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Abstract - Parkinson's disease stands as a pervasive 

neurodegenerative condition, casting a substantial impact on 

global health. Swift and precise identification of Parkinson's, in 

its early stages, holds pivotal importance for efficacious 

intervention and proficient disease management. Nevertheless, 

conventional machine learning techniques encounter 

formidable challenges when deciphering intricate 

electroencephalogram signals, often necessitating arduous 

manual interventions. In this research endeavor, we introduce a 

pioneering methodology for automated Parkinson's detection 

employing electroencephalogram signals. Our novel approach 

harnesses Mel spectrogram images, derived from a 

preprocessed electroencephalogram dataset, seamlessly 

integrated with convolutional neural networks. This strategic 

amalgamation enables the extraction of both frequency nuances 

and temporal patterns from the visual representations, thereby 

bestowing our model with a remarkable upswing in the 

accuracy of Parkinson's detection. The methodologies we 

propose not only hold substantial promise in advancing 

Parkinson's diagnosis but also bear the potential to foster 

tailored approaches in the realm of personalized treatment 

strategies.  

Key Words: Parkinson’s disease (PD), Classification, 

Electroencephalogram (EEG), Deep learning, Convolutional 

Neural Network (CNN), Mel Spectrogram. 

 

1. INTRODUCTION  

 
     Parkinson's disease (PD) stands as a prevalent 

neurodegenerative ailment exerting a substantial global impact. 

Its hallmark features encompass motor dysfunctions like 

involuntary tremors, bradykinesia, postural instability, and 

rigidity, coupled with an array of non-motor manifestations 

such as depression, olfactory impairment, constipation, and 

sleep disturbances. Rooted in the depletion of dopamine-

producing neurons within the substantia nigra, PD leads to 

diminished dopamine levels in the crucial motor control hub of 

the brain, the striatum. The progressive aggregation of 

misfolded alpha-synuclein proteins within Lewy bodies further 

fuels the neurodegenerative cascade. 

The significance of accurate and early PD detection cannot be 

overstated, given its potential to pave the way for timely 

interventions and improved patient outcomes. Presently, the 

clinical diagnosis of PD hinges on specific criteria 

encompassing the presence of bradykinesia alongside at least 

one hallmark feature like rest tremor or rigidity, a positive 

response to dopaminergic therapy, and the exclusion of specific 

contraindications. However, the diagnostic reliance on motor 

symptoms poses considerable challenges, as substantial loss of 

dopaminergic neurons often occurs prior to the attainment of a 

clinical diagnosis. 

The primary therapeutic strategy for addressing the motor 

symptoms of Parkinson's disease (PD) revolves around 

dopamine replacement. Although this approach effectively 

mitigates motor issues, it does not tackle the underlying 

neurodegenerative process. This degeneration primarily affects 

dopaminergic neurons in the substantia nigra, which project to 

the striatum, and is characterized by the accumulation of 

misfolded alpha-synuclein proteins forming Lewy bodies.  

Fig-1 illustrates that individual with PD experience reduced 

dopamine transmission across striatal synapses in comparison 

to their healthy counterparts. Cutting-edge molecular imaging 

techniques like positron emission tomography (PET) and 

single-photon emission computed tomography (SPECT) enable 

the detection of alterations in presynaptic dopaminergic activity 

when comparing the brains of PD patients and healthy 

individuals. Despite these advancements, none of the current 

neuroimaging methods are officially recommended for routine 

clinical employment in PD cases. Key molecules implicated in 

dopamine synthesis and transport, such as dopamine 

transporters (DAT), L-aromatic amino acid decarboxylase (L-

AAAD), and vesicular monoamine transporter 2 (VMAT2), are 

noticeably downregulated in PET and SPECT images, 

shedding light on the physiological changes associated with the 

condition. 

 

 

Fig -1: Synaptic terminal in (left) healthy controls and (right) 

PD patients 
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The reduction of dopamine transporters, as depicted in Fig- 2 

through SPECT imaging, signifies a crucial aspect in 

understanding Parkinson's disease (PD). Remarkably, the 

emergence of non-motor symptoms precedes motor symptoms 

by a considerable span of time, implying the existence of a 

prodromal or premotor phase. This phase presents a pivotal 

opportunity for implementing potential neuroprotective 

interventions with heightened effectiveness. 

 

 

 

Fig -2: Schematic drawing of SPECT scan of(left) healthy 

controls and (right) PD patients. Availability of DAT in the 

striatum represented by the highlighted portion in the brain. 

 

In a bid to address the limitations of conventional diagnostic 

techniques, researchers have delved into alternative 

methodologies, notably involving electroencephalographic 

(EEG) recordings of individuals afflicted by PD. By capturing 

the brain's electrical activity, EEG offers a window into the 

neurological transformations characteristic of PD. Research 

endeavors have unveiled anomalous EEG rhythms within PD 

patients, underscoring discernible deviations in brain function 

in contrast to their age-matched counterparts. A salient feature 

of PD-related EEG alterations is the tendency towards 

abnormally sluggish brainwave frequencies, shedding light on 

the intricate neurological underpinnings of the disease. 

In this study, we present a novel methodology for automated 

Parkinson's disease (PD) detection through the analysis of EEG 

data. Our approach centers on preprocessing raw EEG signals 

to generate Mel spectrogram images, which offer a 

comprehensive time-frequency depiction of brain activity. This 

transformation of EEG data into spectrogram images 

capitalizes on the strengths of image analysis and deep learning 

techniques. Specifically, we intend to harness the capabilities 

of a deep convolutional neural network (CNN) model to discern 

discerning patterns and distinctive markers indicative of PD. 

Renowned for their aptitude in learning hierarchical features 

from images, CNNs prove to be exceptionally suited for tasks 

of image-based classification. 

By introducing NeuroPark, we envision a transformative 

contribution to the PD detection domain, introducing a novel 

and automated paradigm. Timely and precise identification of 

PD during its prodromal phase holds the potential to establish 

a crucial therapeutic window for implementing neuroprotective 

interventions capable of stalling, or even reversing, the 

neurodegenerative progression. Moreover, the integration of 

EEG data within an image-centric deep learning framework for 

PD detection stands to pave the way for more efficient and 

unbiased diagnostic tools. This, in turn, empowers healthcare 

practitioners to render well-informed decisions pertaining to 

personalized treatment pathways. By enhancing the precision 

of PD diagnosis, the focal point of our research is to elevate 

patient care standards and ultimately elevate outcomes within 

the realm of Parkinson's disease. 

2. RELATED WORKS 

 
A. Machine learning models 

 
     In recent years, the field of Parkinson's disease (PD) 

detection has seen remarkable advancements through the 

integration of machine learning techniques. Several studies 

have demonstrated the potential of utilizing 

electroencephalography (EEG) signals for accurate PD 

diagnosis. One pioneering approach focused on higher-order 

spectra (HOS) as a novel feature extraction method. Employing 

conventional machine learning models, particularly the support 

vector machine (SVM), this method achieved an impressive 

mean accuracy of 99.62%. This not only showcases the efficacy 

of HOS but also underscores the potential for automated 

assistance in PD diagnosis, potentially revolutionizing clinical 

assessments and drug efficacy evaluations [1].  

Another avenue of exploration involves EEG signals coupled 

with photic stimulation and the partial directed coherence 

method. This innovative approach, as proposed by de Oliveira 

et al., harnessed the power of machine learning to establish a 

PD biomarker. By employing random forests and feature 

selection techniques, they achieved an accuracy exceeding 99% 

and a kappa statistic of up to 0.98. The success of this technique 

highlights the robustness of machine learning algorithms in 

distinguishing PD-related patterns from EEG signals, thereby 

enhancing diagnostic precision [2].  

Meanwhile, Cai et al. devised a sophisticated framework that 

harnesses the bacterial foraging optimization (BFO) algorithm 

in tandem with support vector machines (SVM) for PD 

prediction. This approach was meticulously validated on a 

vocal measure-based dataset, showcasing its accuracy of 

97.42%. However, the framework's complexity and 

computational requirements necessitate consideration, 

especially in resource-constrained environments. 

By combining relief feature selection with the BFO-SVM 

approach, the authors successfully boosted prediction accuracy. 

http://www.ijsrem.com/
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Yet, the integration of multiple techniques calls for cautious 

validation to mitigate overfitting risks [3].  

Delving deeper into the landscape, an extensive survey 

analyzed diverse research papers spanning a decade, focusing 

on various physiological data, including EEG, Electromyogram 

(EMG), Electrocardiogram (ECG), and Electrooculogram 

(EOG). The findings emphasized the pivotal role of both 

traditional analysis and machine classification methods in 

diagnosing PD, particularly when handling sizable and 

heterogeneous datasets. Manual feature extraction and 

selection emerged as crucial, as the nuanced judgment of 

experienced experts is essential for accurate analysis [4]. 

 Lastly, Bhurane et al. introduced an innovative time-domain 

technique for PD detection using EEG signals. By adeptly 

extracting inter-channel similarity features and leveraging a 

support vector machines classifier with a third-degree 

polynomial kernel, they achieved an impressive accuracy of 

99.1%. Notably, their progressive feature addition analysis, 

encompassing feature ranking and principal component 

analysis, underscored the meticulous approach to refining 

accuracy. This underscores the potential of advanced signal 

processing and machine learning techniques to revolutionize 

PD diagnosis [5]. 

B. Deep learning models 

 
In recent years, deep learning models have emerged as a 

compelling alternative to traditional machine learning 

approaches, particularly due to their ability to handle complex 

tasks without the need for extensive manual feature extraction. 

Notably, Oh et al. conducted a notable study centered on 

automating the detection of Parkinson's disease (PD) using a 

convolutional neural network (CNN). PD, characterized by a 

progressive deterioration of motor function in the brain, can be 

diagnosed early through the analysis of electroencephalogram 

(EEG) signals. By employing a thirteen-layer CNN 

architecture, Oh et al. effectively bypassed the conventional 

feature extraction stages and achieved promising outcomes. 

Their model achieved an impressive accuracy of 88.25%, 

sensitivity of 84.71%, and specificity of 91.77% [6]. 

 Khare et al. further advanced PD detection with their creation 

of the PDCNNet system. This approach combines smoothed 

pseudo-Wigner Ville distribution (SPWVD) and CNNs to 

process EEG signals into time-frequency representations, 

which are then inputted into the CNN model. Remarkably, the 

prototype attained remarkable accuracies of 100% and 99.97% 

for the two datasets, respectively [7].  

Another intriguing avenue for PD detection lies in the analysis 

of voice data. Modi H et al. proposed two distinct convolutional 

neural network-based frameworks. The first framework 

involves amalgamating different sets of audio data before 

channeling them into a nine-layered CNN, while the second 

framework directly connects point sets to analogous input and 

complex layers. Empirical results showcase the superiority of 

the second framework, demonstrating its capacity to extract 

deep features from individual point sets using analogous 

complex layers [8].  

In a different vein, Zhang H et al. introduced DeepVoice, an 

innovative PD identification approach that leverages deep 

learning and mobile health technology. Operating through a 

smartphone app, DeepVoice captures brief voice samples, 

enhancing voiceprint information through the common Time-

frequency Analysis algorithm in the spectrogram domain. The 

findings are promising, with DeepVoice successfully 

identifying PD with a sensitivity of 90.71% from just a 10-

second audio clip [9].  

Addressing the challenges of monitoring PD in less controlled 

environments, Das et al. developed a monitoring system 

applicable beyond laboratory settings. They approached the 

issue of in-home monitoring's limited accuracy by framing 

symptom discovery as a multi-case learning problem, tackling 

the issue of sparse ground truth data. Employing 

accelerometers and a novel algorithm based on axis-resemblant 

cube (APR) fitting, the authors successfully identified subject-

specific symptoms over several days, aligning with patient 

diurnal logs [10].     

3. MATERIALS AND METHODS 

 

A. Dataset 

 
     The study sourced its dataset from OpenNeuro, an openly 

accessible platform renowned for housing an array of 

neuroimaging datasets. These datasets encompassed EEG 

recordings derived from individuals afflicted by Parkinson's 

disease as well as those unaffected, serving as controls. The 

meticulous curation of data aimed to facilitate an in-depth 

exploration of the distinctive neurophysiological variances 

inherent in the two distinct cohorts. The primary focus lay on 

discerning intricate differentiators in brain activity profiles, 

with a specialized emphasis on Parkinson's patients stratified 

based on dopaminergic drug utilization. 

1)  Participants: 

     The dataset encompassed EEG recordings from 31 

participants, divided into two cohorts: 16 individuals 

categorized as healthy controls and 15 patients diagnosed with 

Parkinson's disease (PD). Among the healthy controls, there 

were 7 men and 9 women, with an average age of 63.5 ± 9.6 

years.  

The PD group consisted of 7 men and 8 women, with an 

average age of 63.2 ± 8.2 years. Notably, all PD patients were 

specifically classified under stage 2 or 3 on the Hoehn and Yahr 

scale, indicating the presence of moderate symptoms in this 

cohort. 

http://www.ijsrem.com/
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2)  Data Collection Procedure:    

     Throughout the EEG recording sessions, participants were 

directed to maintain their attention on a central cross image 

displayed on the computer screen. Employing the advanced 

Biosemi Active Two EEG system, the recording process 

encompassed 32 EEG channels, capturing an intricate array of 

neural signals. The meticulously chosen sampling rate of 512 

Hz guaranteed an exceptional temporal precision, enabling the 

acquisition of approximately 3 minutes of continuous data from 

each participant. This deliberate approach not only facilitated 

robust data collection but also highlighted the commitment to 

capturing the nuances of neural activity with utmost clarity and 

detail. 

3)  Matching criteria: 

     In order to ensure a meaningful comparison between 

Parkinson's disease (PD) patients and healthy individuals, the 

study employed the North American Adult Reading Test 

(NAART) and the Mini-Mental State Examination (MMSE) 

scores. These measures were skillfully used to equate the 

cognitive capabilities of PD patients with those of the control 

group, effectively minimizing potential sources of bias. This 

meticulous approach underscores the dataset's significance as a 

valuable asset for investigating the intricacies of PD 

neurodynamics. By illuminating the nuanced 

neurophysiological distinctions between PD patients and their 

healthy counterparts, this dataset serves as a pivotal resource. 

It is particularly pertinent for researchers delving into EEG-

based biomarkers or seeking to unravel the neurophysiological 

underpinnings of PD. The dataset's wealth of information 

promises not only insightful revelations but also the potential 

for unexpected and groundbreaking findings. 

 

Table -1: Summary of subject’s clinical characteristics in 

the PD dataset 

 

 Healthy 

Controls(n=16) 

PD Patients 

(n=15) 

No. of males 7 7 

No. of females 9 8 

Age 63.5 ± 9.6 63.2 ± 8.2 

NAART 49.1 ± 7.1 46 ± 6.3 

MMSE 29.2 ±1.1 28.4 ± 1.0 

 

B. Mel Spectrogram 

 
     Electroencephalogram (EEG) signals exhibit a multifaceted, 

non-linear, and ever-shifting nature, which complicates their 

visual interpretation, consuming valuable time and leaving 

room for critical errors. In tackling these challenges head-on, 

we introduce the adoption of Mel Spectrograms, a pivotal 

method that capitalizes on the Mel scale to encapsulate the 

fundamental frequency facets of EEG signals, aligning them 

more closely with the auditory perception of the human brain. 

The utilization of Mel Spectrograms proffers a multitude of 

merits in the representation of EEG signals. Foremost, the Mel 

scale accentuates biologically significant frequency 

components, thereby providing insights into neural activity-

associated details embedded within the EEG data. This proves 

especially pertinent in the realm of Parkinson's disease 

detection, where precise and early diagnosis plays a pivotal role 

in optimizing patient outcomes. 

The fine formula for Mel Spectrogram with EEG signals is as 

follows: 

Mel(f) = 2595 * log10(1(f/ 700))  

where f is the frequency in Hertz.  

The preprocessing way for Spectrogram is as follows:   

• The nonstop EEG signal is segmented into short time 

windows, generally gauging 25 to 50 milliseconds.  

• The power range of each time window is calculated, 

furnishing precious information about the distribution of 

power across different frequencies in the EEG signal.   

• The power spectrum is also plotted against time. The 

capstone of the preprocessing way is the creation of the Mel 

Spectrogram image. 

 

 

Fig -3: Spectrogram images 

 

     The ingenious utilization of a logarithmic scale for the 

frequency axis, in contrast with the linear time axis, bestows a 

remarkable tool for efficiently dissecting the intricate 

frequency constituents of EEG signals over temporal domains.  

 

This visual stratagem not only enhances our perceptual grasp 

of these signals but also empowers us to unravel their spectral 

nuances with precision. Among the array of techniques, the Mel 

Spectrogram emerges as a potent and validated method for the 

portrayal of EEG signals, finding its prowess demonstrated 

across a spectrum of brain-centric inquiries. Its capacity to 

capture and encapsulate essential features pertinent to diverse 

http://www.ijsrem.com/
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cerebral tasks underscores its efficacy. Moreover, the ease of 

both computation and interpretation renders the Mel 

Spectrogram an adept selection for research undertakings, 

particularly in domains such as the identification of Parkinson's 

disease, where discerning subtle fluctuations is paramount. 

C. Model Architecture 
 

 

Fig -4: Proposed 2D-CNN Model 

 

     In our study, we leverage the power of a sophisticated 2D-

CNN architecture to effectively differentiate between the 

distinct EEG patterns exhibited by individuals with Parkinson's 

disease (PD) and those who are healthy. Renowned for their 

exceptional image recognition capabilities, CNN models 

provide a robust framework for this task. The canonical CNN 

structure encompasses three pivotal layers: convolutional, 

pooling, and fully connected. Within the convolutional layers, 

a diverse set of kernels convolve with input EEG images, 

generating an array of distinctive feature maps. These intricate 

feature maps undergo simplification through subsequent 

pooling layers, refining the essential information for further 

analysis. 

The NeuroPark model is a 2D-CNN model that uses the 

ResNet50 architecture to recognize the EEG characteristics of 

healthy controls and PD patients (Figure 4). The model has the 

subsequent layers: 

Input layer: The initial part of the model is the input layer, 

which is like the gateway for the Mel Spectrogram images. 

These images are like pictures with dimensions of 256 by 256, 

and they show sound-related information. Imagine this layer as 

the entry point for the data. 

ResNet50: Think of the ResNet50 layer as a smart feature 

extractor. It's a specialized part of the model that has already 

learned a lot from lots of pictures. In this case, it's been trained 

on a big dataset of images. We don't want it to change too much, 

so we "freeze" its learnings. This helps the model to not get too 

caught up in the details of the new problem. 

Dense layers: The dense layers are like decision-makers. They 

figure out if the Mel Spectrogram images are showing signs of 

Parkinson's disease or if they belong to healthy individuals. 

There are two of these layers, and they work together. The first 

one takes the features from ResNet50 and tries to make sense 

of them with 128 "neurons" (sort of like mini-brains). The next 

layer uses what the first layer figured out and makes the final 

call: is it Parkinson's disease or not? It has 2 neurons because 

there are two possible outcomes. 

The output layer for the intent of classification tasks utilizes the 

Softmax activation function,  

The working of ResNet50 is described in the equation: 

Y=H(x)=F_Layer_N(f_Layer_N1(f_Layer_N2(...(f_Layer_2( 

f_Layer_1(g(x))))) 

where, 

• The input layer, denoted as 'x', represents the initial data fed 

into the ResNet50 model, typically images like Mel 

Spectrograms. It serves as the starting point for the entire 

process. 

• The ResNet50 model begins with a set of initial 

convolutional layers, collectively referred to as 'g(x)'. These 

layers are responsible for extracting meaningful features 

from the input data. They apply filters to the input, 

identifying patterns and details in the images. 

• After each convolutional layer, an activation function, 

denoted as 'f_Layer_i', is applied. This function introduces 

non-linearity to the model, enabling it to capture complex 

relationships within the data. It enhances the extracted 

features' expressiveness. 

• This process leads to the creation of a final feature map, 

referred to as 'F_Layer_N'. This map embodies the enriched 

and abstracted representation of the input data. 

• The ultimate output 'y' is achieved by guiding the input 'x' 

through the sequence of N convolutional layers and 

activation functions. The output captures the culmination of 

the model's learned features and intricate patterns, 

rendering it suitable for various downstream tasks like 

classification or regression. 

The NeuroPark model employs a specialized activation 

function known as softmax in its output layer. This function 

plays a pivotal role in assigning probabilities to individual 

vectors grouped within a single list, which are associated with 

two distinct classifications: Parkinson's disease (PD) and 

healthy control (HC). By utilizing the softmax activation, each 

vector is assigned a probability score, indicating its likelihood 

of belonging to either of the two classes. This probability-

driven approach enables the model to effectively categorize the 

vectors within the list into the class that corresponds to the 

highest probability score. This method forms a crucial part of 

NeuroPark's decision-making process, aiding in the accurate 

classification of subjects based on their neurological condition. 

Below is the equation for the Softmax activation function:  

softmax(z) = ez / sum(ez)  

http://www.ijsrem.com/
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where z is the input to the softmax activation function.  

In the innovative NeuroPark model, the final dense layer's 

output serves as the input for the softmax activation function, 

comprising a compact 1D vector housing two neurons. These 

two neurons succinctly represent the model's classification into 

two distinct categories: PD (Parkinson's Disease) and HC 

(Healthy Control). By employing the softmax activation 

function, the model effectively computes probability scores for 

all classes, a crucial aspect of classification tasks. This 

computation grants the model the ability to not only make 

predictions but also offer probability assessments for each 

class, enabling an ordered ranking of classes by their 

likelihood. This attribute proves valuable in making informed 

decisions when assigning a single list vector to a specific class. 

The NeuroPark model optimizes its performance through the 

well-regarded Adam optimizer, adeptly navigating the training 

process with a learning rate set at 0.001 and a decay rate of 

0.01. This combination of innovative architecture and strategic 

optimization techniques underscores the model's prowess in 

classification tasks. 

 

4. SYSTEM WORKFLOW 
 

 

Fig -5: Schematic workflow of the NeuroPark model 

 

The workflow of NeuroPark (Fig-5) can be outlined as follows: 

• EEG Data (Raw EEG Signals): The initial data comprises 

raw EEG signals captured from individuals using electrode-

equipped caps to measure brain activity. To ensure 

accuracy, the data collection is conducted in quiet 

surroundings, minimizing potential noise and interference. 

• Mel Spectrogram Preprocessing: Raw EEG data undergoes 

a vital preprocessing step using the Mel spectrogram 

conversion. This transformation translates the signals into 

time-frequency representations known as spectrogram 

images. These images provide insights into the distribution 

of frequency components over time, enabling better 

analysis. 

• Spectrogram Images (2D Images): Post preprocessing, the 

EEG data gets transformed into spectrogram images, each 

sized at 224x224x1 pixels. These images are then divided 

into training and validation sets, with 80% allocated for 

training and 20% for validation. 

• CNN Model (ResNet50-based): A Convolutional Neural 

Network (CNN) is built using the ResNet50 architecture as 

a pre-trained feature extractor. The CNN's architecture is 

optimized to learn pertinent features for accurate 

Parkinson's disease detection. It is trained using the training 

set for 116 epochs, with a batch size of 64. 

• Model Training and Optimization: Throughout training, the 

CNN employs the Adam optimizer with a learning rate set 

at 0.0001. Model performance is continuously assessed on 

the validation set, prompting fine-tuning of 

hyperparameters to achieve optimal results. 

• Model Evaluation and Performance Metrics: After training, 

the CNN's performance is evaluated on the validation set. 

Diverse metrics, including accuracy, precision, recall, F1-

score, and AUC-ROC, are used to gauge the model's ability 

to effectively detect Parkinson's disease. 

• Parkinson's Disease Detection Results: Ultimately, the 

model produces detection outcomes that signify whether 

individuals in the test set exhibit Parkinson's disease or not, 

based on the model's predictions.  

 

5. RESULTS  

 
In the study, a Convolutional Neural Network (CNN) was 

employed to analyze a dataset comprising 1200 images each of 

individuals with Parkinson's disease (PD) and healthy controls 

(HC). These grayscale images, sized at 256x256 pixels, 

underwent preprocessing to enhance their suitability for 

analysis. The dataset was thoughtfully divided, allocating 70% 

for training purposes and the remaining 30% for testing the 

model's performance. With an aim for accuracy, the CNN 

model was meticulously trained over 116 epochs, utilizing 

batches of 64 images per iteration. This approach aimed to 

create a robust and capable model for distinguishing between 

PD and HC cases based on these medical images. 

The trained NeuroPark model demonstrated excellent 

performance metrics: 
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Table -2: Performance metrics 

Metric Value 

Accuracy 99.35% 

Precision 99.35% 

Sensitivity 98.30% 

F1 Score 99.02% 

ROC-AUC 0.996 

 
These findings demonstrate the model's remarkable capacity to 

correctly identify individuals as belonging to either the 

Parkinson's disease or healthy control group, giving it a 

promising tool for reliably and accurately diagnosing 

Parkinson's disease. 

 

 

Fig- 6: Graphs of: (a) training, validation and testing accuracies 

versus number of iterations. (b) training, validation and testing 

losses versus number of iterations. using NeuroPark. 

6. DISCUSSION 

 
The findings of this research hold great promise, as the 

model demonstrated remarkable performance across various 

key metrics such as accuracy, precision, sensitivity, F1 score, 

and ROC-AUC. These compelling results highlight the 

potential of the proposed model as an efficient tool for early 

detection and intervention in Parkinson's disease.  

In summary, the study boasts several notable aspects: 

• Incorporation of a novel publicly accessible dataset for 

Parkinson's disease analysis. 

• Application of Mel spectrogram preprocessing to enhance 

EEG signal evaluation. 

• Introduction of a RestNet50-based 2D-CNN deep learning 

architecture for automated Parkinson's disease 

identification. 

However, it's important to recognize certain constraints within 

this study. The dataset employed was relatively small, 

potentially impacting the model's ability to be applicable to a 

wider range of populations. Ensuring the model's reliability and 

effectiveness on larger and more diverse datasets will be pivotal 

for future research and practical implementation. Other factors 

that should be taken into consideration include the following: 

• The utilization of a complex 2D-CNN model has resulted in 

extended training times. The computational demands 

associated with this model might hinder the efficiency of 

the training process and subsequent experimentation. 

• The model's extensive memory requirements pose a risk of 

crashes during training due to the substantial number of 

images being processed. Addressing these memory 

limitations is essential to maintain the stability of the 

training process. 

• The proposed model's effectiveness is hampered by the 

small participant size within the Parkinson's disease dataset. 

This limitation affects the model's ability to be broadly 

applicable to diverse cases, emphasizing the need for a more 

comprehensive and representative dataset. 

 

7. FUTURE SCOPE 

 
To drive the research forward, it's crucial to focus on validating 

the model using larger and more varied datasets that represent 

different demographics and data origins. Rigorous testing in 

real clinical environments will offer valuable perspectives on 

how well the model performs in actual early Parkinson's disease 

detection scenarios. Additionally, it's important to compare the 

new model with the best current methods and established 

diagnostic techniques. This step is vital to demonstrate its 

superiority and its practical significance in clinical practice. 
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8. CONCLUSIONS 

This research introduces a groundbreaking approach to detect 

Parkinson's disease by utilizing EEG data and a specialized Mel 

spectrogram-based CNN model. The model's performance is 

truly impressive, achieving a remarkable accuracy rate of 

99.35%. This high accuracy underscores its effectiveness in 

distinguishing between individuals with Parkinson's disease 

and those without. The potential of this model as a valuable tool 

for early diagnosis is promising, offering the chance to enhance 

patient outcomes and drive advancements in Parkinson's 

disease management. By merging cutting-edge technology 

with neurology, this study paves the way for the future of 

precision medicine. This could lead to improved patient care 

and the development of early intervention strategies for 

Parkinson's disease. 

 

REFERENCES 

 

[1] Yuvaraj, R.; Acharya, U.R.; Hagiwara, Y. A novel 

Parkinson’s Disease Diagnosis Index using higher-order 

spectra features in EEG signals. Neural Comput. Appl. 

2018, 30, 1225–1235.  

[2] de Oliveira, A.P.S.; de Santana, M.A.; Andrade, M.K.S.; 

Gomes, J.C.; Rodrigues, M.C.A.; dos Santos, W.P. Early 

diagnosis of Parkinson’s disease using EEG, machine 

learning and partial directed coherence. Res. Biomed. 

Eng. 2020, 36, 311–331. 

[3] Cai Z, Gu J, Wen C, Zhao D, Huang C, Huang H, Tong 

C, Li J, Chen H. An Intelligent Parkinson's Disease 

Diagnostic System Based on a Chaotic Bacterial Foraging 

Optimization Enhanced Fuzzy KNN Approach. Comput 

Math Methods Med. 2018 Jun 21; 2018:2396952. 

[4] Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, 

U.R. Deep learning for healthcare applications based on 

physiological signals: A review. Comput. Methods 

Programs Biomed. 2018, 161, 1–13. 

[5] Loh, H.W.; Ooi, C.P.; Vicnesh, J.; Oh, S.L.; Faust, O.; 

Gertych, A.; Acharya, U.R. Automated Detection of Sleep 

Stages Using Deep Learning Techniques: A Systematic 

Review of the Last Decade (2010–2020). Appl. Sci. 2020, 

10, 8963. 

[6] Oh, S.L.; Hagiwara, Y.; Raghavendra, U.; Yuvaraj, R.; 

Arunkumar, N.; Murugappan, M.; Acharya, U.R. A deep 

learning approach for Parkinson’s disease diagnosis from 

EEG signals. Neural Comput. Appl. 2020, 32, 10927–

10933.  

[7] Khare, S.K.; Bajaj, V.; Acharya, U.R. PDCNNet: An 

automatic framework for the detection of Parkinson’s 

Disease using EEG signals. IEEE Sens. J. 2021, 1.  

[8] Modi, H., Hathaliya, J., Obaidiat, M. S., Gupta, R., & 

Tanwar, S. (2021, December). Deep learning-based 

Parkinson disease classification using PET scan imaging 

data. In 2021 IEEE 6th international conference on 

computing, communication and automation (ICCCA) (pp. 

837-841). IEEE. 

[9] Zhang H, Wang A, Li D, Xu W. Deepvoice: A voiceprint-

based mobile health framework for parkinson's disease 

identification. In2018 IEEE EMBS International 

Conference on Biomedical & Health Informatics (BHI) 

2018 Mar 4 (pp. 214-217). IEEE. 

[10] S. Das, B. Amoedo, F. De la Torre and J. Hodgins, 

"Detecting Parkinson’s'   symptoms in uncontrolled home 

environments: A multiple instance learning approach," 

2012 Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, San Diego, 

CA, USA, 2012, pp. 3688-3691. 

[11] Karan, B., & Sahu, S. S. (2021). An improved framework 

for Parkinson’s disease prediction using Variational 

Mode Decomposition-Hilbert spectrum of speech signal. 

Biocybernetics and Biomedical Engineering, 41(2), 717-

732. 

[12] Politis, M.; Wu, K.; Molloy, S.; Bain, P.G.; Chaudhuri, 

K.R.; Piccini, P. Parkinson’s disease symptoms: The 

patient’s perspective. Mov. Disord. 2010, 25, 1646–1651. 

[13] A. A. Spadoto, R. C. Guido, F. L. Carnevali, A. F. Pagnin, 

A. X. Falcao and J.P. Papa, "Improving Parkinson‘s 

disease identification through evolutionarybased feature 

International Conference of the IEEE, pp. 7857-7860, 

2011. 

[14] aans.org/en/Patients/Neurosurgical-Conditions-and-

Treatments/Parkinsons-Disease 

[15] https://www.nhs.uk/conditions/parkinsons-

disease/https://pypi.org/project/pyttsx3 

[16] Z. Cai, J. Gu and H.-L. Chen, "A new hybrid intelligent 

framework for predicting Parkinson’s disease", IEEE 

Access, vol. 5, pp. 17188-17200, 2017. 

[17] Goetz, C.G. The history of Parkinson’s disease: Early 

clinical descriptions and neurological therapies. Cold 

Spring Harb. Perspect. Med. 2011, 1, a008862. 

[18] P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. 

Smekal and M. Faundez-Zanuy, "Decision support 

framework for parkin-son’s disease based on novel 

handwriting markers", IEEE Trans-actions on Neural 

Systems and Rehabilitation Engineering, vol. 23, no. 3, 

pp. 508-516, 2014. 

[19] J. Prince and M. de Vos, "A Deep Learning Framework 

for the Remote Detection of Parkinson’S Disease Using 

Smart-Phone Sensor Data," 2018 40th Annual 

International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC), Honolulu, HI, 

USA, 2018, pp. 3144-3147, doi: 

10.1109/EMBC.2018.8512972. 

[20] di Biase, L.; Di Santo, A.; Caminiti, M.L.; De Liso, A.; 

Shah, S.A.; Ricci, L.; Di Lazzaro, V. Gait Analysis in 

Parkinson’s Disease: An Overview of the Most Accurate 

Markers for Diagnosis and Symptoms 

Monitoring. Sensors 2020, 20, 3529. 

http://www.ijsrem.com/

