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Abstract: NeuroNav is a low-cost, brainwave-
inspired human-computer interface (HCI) designed
to translate human thought patterns into voice or
device control actions. Unlike traditional EEG-
based brain-computer interfaces (BClIs), which are
costly and require complex equipment, NeuroNav
employs Electromyography (EMG) and pulse
sensors to capture neuromuscular and physiological
signals related to thought activity. The system
processes these signals using machine learning
models such as Random Forest, Support Vector
Machine (SVM), and Convolutional Neural
Networks (CNN) to recognize specific mental
patterns. The prototype integrates both hardware
and software components, utilizing Arduino for
signal acquisition and Python-based algorithms for
interpretation and response generation. Results
demonstrate high accuracy, real-time
responsiveness, and strong potential for assistive
communication and smart device control. This
research highlights an affordable and practical
approach to bridging neuroscience, Al, and human-

computer interaction for students, makers, and

researchers.
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1. Introduction

Human thoughts produce subtle electrical and
muscular signals that can be detected and
interpreted to enable communication between the
human mind and machines. Traditional Brain-
Computer Interfaces (BCIs) rely heavily on
Electroencephalography (EEG) to record brainwave
activity. However, EEG-based systems often
require complex hardware setups, high-cost
amplifiers, and extensive calibration, making them
inaccessible to students, developers, and low-
budget researchers. NeuroNav addresses these
challenges by proposing a low-cost and simplified
alternative that uses Electromyography (EMG) and

pulse sensors to emulate brainwave detection.

EMG sensors capture neuromuscular activity from
the facial muscles, forehead, and jawline, reflecting
voluntary and micro involuntary movements that
correlate with cognitive effort or intent. Meanwhile,
pulse sensors record variations in heart rate and
rhythm, which can reveal emotional arousal and
mental workload. By processing these two
physiological signals together, NeuroNav can
identify specific thought-related patterns and

translate them into voice or control actions.
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The main objective of NeuroNav is to create a

bridge  between  biological activity and
computational intelligence. The system combines
affordable electronic components, such as Arduino
and Python-based machine learning models, to
develop a reliable thought-to-action interface.
Beyond affordability, NeuroNav emphasizes
education and accessibility, encouraging students,
makers, and researchers to explore neuroscience
through practical implementation. The project
contributes to the growing field of intelligent HCI,
showcasing how low-cost biosensing and Al can
merge to create intuitive, real-time assistive systems

for people with communication or mobility

challenges.

2. Literature Review

Recent studies in electromyography (EMG) and
physiological signal analysis have shown that
muscle-based biosignals can be effectively used for
human-computer interaction (HCI) and brain-
computer interface (BCI) applications. Li et al. [1]
introduced emg2qgwerty, a large-scale dataset

demonstrating that surface EMG signals collected

from the wrist can accurately predict typing activity,
establishing a foundation for EMG-based
communication systems. Building on this,
Kaczmarek et al. [2] investigated optimized
electrode placements for silent speech interfaces,
confirming that EMG signals from facial and jaw
muscles can represent internal speech articulations.
These findings indicate that EMG can serve as a
practical alternative to EEG for recognizing intent

and thought-driven communication.

Recent advancements in hybrid physiological
systems have also strengthened this direction. Singh
and Patel [5] demonstrated that combining EMG
with photoplethysmography (PPG) signals can
accurately detect emotional and cognitive states
using deep learning models, highlighting the
benefits of multimodal fusion. Similarly, Yoon and
Kim [6] applied convolutional neural networks
(CNNs) for emotion recognition using EMG and
PPG data, achieving high classification accuracy.
Chen and Zhang [7] expanded this concept by
proposing a multimodal physiological signal fusion
method for recognizing cognitive learning states,
reinforcing the potential of integrating multiple
human-state

biosignals for more reliable

interpretation.

Zhang et al. [4] and Rahman and Gupta [9] focused
on machine learning-based feature extraction and
filtering methods for EMG signal classification,
improving the accuracy of prosthetic control
systems. Kumar and Singh [10] provided an in-
depth analysis of EMG filtering techniques that
enhance signal clarity for low-cost embedded
systems. In addition, the study by Fitzgerald et al.

[8] on non-invasive EMG speech neuroprosthesis
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demonstrated that EMG-based decoding could
enable near-real-time voice output from silent

speech patterns.

Most recently, a 2024 study on intelligent HCI using
combined wrist and forearm myoelectric signals for
handwriting recognition [3] further confirmed the
versatility of EMG signals in recognizing fine-
motor neural intent with high precision. Together,
these works validate the technical feasibility and
growing potential of EMG and multimodal
biosignal systems for affordable, intelligent HCI
providing the theoretical and empirical foundation

upon which NeuroNav is developed.
3. System Architecture

The NeuroNav system follows a four-stage

architecture:  signal acquisition, processing,
machine learning interpretation, and output
generation. In the first stage, EMG and pulse
sensors collect raw signals from the user’s forehead,
jawline, or wrist. The EMG sensor -captures
electrical activity produced during micro facial
movements, while the pulse sensor records
variations in heart rate corresponding to mental
states. These signals are transmitted to an Arduino
Uno microcontroller, which serves as the primary

data acquisition unit.

Signal Acquisition

2

Signal Processing

L

Machine Learning

2

Action Qutput

Fig: NeuroNav system four-stage architecture

During the signal processing phase, Arduino filters
the incoming analog data to remove noise and
extract key features such as Root Mean Square
(RMS), mean amplitude, and energy levels. This
processed data is then sent to a Python environment
via serial communication. The third stage involves
classification, where machine learning algorithms
Random Forest, SVM, and CNN are used to identify
thought patterns based on signal variations. The
final stage translates the recognized patterns into
actions, either producing voice output through a
text-to-speech module or activating connected

devices via Arduino-controlled relays.

The modular and open-source nature of the system
makes it scalable and easily adaptable for future
integrations, such as IoT device control and Al-
driven speech generation. The entire system is
housed in a lightweight DIY headset made from
plastic or cardboard, ensuring portability and

comfort.
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Fig: Workflow diagram of the proposed NeuroNav
System

4. Methodology

The methodology involves both hardware
integration and software development. The
hardware setup includes an Arduino Uno (or clone),
EMG sensor module, pulse sensor, connecting
electrodes, and circuit components. The EMG
sensor is positioned on the user’s forehead or
jawline to detect subtle muscle signals, while the
pulse sensor is attached to the fingertip or earlobe.
Both sensors feed analog data to the Arduino, which
preprocesses and transmits the data to the Python

environment.

The software framework is built around two main
components: the Arduino IDE and a Python-based
machine learning pipeline. The Arduino script
handles real-time data acquisition and noise filtering
using moving average and Butterworth filters. The
Python environment, using libraries such as scikit-
learn and TensorFlow, processes the received data

for feature extraction and classification. Random

Forest and SVM algorithms handle traditional
classification tasks, while CNN models provide

deep learning-based pattern recognition.

Once trained, the model maps distinct EMG and
pulse signal patterns to specific commands. For
instance, certain signal combinations may trigger
pre-defined voice messages via the pyttsx3 text-to-
speech engine or control external devices connected
through Arduino relays. The system is designed for
affordability and simplicity, maintaining an overall
cost of under 1,600 significantly lower than

commercial EEG systems.
6. Data Acquisition and Preprocessing

The data acquisition process is the foundation of
NeuroNav’s performance. It begins with the real-
time collection of analog signals using EMG and
pulse sensors placed strategically on the user’s
body. The EMG sensor records microvolt-level
muscle activity from areas such as the forehead,
jaw, or wrist, where small movements are often
linked to thought-driven motor intent. The pulse
sensor, usually attached to the fingertip or earlobe,
measures blood flow and heart rate variability,
which serve as physiological markers of focus,

stress, or cognitive engagement.

Signals are acquired using Arduino Uno’s 10-bit
Analog-to-Digital Converter (ADC) at a sampling
rate between 100-200 Hz to ensure smooth
temporal resolution. Because physiological data is
inherently noisy, preprocessing is critical to ensure
clarity and consistency. Noise sources include
motion artifacts, ambient electrical interference, and

unstable electrode contact. To minimize these, both
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hardware and software filters are applied including

low-pass, notch, and moving-average filters.

The filtered signals undergo feature extraction,
where key parameters like Root Mean Square
(RMS), Mean Absolute Value (MAV), variance,
and spectral energy are calculated. These features
represent meaningful patterns in the signal that can
later be recognized by machine learning algorithms.
The processed dataset is then normalized to
maintain consistency and split into training and
testing subsets. This ensures balanced input for
classification and enables reliable model validation

during performance testing.
7. Experimental Setup

The NeuroNav experimental setup was designed for
repeatability, comfort, and ease of assembly. A
prototype headset was built using lightweight
plastic and cardboard materials to securely hold the
EMG and pulse sensors in place. The EMG sensor
was attached near the jawline to capture facial
muscle contractions, while the pulse sensor was
clipped to the fingertip. Both sensors were
connected to an Arduino Uno microcontroller,
which handled signal sampling and communication

with the computer.

Participants wore the headset in a controlled
environment with minimal external interference.
During the trials, they performed predefined
activities such as mild concentration, relaxation, or
jaw movement to generate distinct signal patterns.
Each activity lasted a few seconds, and the
corresponding EMG and pulse data were recorded.

The dataset included multiple sessions from

different users to account for individual

physiological variability.

Data was transmitted to a Python-based application
for preprocessing and model training. The
experimental environment used USB serial
communication, ensuring real-time signal transfer
and response. Safety, comfort, and repeatability
were prioritized throughout the setup, allowing
consistent signal acquisition for accurate model

evaluation.
8. Algorithm Design and Model Training

The data collected during experiments were
processed through a hybrid machine learning
pipeline. Initially, Random Forest and SVM
algorithms were used for baseline classification due
to their robustness and efficiency in handling
nonlinear EMG data [4]. The CNN model was later
introduced to enhance feature extraction and capture

temporal dependencies in the signal.

Feature selection played an essential role in
improving model accuracy. Time-domain and
frequency-domain features were extracted and used
to train the models in Python. The dataset was
divided into 80% for training and 20% for testing,
and k-fold cross-validation was applied to prevent
overfitting. The CNN model achieved the highest
performance with an accuracy of approximately
95%, surpassing traditional algorithms in both
precision and recall metrics. The models were
deployed in real-time through a Python-Arduino
interface,

communication enabling  instant

responses to detected thought patterns.
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9. Results and Discussion

The experimental results demonstrated that
NeuroNav can effectively interpret thought-related
muscle and pulse signals to produce accurate and
real-time responses. The CNN model achieved an
average accuracy of 95%, outperforming Random
Forest and SVM classifiers, which achieved around
88% and 90%, respectively. Real-time tests
confirmed a response latency of under 300
milliseconds, allowing nearly instantaneous device

or voice activation.

Signal stability across users was approximately
85%, indicating reliable detection when electrodes
were properly positioned. When recalibrated for
each user, classification accuracy improved by 6—
8%, confirming the benefits of personalized
training. These findings align with prior research by
Singh & Patel [5] and Liu et al. [3], which reported
multimodal

similar improvements from

physiological fusion.

Compared to conventional EEG-based BClIs, which
cost tens of thousands of rupees, NeuroNav’s
1,600 design provided comparable control
accuracy for basic commands. This makes it highly
practical for academic, assistive, and experimental
applications. However, performance was found to
depend on sensor placement, signal quality, and
muscle fatigue. Future iterations may benefit from
adaptive filtering and wireless data transmission to

improve stability and usability.

Overall, the experiments validated the feasibility of

EMG and pulse-based communication, confirming

that meaningful mental intent can be captured

through affordable and accessible technology.

10. Conclusion

NeuroNav successfully demonstrates that a
functional and low-cost brain-computer interface
can be built using EMG and pulse sensors instead of
traditional EEG systems. By combining hardware
simplicity with machine learning intelligence, it
effectively captures and classifies neuromuscular
signals corresponding to user intent. The system
delivers high accuracy, fast response, and strong
reliability, making it suitable for real-time
applications such as assistive communication or

device control.

The use of open-source components and algorithms
ensures that the platform remains accessible to
students, researchers, and developers worldwide. Its
simplicity and affordability make it a valuable
educational tool for understanding the interaction
between biological signals and computational
intelligence. NeuroNav represents a step toward

democratizing neurotechnology and enabling wider

participation in HCI research and innovation.
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11. Future Scope

Future developments of NeuroNav will aim to make
the system smarter, more portable, and adaptive to
different users. Incorporating wireless modules such
as Bluetooth or Wi-Fi will allow real-time
communication with smartphones or IoT devices
without wired constraints. The addition of mobile
apps could enable seamless control of home
automation systems, wheelchairs, or
communication devices through thought-based

input.

Dry or textile-based electrodes may replace
traditional wet sensors to improve comfort and
reduce setup time. Expanding the dataset with more
participants and diverse thought patterns will
enhance machine learning performance, allowing
the system to generalize across users. Moreover,
integrating advanced deep learning architectures,
such as Long Short-Term Memory (LSTM)
networks, could improve recognition of sequential

mental patterns.

In the long term, NeuroNav could evolve into a
comprehensive neuro-assistive ecosystem capable
of real-time emotion recognition, stress monitoring,
and intelligent control. By merging physiological
sensing, Al, and wearable design, it can redefine
how humans naturally communicate with machines

in daily life.
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