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Abstract: NeuroNav is a low-cost, brainwave-

inspired human-computer interface (HCI) designed 

to translate human thought patterns into voice or 

device control actions. Unlike traditional EEG-

based brain-computer interfaces (BCIs), which are 

costly and require complex equipment, NeuroNav 

employs Electromyography (EMG) and pulse 

sensors to capture neuromuscular and physiological 

signals related to thought activity. The system 

processes these signals using machine learning 

models such as Random Forest, Support Vector 

Machine (SVM), and Convolutional Neural 

Networks (CNN) to recognize specific mental 

patterns. The prototype integrates both hardware 

and software components, utilizing Arduino for 

signal acquisition and Python-based algorithms for 

interpretation and response generation. Results 

demonstrate high accuracy, real-time 

responsiveness, and strong potential for assistive 

communication and smart device control. This 

research highlights an affordable and practical 

approach to bridging neuroscience, AI, and human-

computer interaction for students, makers, and 

researchers. 
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1. Introduction 

Human thoughts produce subtle electrical and 

muscular signals that can be detected and 

interpreted to enable communication between the 

human mind and machines. Traditional Brain-

Computer Interfaces (BCIs) rely heavily on 

Electroencephalography (EEG) to record brainwave 

activity. However, EEG-based systems often 

require complex hardware setups, high-cost 

amplifiers, and extensive calibration, making them 

inaccessible to students, developers, and low-

budget researchers. NeuroNav addresses these 

challenges by proposing a low-cost and simplified 

alternative that uses Electromyography (EMG) and 

pulse sensors to emulate brainwave detection. 

EMG sensors capture neuromuscular activity from 

the facial muscles, forehead, and jawline, reflecting 

voluntary and micro involuntary movements that 

correlate with cognitive effort or intent. Meanwhile, 

pulse sensors record variations in heart rate and 

rhythm, which can reveal emotional arousal and 

mental workload. By processing these two 

physiological signals together, NeuroNav can 

identify specific thought-related patterns and 

translate them into voice or control actions. 
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The main objective of NeuroNav is to create a 

bridge between biological activity and 

computational intelligence. The system combines 

affordable electronic components, such as Arduino 

and Python-based machine learning models, to 

develop a reliable thought-to-action interface. 

Beyond affordability, NeuroNav emphasizes 

education and accessibility, encouraging students, 

makers, and researchers to explore neuroscience 

through practical implementation. The project 

contributes to the growing field of intelligent HCI, 

showcasing how low-cost biosensing and AI can 

merge to create intuitive, real-time assistive systems 

for people with communication or mobility 

challenges. 

 

2. Literature Review 

Recent studies in electromyography (EMG) and 

physiological signal analysis have shown that 

muscle-based biosignals can be effectively used for 

human-computer interaction (HCI) and brain-

computer interface (BCI) applications. Li et al. [1] 

introduced emg2qwerty, a large-scale dataset 

demonstrating that surface EMG signals collected 

from the wrist can accurately predict typing activity, 

establishing a foundation for EMG-based 

communication systems. Building on this, 

Kaczmarek et al. [2] investigated optimized 

electrode placements for silent speech interfaces, 

confirming that EMG signals from facial and jaw 

muscles can represent internal speech articulations. 

These findings indicate that EMG can serve as a 

practical alternative to EEG for recognizing intent 

and thought-driven communication. 

Recent advancements in hybrid physiological 

systems have also strengthened this direction. Singh 

and Patel [5] demonstrated that combining EMG 

with photoplethysmography (PPG) signals can 

accurately detect emotional and cognitive states 

using deep learning models, highlighting the 

benefits of multimodal fusion. Similarly, Yoon and 

Kim [6] applied convolutional neural networks 

(CNNs) for emotion recognition using EMG and 

PPG data, achieving high classification accuracy. 

Chen and Zhang [7] expanded this concept by 

proposing a multimodal physiological signal fusion 

method for recognizing cognitive learning states, 

reinforcing the potential of integrating multiple 

biosignals for more reliable human-state 

interpretation. 

Zhang et al. [4] and Rahman and Gupta [9] focused 

on machine learning-based feature extraction and 

filtering methods for EMG signal classification, 

improving the accuracy of prosthetic control 

systems. Kumar and Singh [10] provided an in-

depth analysis of EMG filtering techniques that 

enhance signal clarity for low-cost embedded 

systems. In addition, the study by Fitzgerald et al. 

[8] on non-invasive EMG speech neuroprosthesis 

https://ijsrem.com/


        
           International Journal of Scientific Research in Engineering and Management (IJSREM) 

                          Volume: 09 Issue: 11 | Nov - 2025                                SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                            

 

© 2025, IJSREM      | https://ijsrem.com                                 DOI: 10.55041/IJSREM53686                                              |        Page 3 
 

demonstrated that EMG-based decoding could 

enable near-real-time voice output from silent 

speech patterns. 

Most recently, a 2024 study on intelligent HCI using 

combined wrist and forearm myoelectric signals for 

handwriting recognition [3] further confirmed the 

versatility of EMG signals in recognizing fine-

motor neural intent with high precision. Together, 

these works validate the technical feasibility and 

growing potential of EMG and multimodal 

biosignal systems for affordable, intelligent HCI 

providing the theoretical and empirical foundation 

upon which NeuroNav is developed. 

3. System Architecture 

The NeuroNav system follows a four-stage 

architecture: signal acquisition, processing, 

machine learning interpretation, and output 

generation. In the first stage, EMG and pulse 

sensors collect raw signals from the user’s forehead, 

jawline, or wrist. The EMG sensor captures 

electrical activity produced during micro facial 

movements, while the pulse sensor records 

variations in heart rate corresponding to mental 

states. These signals are transmitted to an Arduino 

Uno microcontroller, which serves as the primary 

data acquisition unit. 

 

Fig: NeuroNav system four-stage architecture 

During the signal processing phase, Arduino filters 

the incoming analog data to remove noise and 

extract key features such as Root Mean Square 

(RMS), mean amplitude, and energy levels. This 

processed data is then sent to a Python environment 

via serial communication. The third stage involves 

classification, where machine learning algorithms 

Random Forest, SVM, and CNN are used to identify 

thought patterns based on signal variations. The 

final stage translates the recognized patterns into 

actions, either producing voice output through a 

text-to-speech module or activating connected 

devices via Arduino-controlled relays. 

The modular and open-source nature of the system 

makes it scalable and easily adaptable for future 

integrations, such as IoT device control and AI-

driven speech generation. The entire system is 

housed in a lightweight DIY headset made from 

plastic or cardboard, ensuring portability and 

comfort. 
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Fig: Workflow diagram of the proposed NeuroNav 

System 

4. Methodology 

The methodology involves both hardware 

integration and software development. The 

hardware setup includes an Arduino Uno (or clone), 

EMG sensor module, pulse sensor, connecting 

electrodes, and circuit components. The EMG 

sensor is positioned on the user’s forehead or 

jawline to detect subtle muscle signals, while the 

pulse sensor is attached to the fingertip or earlobe. 

Both sensors feed analog data to the Arduino, which 

preprocesses and transmits the data to the Python 

environment. 

The software framework is built around two main 

components: the Arduino IDE and a Python-based 

machine learning pipeline. The Arduino script 

handles real-time data acquisition and noise filtering 

using moving average and Butterworth filters. The 

Python environment, using libraries such as scikit-

learn and TensorFlow, processes the received data 

for feature extraction and classification. Random 

Forest and SVM algorithms handle traditional 

classification tasks, while CNN models provide 

deep learning-based pattern recognition. 

Once trained, the model maps distinct EMG and 

pulse signal patterns to specific commands. For 

instance, certain signal combinations may trigger 

pre-defined voice messages via the pyttsx3 text-to-

speech engine or control external devices connected 

through Arduino relays. The system is designed for 

affordability and simplicity, maintaining an overall 

cost of under ₹1,600 significantly lower than 

commercial EEG systems. 

6. Data Acquisition and Preprocessing 

The data acquisition process is the foundation of 

NeuroNav’s performance. It begins with the real-

time collection of analog signals using EMG and 

pulse sensors placed strategically on the user’s 

body. The EMG sensor records microvolt-level 

muscle activity from areas such as the forehead, 

jaw, or wrist, where small movements are often 

linked to thought-driven motor intent. The pulse 

sensor, usually attached to the fingertip or earlobe, 

measures blood flow and heart rate variability, 

which serve as physiological markers of focus, 

stress, or cognitive engagement. 

Signals are acquired using Arduino Uno’s 10-bit 

Analog-to-Digital Converter (ADC) at a sampling 

rate between 100–200 Hz to ensure smooth 

temporal resolution. Because physiological data is 

inherently noisy, preprocessing is critical to ensure 

clarity and consistency. Noise sources include 

motion artifacts, ambient electrical interference, and 

unstable electrode contact. To minimize these, both 
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hardware and software filters are applied including 

low-pass, notch, and moving-average filters. 

The filtered signals undergo feature extraction, 

where key parameters like Root Mean Square 

(RMS), Mean Absolute Value (MAV), variance, 

and spectral energy are calculated. These features 

represent meaningful patterns in the signal that can 

later be recognized by machine learning algorithms. 

The processed dataset is then normalized to 

maintain consistency and split into training and 

testing subsets. This ensures balanced input for 

classification and enables reliable model validation 

during performance testing. 

7. Experimental Setup 

The NeuroNav experimental setup was designed for 

repeatability, comfort, and ease of assembly. A 

prototype headset was built using lightweight 

plastic and cardboard materials to securely hold the 

EMG and pulse sensors in place. The EMG sensor 

was attached near the jawline to capture facial 

muscle contractions, while the pulse sensor was 

clipped to the fingertip. Both sensors were 

connected to an Arduino Uno microcontroller, 

which handled signal sampling and communication 

with the computer. 

Participants wore the headset in a controlled 

environment with minimal external interference. 

During the trials, they performed predefined 

activities such as mild concentration, relaxation, or 

jaw movement to generate distinct signal patterns. 

Each activity lasted a few seconds, and the 

corresponding EMG and pulse data were recorded. 

The dataset included multiple sessions from 

different users to account for individual 

physiological variability. 

Data was transmitted to a Python-based application 

for preprocessing and model training. The 

experimental environment used USB serial 

communication, ensuring real-time signal transfer 

and response. Safety, comfort, and repeatability 

were prioritized throughout the setup, allowing 

consistent signal acquisition for accurate model 

evaluation. 

8. Algorithm Design and Model Training 

The data collected during experiments were 

processed through a hybrid machine learning 

pipeline. Initially, Random Forest and SVM 

algorithms were used for baseline classification due 

to their robustness and efficiency in handling 

nonlinear EMG data [4]. The CNN model was later 

introduced to enhance feature extraction and capture 

temporal dependencies in the signal. 

Feature selection played an essential role in 

improving model accuracy. Time-domain and 

frequency-domain features were extracted and used 

to train the models in Python. The dataset was 

divided into 80% for training and 20% for testing, 

and k-fold cross-validation was applied to prevent 

overfitting. The CNN model achieved the highest 

performance with an accuracy of approximately 

95%, surpassing traditional algorithms in both 

precision and recall metrics. The models were 

deployed in real-time through a Python-Arduino 

communication interface, enabling instant 

responses to detected thought patterns. 
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9. Results and Discussion 

The experimental results demonstrated that 

NeuroNav can effectively interpret thought-related 

muscle and pulse signals to produce accurate and 

real-time responses. The CNN model achieved an 

average accuracy of 95%, outperforming Random 

Forest and SVM classifiers, which achieved around 

88% and 90%, respectively. Real-time tests 

confirmed a response latency of under 300 

milliseconds, allowing nearly instantaneous device 

or voice activation. 

Signal stability across users was approximately 

85%, indicating reliable detection when electrodes 

were properly positioned. When recalibrated for 

each user, classification accuracy improved by 6–

8%, confirming the benefits of personalized 

training. These findings align with prior research by 

Singh & Patel [5] and Liu et al. [3], which reported 

similar improvements from multimodal 

physiological fusion. 

Compared to conventional EEG-based BCIs, which 

cost tens of thousands of rupees, NeuroNav’s 

₹1,600 design provided comparable control 

accuracy for basic commands. This makes it highly 

practical for academic, assistive, and experimental 

applications. However, performance was found to 

depend on sensor placement, signal quality, and 

muscle fatigue. Future iterations may benefit from 

adaptive filtering and wireless data transmission to 

improve stability and usability. 

Overall, the experiments validated the feasibility of 

EMG and pulse-based communication, confirming 

that meaningful mental intent can be captured 

through affordable and accessible technology. 

10. Conclusion 

NeuroNav successfully demonstrates that a 

functional and low-cost brain-computer interface 

can be built using EMG and pulse sensors instead of 

traditional EEG systems. By combining hardware 

simplicity with machine learning intelligence, it 

effectively captures and classifies neuromuscular 

signals corresponding to user intent. The system 

delivers high accuracy, fast response, and strong 

reliability, making it suitable for real-time 

applications such as assistive communication or 

device control. 

The use of open-source components and algorithms 

ensures that the platform remains accessible to 

students, researchers, and developers worldwide. Its 

simplicity and affordability make it a valuable 

educational tool for understanding the interaction 

between biological signals and computational 

intelligence. NeuroNav represents a step toward 

democratizing neurotechnology and enabling wider 

participation in HCI research and innovation. 
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11. Future Scope 

Future developments of NeuroNav will aim to make 

the system smarter, more portable, and adaptive to 

different users. Incorporating wireless modules such 

as Bluetooth or Wi-Fi will allow real-time 

communication with smartphones or IoT devices 

without wired constraints. The addition of mobile 

apps could enable seamless control of home 

automation systems, wheelchairs, or 

communication devices through thought-based 

input. 

Dry or textile-based electrodes may replace 

traditional wet sensors to improve comfort and 

reduce setup time. Expanding the dataset with more 

participants and diverse thought patterns will 

enhance machine learning performance, allowing 

the system to generalize across users. Moreover, 

integrating advanced deep learning architectures, 

such as Long Short-Term Memory (LSTM) 

networks, could improve recognition of sequential 

mental patterns. 

In the long term, NeuroNav could evolve into a 

comprehensive neuro-assistive ecosystem capable 

of real-time emotion recognition, stress monitoring, 

and intelligent control. By merging physiological 

sensing, AI, and wearable design, it can redefine 

how humans naturally communicate with machines 

in daily life. 
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