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Abstract - Neuromorphic computing has emerged as a 

revolutionary area in contemporary information processing by 

emulating the architecture and operation of the human brain to 

enable artificial intelligence. In contrast with traditional von 

Neumann systems like CPUs and GPUs, which are plagued by 

excessive energy use, latency, and limited scalability because of 

the divide between memory and computation, neuromorphic 

chips integrate these two functions into a single platform. At the 

center of this architecture are memristor crossbar arrays, which 

support in-memory computation, parallel processing, and 

adaptive learning, thus eliminating the von Neumann 

bottleneck. Such integration is especially critical for Edge-AI 

applications, where devices are required to provide real-time 

intelligence, work with tight energy budgets, and work without 

relying on cloud resources. Based on the seminar theme, this 

review focuses on scalable neuromorphic chip architectures and 

their uses in applications ranging from robotics, healthcare, IoT, 

and smart cities. Comparative evaluation with traditional 

processors features enhanced energy efficiency, computational 

throughput, and on-chip adaptability. However, issues like 

memristor variability, device endurance, and fabrication 

complexity are still open issues for large-scale deployment. 

Neuromorphic chips stand at the intersection of potential future 

research avenues, ranging from hybrid CMOS–memristor 

integration to three-dimensional crossbar structures and 

algorithm–hardware co-design, as a central enabler of next-

generation, energy-efficient, intelligent edge computing 

systems. 
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1.INTRODUCTION 

Neuromorphic computing has emerged as a 

revolutionary discipline in contemporary information 

processing by modeling the structure and operations of the 

human brain to be used in artificial intelligence. 

Neuromorphic chips combine the functions of computation 

and memory into a single platform, unlike traditional von 

Neumann architectures like CPUs and GPUs that are 

plagued by high power consumption, latency, and low 

scalability owing to the dissociation of memory and 

computation. At the center of this design are memristor-

based crossbar arrays, which allow in-memory 

computation, parallel processing, and adaptive learning 

and thus provide a solution to the von Neumann 

bottleneck. This convergence is especially vital for Edge-

AI applications, where devices need to provide real-time 

intelligence, work with very tight energy budgets, and 

work autonomously from the cloud. Based on the seminar 

theme, this review focuses on scalable neuromorphic chip 

architectures and their use in applications like robotics, 

healthcare, IoT, and smart cities. Comparative study with 

traditional processors underscores gains in energy 

efficiency, computation throughput, and on-chip 

adaptability. Concurrently, issues like memristor 

variability, device endurance, and fabrication complexity 

are still open questions to large-scale deployment. Future 

research areas such as hybrid CMOS–memristor 

integration, three-dimensional crossbar arrays, and 

algorithm–hardware co-design place neuromorphic chips 

at the center of next-generation, energy-efficient, and 

intelligent edge computing systems.Neuromorphic 

computing is a paradigm shift in information processing 

for the present era as it directly takes inspiration from the 

architecture and functionality of the human brain. 

Traditional computing systems, which are based on the 

von Neumann model, have distinct memory and 

processing units. This isolation presents a significant 

performance bottleneck referred to as the "von Neumann 

bottleneck," where repeated data movement between 

processor and memory results in high latency, high energy 

consumption, and poor scalability. These have become 

particularly important with the advent of Artificial 

Intelligence (AI), when low-latency decision-making and 

energy-efficient computation are necessary for edge 

devices in robotics, healthcare, and the Internet of Things 

(IoT). 

 

Neuromorphic chips resolve these constraints by 

integrating storage and computation onto a shared 

platform. At their core are memristor-based crossbar 

arrays, which are artificial synapses and support in-

memory computing, parallel matrix–vector multiplications, 

and adaptive learning via mechanisms like spike-timing 

dependent plasticity (STDP). This neuroinspired strategy 

enables neuromorphic systems to operate at ultra-low 

power consumption and in real time, which makes them 

extremely well-suited for Edge-AI deployments where 

cloud connectivity is constrained or undesirable. 

 

Recent studies and prototype advancements show 

that neuromorphic chips not just enhance computation 

throughput but also enable on-chip learning and fault 

tolerance with dynamic workloads. Applications 

emphasized by seminar presentations are autonomous 

navigation, biomedical signal processing, smart city 
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infrastructure, and low-power embedded AI systems. 

Meanwhile, the area is still challenged by memristor 

variability, endurance constraints, fabrication complexity, 

and integration into CMOS technology. 

 

Considering the intense growth of neuromorphic 

research, a scientific exploration of scalable chip design is 

timely and warranted. This paper integrates findings from 

the seminar and literature to assess neuromorphic chip 

design, contrasts them with conventional processors, and 

investigates their appropriateness for practical Edge-AI 

systems. The review also establishes open problems and 

areas for research—such as hybrid CMOS–memristor 

integration, 3D crossbar architectures, and algorithm–

hardware co-design—planning neuromorphic chips as a 

solid foundation for the next generation of intelligent and 

energy-efficient edge computing. 
 

 

2. LITERATURE REVIEW 

Xiong et al. [1] have provided a review of 

neuromorphic computing models and hardware platforms, 

covering neuron and synapse implementations, learning rules, 

and mapping methods for spiking neural networks (SNNs). The 

authors contrasted biologically accurate models with reduced 

engineering-friendly models, emphasizing trade-offs required by 

scalable hardware. Their results stress the tradeoff between 

accuracy and efficiency in neuromorphic chip design. 

 

Indiveri and Liu [2] surveyed memory and information 

processing strategies in neuromorphic circuits based on mixed-

signal analog/digital circuits. They presented how event-driven 

dynamics and local memory emulate biological neurons and save 

energy. Their work showed that mixed-signal architectures 

successfully facilitate ultra-low power neuromorphic systems. 

 

Davies et al. [3] evaluated the Intel Loihi platform, a 

many-core neuromorphic processor with on-chip learning 

capability. The paper benchmarked Loihi compared to legacy 

CPUs and GPUs, indicating dramatic improvements in latency 

and power efficiency. The authors concluded that neuromorphic 

cores are appropriate for real-time, adaptive edge tasks. 

 

Neftci et al. [4] studied algorithm–hardware interface in 

neuromorphic computing, noting asynchronous and event-driven 

computation as vital for low-power intelligence. They stressed 

surrogate gradient techniques to train spiking networks 

effectively. Their research noted co-design between hardware 

and algorithms as being key to neuromorphic scalability. 

 

Xiao [5] gave an extensive review of memristor 

materials and switching configurations pertinent to 

neuromorphic chips. The paper discussed device-level properties 

like endurance, variability, and analog programmability and 

related them to system-level issues. The author emphasized that 

trustworthy memristors are the key to next-generation large-scale 

neuromorphic systems. 

 

Aguirre et al. [6] reviewed memristive artificial neural 

networks, focusing on crossbar array architectures and peripheral 

circuits. In their work, they investigated variability issues and 

energy–accuracy trade-off in array-level computing. They 

concluded that optimized peripheral design and mapping 

strategies are crucial to enhance scalability. 

 

Xu et al. [7] surveyed the application of memristors 

within ANN and SNN architectures. They emphasized device 

modeling, synaptic circuit integration, and dense array scaling as 

major on-chip learning enablers. The research emphasized the 

role of memristor non-volatility in designing efficient, compact 

neuromorphic processors. 

 

Mishra et al. [8] investigated neuromorphic lifelong 

learning with an emphasis on how neuromorphic chips could 

enable lifelong learning without catastrophic forgetting. Their 

survey combined algorithmic designs with hardware capabilities 

and emphasized plasticity and local adaptation. The study 

showed the capability of neuromorphic systems towards 

autonomous, real-time adaptation. 

 

Rathi et al. [9] offered a wide overview of 

advancements in spiking neuromorphic computing, highlighted 

CMOS and up-and-coming non-volatile memory technologies, 

and noted scalability and standardization to be the primary 

challenges. Their study emphasized the necessity of strong 

benchmarking tools to verify neuromorphic systems. 

 

Wang et al. [10] analyzed memristor-based spiking 

neuromorphic systems, from device-level switching physics to 

neural dynamics. They surveyed candidate devices for SNN 

accelerators and analyzed their efficiency in emulating biological 

synapses. The research concluded that memristors provide 

special opportunities in developing brain-like AI hardware. 

 

Xiao [11] discussed the evolution from memristor 

devices towards integrated neuromorphic chips. Their research 

considered reliability, hybrid CMOS–memristor integration, and 

design methodologies for deployment at the system level. The 

paper emphasized edge AI as the primary source of driving 

neuromorphic hardware development. 

 

Min et al. [12] gave an overview of the ecosystem for 

memristor-based neuromorphic computing in terms of device, 

circuit, architecture, and algorithm layers. They promoted hybrid 

modeling approaches to mitigate the effects of device non-

idealities. Their results reveal that cross-layer optimization is key 

to scalable neuromorphic systems. 

 

Sokolov et al. [13] discussed oxide-based resistive 

RAM (RRAM) devices for neuromorphic systems. The paper 

compared various material systems and emphasized endurance, 

switching uniformity, and variability as the most important 

factors in synaptic emulation. According to the authors, material 

engineering is still a bottleneck for the reliability of 

neuromorphic hardware. 

 

Al Abdul Wahid [14] also surveyed neuromorphic chip 

architectures, such as neuron models, synaptic topologies, and 

learning rules. Their survey aligned hardware designs with 

particular edge AI domains like robotics and IoT. The research 

also suggested evaluation metrics to unbiasedly compare 

neuromorphic implementations. 
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Muir et al. [15] surveyed commercialization routes for 

neuromorphic hardware, comparing research prototypes to 

industry-level systems. They concluded that fabrication 

complexity, market readiness, and scalability were the largest 

challenges. Their view highlighted the disparity between 

research in academia and product deployment in practice. 

 

 

3. COMPARISONS OF VARIOUS WORKS 

The literature surveyed reveals an unmistakable 

evolution from conceptual neuromorphic computing 

debates to tangible chip-level implementations focused on 

energy-efficient intelligence at the edge. Cornerstone 

papers like Indiveri and Liu (2015) and Neftci et al. 

(2018) set forth mixed-signal architectures and event-

based models that laid the groundwork for brain-inspired 

computation, while Shrestha et al. (2022) and Rathi et al. 

(2023) cited architectural reviews and benchmarking 

issues in spiking neural networks (SNNs). Device-level 

research such as Xiao (2023, 2024), Aguirre et al. (2024), 

and Xu et al. (2021) addressed crossbars and synapse 

circuits with memristors, emphasizing how in-memory 

computing allows parallel operations with density but also 

revealing variability and endurance issues. Bringing 

devices to system dynamics, Wang et al. (2025) and Min 

et al. (2021) linked memristive switching to SNN 

efficiency, while suggesting hybrid modeling schemes to 

address non-idealities. On the application side, Davies et 

al. (2018) showed Intel's Loihi chip as a neuromorphic 

processor to provide low latency and high energy 

efficiency, and Mishra et al. (2023) built on this with 

ongoing learning frameworks to enable lifelong 

adaptability. Complementary work of Sokolov et al. 

(2021) and Al Abdul Wahid (2024) studied RRAM 

synapses and metrics for edge use cases, while Muir et al. 

(2025) focused on the gap between lab prototypes and 

deployable offerings for commercialization. Together, 

these papers point to neuromorphic chips as scalable, 

adaptive, and low-power von Neumann system 

alternatives, but identify issues to be resolved in 

fabrication reliability, variability management, hybrid 

CMOS–memristor integration, and system-level 

standardization toward eventual real-world uptake. 
 

 

 

Table -1: Sample Table format 

Ref. No. Year Authors (main) Short Title / Topic 
What the paper suggests / 

proposes 

[1] 2022 Shrestha et al. 
Neuromorphic computing 

survey 

Reviews neuron/synapse models, 

SNN mapping, and trade-offs 

between biological realism and 

hardware. 

[2] 2015 Indiveri & Liu 
Memory & info processing 

in neuromorphic systems 

Discusses mixed-signal circuits 

emulating brain-like neurons; 

emphasizes energy-efficient 

designs. 

[3] 2018 Davies et al. Intel Loihi chip 

Describes Loihi neuromorphic 

processor with on-chip learning; 

shows energy & latency 

advantages. 

[4] 2018 Neftci et al. 
Event-driven neuromorphic 

intelligence 

Proposes asynchronous/event-

driven learning; stresses algorithm–

hardware co-design. 

[5] 2023 Xiao 
Memristor materials & 

structures review 

Reviews device-level materials, 

switching, and endurance issues for 

neuromorphic crossbars. 

[6] 2024 Aguirre et al. Memristive neural networks 

Examines crossbar arrays, 

peripheral circuits, and energy–

accuracy trade-offs. 

[7] 2021 Xu et al. 
Memristor-based neural 

networks 

Reviews memristor device models, 

synapse circuits, and ANN/SNN 

integration for compact arrays. 

[8] 2023 Mishra et al. 
Continual learning in 

neuromorphic systems 

Surveys lifelong learning, 

plasticity, and adaptation in 

neuromorphic chips. 

[9] 2023 Rathi et al. SNN challenges & progress 
Highlights scalability, 

benchmarking, and CMOS vs 
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Ref. No. Year Authors (main) Short Title / Topic 
What the paper suggests / 

proposes 

emerging memory for 

neuromorphic chips. 

[10] 2025 Wang et al. 
Memristor-based SNN 

systems 

Links device physics to spiking 

dynamics; identifies device 

candidates for efficient SNNs. 

[11] 2024 Xiao 
Device-to-chip 

neuromorphic advances 

Analyzes hybrid CMOS–memristor 

integration and reliability issues for 

edge AI systems. 

[12] 2021 Min et al. 
Memristor computing for 

neuromorphic platforms 

Advocates cross-layer optimization 

to mitigate device non-idealities. 

[13] 2021 Sokolov et al. 
RRAM devices for 

neuromorphic applications 

Reviews oxide-based RRAM, 

endurance, and variability 

challenges in synaptic emulation. 

[14] 2024 Al Abdul Wahid 
Survey of neuromorphic 

architectures 

Maps neuron models, learning 

rules, and memory topologies to 

edge AI domains. 

[15] 2025 Muir et al. 

Commercialization 

challenges in neuromorphic 

HW 

Identifies barriers from lab 

prototypes to products: fabrication 

complexity, scalability, markets. 

 

4. DISCUSSIONS 

Literature that is reviewed herein indicates that 

neuromorphic computing has evolved from theoretical models to 

a pragmatic chip realization for Edge-AI applications at a very 

fast pace. Pioneering works like Indiveri and Liu (2015) and 

Neftci et al. (2018) presented mixed-signal circuits and event-

driven processing, building the foundations of brain-inspired 

processing. Expanding on these principles, Davies et al. (2018) 

showcased Intel's Loihi processor, which was shown to enable 

on-chip learning and real-time adaptation with significantly less 

power utilization than CPUs and GPUs. These contributions 

together set neuromorphic chips as an exciting candidate to 

break the von Neumann bottleneck. 

 

The dominant research direction is the incorporation of 

memristor-based crossbar arrays to realize dense synaptic 

connectivity and low-power matrix–vector multiplications. 

Research such as Xiao (2023, 2024), Aguirre et al. (2024), and 

Xu et al. (2021) assures that memristors provide ultra-low power 

and small-scale designs that are suitable for large-scale 

neuromorphic hardware. Yet, the devices are also plagued by 

variability, endurance, and fabrication complexity issues, which 

detract from their reliability. Concurrently, Wang et al. (2025) 

and Min et al. (2021) show that integrating device physics with 

spiking neural networks (SNNs) can improve biological 

plausibility and efficiency, with hybrid modeling being 

suggested to counteract hardware flaws. 

 

Applications of neuromorphic chips also exhibit their 

potential to promote real-time, adaptive intelligence in robotics, 

healthcare, and IoT. Mishra et al. (2023) build on this by 

emphasizing ongoing learning such that systems can learn 

without catastrophic forgetting, while Al Abdul Wahid (2024) 

and Sokolov et al. (2021) look at the need for benchmarking and 

material advancements to ensure long-term system 

dependability. Lastly, Muir et al. (2025) bring attention to the 

disconnect between academic prototypes and commercialization, 

citing manufacturing constraints, CMOS–memristor integration 

hurdles, and standardization. Altogether, these works point 

toward neuromorphic chips as scalable, adaptive, and power-

friendly replacements for conventional processors, while 

highlighting open challenges that direct future research in hybrid 

integration.  

5. CONCLUSION 

This review has discussed the evolution of 

neuromorphic computing from its theoretical roots to state-of-

the-art chip-level designs that have the potential to redefine 

intelligent information processing at the edge. In the studies 

reviewed, the common thread is: neuromorphic chips, especially 

those incorporating memristor crossbar arrays, bring a special 

combination of in-memory computation, parallelism, and ultra-

low power consumption that tackles head-on the latency, 

energy, and scalability issues of von Neumann architectures. 

Such platforms have been shown by researchers to support 

spiking neural networks, adaptive learning, and real-time 

inference, and they can be used for applications such as 

robotics, healthcare, IoT, and smart infrastructure where 

responsiveness and efficiency are essential. Hybrid solutions 

with the combination of device innovations with algorithm–

hardware co-design further enhance adaptability, and continual 

learning frameworks push neuromorphic systems towards 

lifelong intelligence. 

At the same time, the literature highlights key challenges that 

must be addressed before widespread deployment. Device 

variability, fabrication complexity, and limited endurance 

constrain memristor reliability, while system-level bottlenecks 

arise in scaling to larger networks and integrating heterogeneous 

circuits. Commercialization barriers, including hybrid CMOS–

memristor integration and standardization of evaluation 

benchmarks, remain open areas for research. Nevertheless, the 
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collective evidence reviewed here shows that neuromorphic 

chips are moving steadily from conceptual prototypes toward 

practical tools for energy-efficient, real-time, and adaptive edge 

computing. Continued advances in device engineering, 3D 

crossbar architectures, and biologically inspired learning 

mechanisms are likely to deliver the next generation of brain-

inspired hardware platforms, establishing neuromorphic chips 

as a cornerstone of future intelligent systems. 
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