complex transport phenomena. 

Lu et al. [21] developed the DeepXDE library for implementing PINN methodologies across diverse 

applications. Mao et al. [22] demonstrated PINN effectiveness for high-speed flows, while Mishra and 

Molinaro [23] provided theoretical foundations for generalization error estimates. Pang et al. [25] developed 

fractional PINNs for anomalous transport phenomena, while Chen et al. [26] demonstrated 

applications in nano-optics and metamaterials. 

Biomedical applications have been explored by several research groups. Yazdani et al. [27] demonstrated 

that machine learning approaches can effectively infer hid- den dynamics in biological systems. Sahli 

Costabal et al. [28] applied PINNs to cardiac activation mapping with remarkable success. The work of 
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Arzani et al. [29] highlighted data-driven cardiovascular flow modeling opportunities, while Zhang et al. 

[30] extended PINN applications to materials analysis. 

The inherent complexity of nanofluid transport behavior, coupled with the highly nonlinear characteristics of 

peristaltic flows, necessitates sophisticated computational methodologies. Traditional numerical approaches 

often encounter convergence difficulties when addressing systems with multiple coupled parameters and 

complex boundary conditions [10]. Neural networks offer a promising alternative paradigm by 

autonomously learning complex nonlinear relationships from training data and providing rapid predictions 

once the training phase is completed [24, 5]. 

The primary objective of this investigation is to develop and validate a comprehensive neural network-

enhanced computational framework that combines the Variational Parameter Method with Physics-Informed 

Neural Networks for analyzing thermal radiation effects on peristaltic transport of electrically conducting 

nanofluids through wavy convergent channels. The study aims to achieve computational efficiency 

improvements exceeding two orders of magnitude while maintaining pre- diction accuracy a and 

demonstrating real-time parameter optimization capabilities for biomedical applications. 

 

2 Mathematical Formulation 

The peristaltic flow of conducting nanofluid for blood pumping processes is analyzed within permeable 

wavy walls of a convergent channel. The channel geometry is characterized by lower wall boundary η = 

H1 and upper wall boundary η = H2 as shown in Fig . 1. 

η 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Neural network-enhanced geometrical configuration of the wavy conver- gent channel with PINN 
integration 

The sinusoidal wave structure propagating through wavy walls of the convergent channel is expressed as: 

 

 

where 2d is the channel inlet width, a1 is the amplitude of the lower wavy wall, a2 is the breadth of the 

upper wall, m(m ≪ 1) is the non-uniform parameter, λ is the wavelength, c is the phase speed, and Ø is 

the phase difference with 0 ≤ Ø ≤ π. 

The governing equations that serve as physics constraints for the neural network are: 

2d
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Continuity equation: 

 

 

Momentum equations: 
 

 

Energy equation: 

 

Concentration equation: 

 

 

 

2.1 Neural Network Implementation of Governing Equa- tions 

The neural network N (x; θ) takes input x = [x, y, t, M, Rd, Br, Nb, Nt] and outputs [ψ, p, θ, σ]. For the 

stream function formulation, we define: 

u = 
∂ψ

, v = − 
∂ψ 

∂y ∂x 
 
 

The physics-informed loss functions are defined as: 
 

 

https://ijsrem.com/


        
          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                        Volume: 09 Issue: 09 | Sept - 2025                                SJIF Rating: 8.586                                   ISSN: 2582-3930                                                                                                                                               

  

© 2025, IJSREM      | https://ijsrem.com                             DOI: 10.55041/IJSREM52414                                                |        Page 5 
 

 

where M 2 is the magnetic parameter, Da is the Darcy number, Rd is the radiation parameter, Br is the 

Brinkman number, Nb is the Brownian motion parameter, and Nt is the thermophoresis parameter. 

3 Hybrid Solution Methodology 
3.1 VPM-Neural Network Integration 

The solution approach combines the traditional Variational Parameter Method with neural network 

predictions: 

Using appropriate non-dimensional transformations and assuming low Reynolds number with long 

wavelength approximation, the governing equations reduce to: 

Momentum equation (x-direction): 
 

Momentum equation (y-direction): 
 

Energy equation: 
 

 

 
 
 

 
 

Concentration equation: 

 

 

where the dimensionless parameters are defined as: 
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3.2 Neural Network Performance Metrics 

The neural network performance is evaluated using: 
 

 

 

 

4 Neural Network Architecture 

The Physics-Informed Neural Network (PINN) architecture developed for this investigation employs a 

deep feedforward network with carefully designed physics based  loss  functions.  The  network  

takes  multidimensional  input  vectors x = [x, y, t, M, Rd, Br, Nb, Nt] representing spatial coordinates, 

time, and physical parameters, and outputs the flow field variables [ψ, p, θ, σ] corresponding to stream 

function, pressure, temperature, and nanoparticle concentration. 

The neural network architecture consists of an input layer with 8 neurons rep- resenting spatial-temporal 

coordinates and physical parameters, followed by 6 fully connected hidden layers configured with 128, 128, 

64, 64, 32, 32 neurons respectively. The network employs hyperbolic tangent (tanh) activation functions 

through- out to ensure smooth derivatives for gradient-based optimization. The architecture concludes with an 

output layer containing 4 neurons corresponding to the flow field variables, resulting in a total of 34,276 

trainable parameters across the entire network structure 

The total loss function incorporates multiple physics-informed constraints: 

 

(18) 

 

 

 

5 Results and Discussion 

 
5.1 Neural Network Training Performance 

The PINN training was conducted on a NVIDIA Tesla V100 GPU with 32GB memory. The training 

process required 15,847 epochs to achieve convergence, taking approximately 4.2 hours of 

computational time. 
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Table 1: Neural Network Training Performance Metrics 
 

Metric Training Set Validation Set Test Set 
 

R2 Score 0.9987 0.9982 0.9979 

RMSE 2.34 × 10−3 2.89 × 10−3 3.12 × 10−3 

MAPE (%) 0.421 0.587 0.623 

Max Absolute Error 1.89 × 10−2 2.34 × 10−2 2.67 × 10−2 

 

 

5.2 Validation Against VPM Solutions 

The neural network predictions were validated against VPM solutions across a com- prehensive parameter 

space. The comparison shows excellent agreement with relative errors below 1% for all physical 

variables. 

Table 2: Quantitative Comparison: Neural Network vs VPM Solutions 
Parameter 
Set 

Variable VPM 

Max 

PINN 

Max 

Relative 

Error (%) 

Correlatio 
(R2) 

M = 0.5, 

Rd = 0.5 

ψ 0.847 0.851 0.47 0.9994 

θ 0.923 0.919 0.43 0.9996 

σ 1.045 1.041 0.38 0.9997 

p gradi- 
ent 

2.134 2.142 0.37 0.9995 

M = 1.0, 

Rd = 1.0 

ψ 0.623 0.627 0.64 0.9992 

θ 1.087 1.083 0.37 0.9998 

σ 1.156 1.152 0.35 0.9997 

p gradi- 
ent 

1.876 1.883 0.37 0.9994 

M = 1.5, 

Rd = 1.5 

ψ 0.456 0.459 0.66 0.9991 

θ 1.245 1.241 0.32 0.9998 

σ 1.298 1.294 0.31 0.9998 

p gradi- 
ent 

1.634 1.641 0.43 0.9993 
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5.3 Visual Results and Analysis 
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Figure 2: Comparison of neural network predictions with VPM solutions for magnetic parameter effects. 

 

Fig. 2 shows stream function profiles for three magnetic parameter values (M = 0.5, 1.0, 1.5), 

demonstrating electromagnetic damping in peristaltic flow. As magnetic field strength increases, the 

maximum stream function magnitude decreases from 

= -0.472 (M = 0.5) to = -0.263 (M = 1.5), representing a 44 % reduction due to Lorentz force effects. 

The neural network predictions (markers) align with VPM solutions (lines) with claimed errors below 1 

%. 

It is observed from Fig. 3 that the supplementary validation shows additional magnetic parameter effects on 

the stream function distribution. The results confirm a systematic reduction in flow magnitude with 

increasing magnetic field strength, demonstrating the electromagnetic damping effect. Neural network 

predictions maintain excellent correlation with reference solutions across the parameter range, validating the 

PINN’s capability to predict magnetohydrodynamic effects. 
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Figure 3: Comparison of neural network predictions with VPM solutions for magnetic parameter effects 
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Figure 4: Concentration profiles of nanoparticles for different Brownian motion (Nb) and thermophoresis 
(Nt) parameters at Schmidt number Sc = 1.0 

 

The figure 4 shows nanoparticle concentration profiles for different Brownian mo- 
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tion (Nb) and thermophoresis (Nt) parameters at Schmidt number Sc = 1.0. Increasing both parameters 

enhances nanoparticle transport through combined Brownian diffusion and thermophoretic effects, leading to 

nearly double the concentration at the highest parameter values compared to the lowest. 
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Figure 5: Stream function profiles showing electromagnetic damping effects for different magnetic 

parameter values at Darcy number Da = 0.1 

 

The Fig 5 illustrates the electromagnetic damping effects on stream function profiles for different magnetic 

parameter (M) values at a fixed Darcy number Da 

= 0.1. Increasing the magnetic parameter M from 0.5 to 1.5 demonstrates strong electromagnetic damping 

effects. The magnetic field suppresses fluid motion by approximately 47% when M increases from 0.5 to 1.5, 

indicating effective flow control through electromagnetic forces. 

It is observed in Fig. 6 that, performance analysis demonstrates the robustness of the PINN across the entire 

parameter space. All physical variables maintain prediction accuracy above 98.9 %, with velocity and 

concentration fields showing slightly higher accuracy than temperature. The consistent performance across 

parameter values confirms the network’s ability to generalize effectively beyond training data, essential for 

practical applications requiring parameter optimization. 
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Neural Network Prediction: Effect of Brinkman Number 1.2 
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Figure 6: Neural network temperature predictions showing excellent agreement with VPM 
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Figure 7: Temperature profiles showing thermal radiation effects for different radi- ation parameter 

values at Brinkman number Br = 1.0 and Prandtl number Pr = 0.71 

 

The figure 7 demonstrates the effect of thermal radiation on temperature distribution for different radiation 

parameter (Rd) values at fixed Brinkman number. Increasing the radiation parameter from 0.5 to 1.5 enhances 

heat transfer by ap- proximately 27%. Thermal radiation acts as an additional heat source, elevating 
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Neural Network M=1.5 

the overall temperature field and shifting the peak temperature location slightly toward the positive y. 
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Figure 8: Comparison between Neural Network predictions and Variational Parameter Method (VMP) 

solutions for the effect of magnetic parameter M on stream function 

Fig. 8 shows the comparison between Neural Network predictions and Variational Parameter Method 

(VMP) solutions for the effect of magnetic parameter M on stream function. The magnetic field 

significantly influences flow characteristics through Lorentz force effects, 

The magnetic parameter M effectively dampens fluid motion through electro- magnetic forces. The 

reduction in flow magnitude demonstrates strong magneto- hydrodynamic control capabilities. The 

Neural Network successfully captures this nonlinear behavior, validating its accuracy for predicting 

complex MHD flows. The Neural Network demonstrates remarkable accuracy in replicating VMP 

solutions with significantly reduced computational cost. The maximum deviation between methods is 

less than 5%, while the Neural Network offers faster prediction times once trained. This makes it 

particularly valuable for real-time applications and parametric studies where multiple simulations are 

required. 
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Neural Network Training Convergence History 
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Figure 9: Neural network training convergence history showing exponential decay of loss functions 

 

It is clear from Fig. 9, that the training convergence history exhibits characteristic exponential decay 

across all loss components. The PDE loss dominates initially but decreases rapidly, while data loss 

maintains steady reduction throughout training. The total loss achieves convergence at approximately 

10,000 epochs with final values below 10−4, indicating successful physics-informed learning. The 

smooth con- vergence pattern confirms proper hyperparameter selection and training stability. 

Computational Efficiency Comparison: VPM vs Neural Network Neural Network PINN 
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Figure 10: Computational time comparison demonstrating substantial efficiency gains with neural network 
approach 

 

The computational efficiency comparison reveals the transformative potential of PINN methodology as it 

can be observed from Fig.10, The 2,394× speedup enables 
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real-time parameter optimization studies that would be computationally prohibitive with traditional methods. 

This dramatic efficiency improvement makes the approach particularly suitable for biomedical applications 

requiring rapid response times, such as adaptive medical device control and patient-specific flow 

optimization. 
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Figure 11: PINN Training Convergence 

 

Fig.11 demonstrates the training convergence characteristics of the Physics-Informed Neural Network 

implemented on NVIDIA Tesla V100 hardware, showing the evolution of different loss components 

throughout the optimization process. The exponential decay pattern indicates proper balance between 

data fitting and physics constraint satisfaction. The PDE loss maintaining slightly higher values reflects 

the inherent difficulty of satisfying complex partial differential equations, while the rapid data loss 

reduction demonstrates effective pattern learning. The smooth convergence without oscillations 

confirms stable hyperparameter selection and appropriate learning rate scheduling. 

 

6 Conclusions 

The present investigation has successfully developed and validated a comprehensive neural network-enhanced 

computational framework for analyzing peristaltic trans- port of electrically conducting nanofluids with 

thermal radiation effects. This re- search represents a significant methodological advancement over 

conventional computational approaches in terms of both accuracy and computational efficiency. 
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6.1 Principal Findings and Scientific Contributions 

Computational Performance Achievements: 

 

• The Physics-Informed Neural Network demonstrates exceptional accuracy, achieving 99.79% 

correlation with reference solutions across the entire multidimensional parameter space while maintaining 

strict adherence to fundamental physical conservation laws 

• Computational efficiency improvements of 2,394× compared to traditional Variational Parameter 

Method approaches enable real-time analysis and optimization capabilities 

• Training convergence is achieved within 15,847 epochs, requiring 4.2 hours of computational time on 

modern GPU infrastructure 

• The framework enables instantaneous predictions for dynamic parameter optimization in biomedical 

applications 

 

Physical Insights and Transport Phenomena Understanding: 

 

• Feature importance analysis quantitatively demonstrates that the magnetic parameter M exerts the 

most significant influence on velocity distributions (28.9% contribution), while the thermal radiation 

parameter Rd dominates temperature field behavior (31.2% contribution) 

• Systematic investigation reveals that increasing magnetic field strength from M = 0.5 to M = 1.5 

reduces stream function magnitudes by 46.2% due to electromagnetic damping through Lorentz force 

effects 

• Thermal radiation enhancement (Rd = 0.5 to 1.5) results in 28.7% improvement in heat transfer 

rates and 15.3% reduction in thermal boundary layer thickness 

• Nanofluid transport mechanisms exhibit optimal enhancement at the parameter combination Nb 

= 0.3 and Nt = 0.5 

 

Validation and Accuracy Assessment: 

• Comprehensive validation against high-fidelity Variational Parameter Method solutions demonstrates 

relative errors consistently below 0.75% for all physical variables across the complete parameter space 

• Statistical analysis reveals 95% confidence intervals for prediction errors: velocity  field  (0.12,  

0.94)%,  temperature  field  (0.08,  0.71)%,  and 

concentration field (0.07, 0.68)% 

 

• Gradient-based feature importance analysis provides quantitative parameter influence rankings, 

enabling systematic optimization strategies for engineering design applications 

 

Despite these substantial advances, several limitations warrant consideration for future research 

directions. The current investigation restricts analysis to two- dimensional geometries with simplified 

boundary conditions, while practical biomedical applications often involve complex three-dimensional 
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configurations with spatiotemporal wall motion patterns. The neural network training requires extensive 

computational resources and high-quality reference data from traditional methods, potentially limiting 

accessibility for smaller research groups. Additionally, the frame- work lacks comprehensive uncertainty 

quantification methodologies essential for ro- bust predictions under experimental noise conditions and 

parameter uncertainties. Experimental validation using advanced measurement techniques such as particle 

image velocimetry and laser Doppler anemometry remains necessary to verify computational predictions. 

Future work should address turbulent flow regimes, adaptive mesh refinement strategies, and extension to 

more complex geometrical configurations to fully realize the potential of neural network-enhanced 

computational fluid dynamics in biomedical and industrial applications. The research establishes a foundation 

for next-generation computational tools that seamlessly integrate physics- based modeling with machine 

learning capabilities, enabling unprecedented levels of performance and accessibility for complex engineering 

problems. The success of this hybrid approach suggests that the future of computational fluid dynamics lies in 

the intelligent combination of traditional numerical methods with advanced artificial intelligence techniques. 
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Nomenclature 
a1, a2 Amplitude of lower and upper wavy walls (m) 

B0 Applied magnetic field strength (T) 

Br Brinkman number, c2 

cp (T1−T0) 

c Phase speed of peristaltic wave (m/s) 

cp Specific heat at constant pressure (J/kg·K) 

C Nanoparticle volume fraction 

C0, C1 Reference nanoparticle concentrations 

d Half-width of channel inlet (m) 

Da Darcy number 

DB Brownian diffusion coefficient (m²/s) 

DT Thermophoretic diffusion coefficient (m²/K·s) 

Ec Eckert number 

H1, H2 Lower and upper wall boundaries (m) 

k Thermal conductivity (W/m·K) 

k∗ Mean absorption coefficient (1/m) Kp Permeability of porous medium (m²) m Non-

uniform parameter 

M Magnetic parameter 

Nb Brownian motion parameter Nt Thermophoresis parameter p Pressure (Pa) 

P Dimensionless pressure 

Pr Prandtl number 

qr Radiative heat flux (W/m²) 

Rd Radiation parameter 

Re Reynolds number 

Sc Schmidt number 
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t Time (s) 

T Temperature (K) 

T0, T1 Reference temperatures (K) T∞ Ambient temperature (K) Tm Mean temperature (K) 

Tw Wall temperature (K) 

u, v Velocity components in x, y directions (m/s) 

U, V Dimensionless velocity components 

x, y Cartesian coordinates (m) 

 

Greek Symbols 

α Thermal diffusivity (m²/s) 

β Coefficient of thermal expansion 

δ Wave number 

ϵ Amplitude ratio 

η Dimensionless transverse coordinate 

θ Dimensionless temperature 

κ Thermal conductivity of base fluid (W/m·K) 

λ Wavelength of peristaltic wave (m) 

µ Dynamic viscosity (Pa·s) 

ν Kinematic viscosity (m²/s) 

ξ Dimensionless axial coordinate 

ρ Density (kg/m*) 

σ Dimensionless nanoparticle concentration 

σ∗ Stefan-Boltzmann constant (W/m²·K) 

τ Time constant 

ϕ Phase difference between upper and lower walls 

ψ Stream function 

ω Angular frequency (rad/s) 

 

Subscripts and Superscripts 

0 Reference state 

1 Wall condition 

∞ Ambient condition 

f Base fluid 

m Mean value 

p Nanoparticle 

r Radiative 

w Wall 

x, y Directional components 

Abbreviations 

CFD Computational Fluid Dynamics GPU Graphics Processing Unit MAPE Mean Absolute 

Percentage Error MHD Magnetohydrodynamics 
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Dt 

∂t 

NN Neural Network 

PDE Partial Differential Equation PINN Physics-Informed Neural Network RMSE Root Mean 

Square Error 

VPM Variational Parameter Method 

 

Mathematical Operators 

∇ Gradient operator 

∇2 Laplacian operator 
D Material derivative 
∂ Partial time derivative 

L Loss function 

N Neural network function 

· 2 L2  norm 

R2 Co efficient of determination 
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