SIIF Rating: 8.448

Neutrosophic Generalized Semi Pre-Regular and Normal Space

Chandramathi N 1 and Rajeshwaran N 2*

1 Department of Mathematics, Government Arts College, Udumalpet-642126, Tamil Nādu, India. Email: drmathimaths@gmail.com

2 Research Scholar, Department of Mathematics, Government Arts College, Udumalpet-642126, Tamilnadu, India.

E-mail: rajeshw851@amail.com

Abstract -In this manuscript, we inaugurate Neutrosophic generalized semi-pre regular and normal space. We investigate its properties. Also, we add some improvisation of Neutrosophic generalized semi pre regular and normal space.

Keywords: Neutrosophic generalized semi pre closed sets; Neutrosophic generalized semi pre regular Neutrosophic generalized semi pre normal space.

1.INTRODUCTION

In 2014, the pioneering work of Salama, Smarandache, and Valeri [10] introduced the concept of Neutrosophic closed sets Neutrosophic continuous functions. advancements by Salama and Alblowi [10] led to the development of generalized Neutrosophic sets and generalized Neutrosophic topological spaces. Notably, the idea of NOS (Neutrosophic Open Sets) gained prominence through the contributions of Wadel and Smarandache [14]. Furthermore, Ishwarya and Bageerathi [8] offered insights into the perspective of NSO (Neutrosophic Sets) within the framework of Neutrosophic topological spaces. In their publication [25], Rajeshwaran N and Chandramathi N presented the novel idea of Neutrosophic generalized semi pre closed sets within the realm of Neutrosophic topological spaces. Similarly, in another work [26], they introduced the concept of Neutrosophic generalized semi pre Homeomorphisms in the same context. This manuscript seeks to define and investigate the concept of Neutrosophic generalized semi pre-connected space, delving into its inherent properties. The study encompasses an exploration of various related notions and introduces a collection of noteworthy theorems within this domain.

2. Preliminaries

Definition 2.1: [10] A neutrosophic topology (NT for short) a non-empty set X is a family τ_N of neutrosophic subsets in Xadheres the following axioms

 $(NT1)0_{N}, 1_{N} \in \tau_{N}$ $(NT2)G_1 \cap G_2 \in \tau_N$

(NT3) \cup $G_i \in \tau_N$, $\forall \{G_i ; i \in J\} \subseteq \tau_N$

Here (X, τ_N) is called a neutrosophic topological space (NTS for short).

Definition 2.2: [10] Let A₁ and A₂ be two Neutrosophic Sets (NS for Short) of the form

ISSN: 2582-3930

$$\begin{split} A_1 &= \{ (X, \mu_{A_1}(X), \sigma_{A_1}(X), \gamma_{A_1}(X)) \colon x \in X \} \\ \{ (X, \mu_{A_2}(X), \sigma_{A_2}(X), \gamma_{A_2}(X)) \colon x \in X \} \; . \end{split}$$

(a) $A_1 \subseteq A_2$ if and only if

$$\mu_{A_1}(X) \le \mu_{A_2}(X), \sigma_{A_1}(X) \le \sigma_{A_2}(X) \text{ and } \gamma_{A_1}(X) \ge \gamma_{A_2}(X) \text{ for all } x \in X$$

(b) $A_1^C = \{(X, \gamma_{A_1}(X), 1 - \sigma_{A_1}(X), \mu_{A_1}(X)): x \in X\}$

$$\{(X, \mu_{A_1}(X) \land \mu_{A_2}(X), \sigma_{A_1}(X) \land \sigma_{A_2}(X), \gamma_{A_1}(X) \lor \gamma_{A_2}(X)\}: x \in X\}$$

$$\begin{split} &\{\langle X, \mu_{A_1}(X) \lor \mu_{A_2}(X), \sigma_{A_1}(X) \lor \sigma_{A_2}(X), \gamma_{A_1}(X) \land \gamma_{A_2}(X) \rangle \colon x \epsilon X \} \\ &\text{We can use the symbol } A_1 = \{\langle X, \mu_{A}(X), \sigma_{A}(X), \gamma_{A}(X) \rangle \colon x \epsilon X \} \end{split}$$

Definition 2.3: [25] Let (X, τ_N) be a neutrosophic topological space. A subset A of (X, τ_N) is called Neutrosophic generalized semi pre closed [NGŚP -closed] set whenever $A \subseteq U$ if $\operatorname{spcl}_N(A) \subseteq U$, Neutrosophic open set.

3.Generalized Semi Pre Regular and Normal Space in Neutrosophic Topological Spaces

In this paper we introduce the new concept namely Neutrosophic generalized semi pre regular space in We delve into the neutrosophic topological spaces. foundations of Neutrosophic generalized semi-pre regular space.

Definition 3.1.1: A topological space (X, τ_N) is said to be NGŚP regular if for each NGŚP closed set M of (X, τ_N) and each point $x \in X - M$, there exist disjoint open sets P and Q of (X, τ_N) such that $x \in P$ and $M \subseteq Q$. Since every NG-closed set is NGŚP-closed set so every NGŚP regular space is NG

Definition: 3.1.2 A Neutrosophic topology (X, τ_N) is said to be (NGŚP, NGŚ) regular if for each NGŚP closed set of

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 07 | July - 2024

SJIF Rating: 8.448

 (X, τ_N) and each point $x \in X - M$, there exists disjoint NGS open sets P and Q of (X, τ_N) such that $x \in P$ and $M \subseteq Q$.

Theorem 3.1.3: A Neutrosophic topological space (X, τ_N) is a NGŚP regular if and only if for each NGŚP closed set M of (X, τ_N) and each point $x \in X - M$, there exist open sets P and Q of (X, τ_N) such that $x \in P : M \subseteq Q$ and $cl_N(P) \cap cl_N(Q) = \phi$.

Proof: Necessity: Let M be a NGŚP closed set of (X, τ_N) and $x \in X - M$. There exist Neutrosophic open sets P_0 and Q of (X, τ_N) such that $x \in P_0$, $M \subseteq Q$ and $P_0 \cap Q = \varphi$, hence $P_0 \cap cl_N(Q) = \varphi$. Since (X, τ_N) is NGŚP regular, there exist Neutrosophic open sets G and H of (X, τ_N) such that $x \in G$, $cl_N(Q) \subseteq H$ and $G \cap H = \varphi$, hence $cl_N(G) \cap H = \varphi$. Now put $P = P_0 \cap G$, then P and Q are Neutrosophic open sets of (X, τ_N) such that $x \in P$, $M \subseteq Q$ and $cl_N(P) \cap cl_N(Q) = \varphi$. Sufficiency: This is obvious.

Theorem 3.1.4: Let (X, τ_N) be a Neutrosophic topological space then the following statements are equivalent:

- (i) Let (X, τ_N) is NGŚP regular space.
- (ii) For each point $x \in (X, \tau_N)$ and for each NGŚP open neighbourhood W of x, there exists a Neutrosophic open set of x, such that $cl_N(Q) \subseteq W$
- (iii) For each point of $x \in (X, \tau_N)$ and for each NGŚP closed not containing x, then there exists a Neutrosophic open set Q of X, such that $cl_N(Q) \cap M = \phi$.

Proof: (i) \Rightarrow (ii) Let W be a NGŚP open neighbourhood of x. Then there exists a NGŚP open set G such that $x \in X \subseteq W$. Since X - G is NGŚP closed set and $x \notin X - G$, by hypothesis there exist Neutrosophic open sets P and Q such that $X - G \subseteq P, x \in Q$ and $P \cap Q = \phi$ and so $Q \subseteq (X - P)$. Now $cl_N(Q) \subseteq cl_N(X - P) = (X - P)$ and $(X - G) \subseteq P$ implies $(X - P) \subseteq G \subseteq W$. Therefore $cl_N(Q) \subseteq W$.

(ii)⇒(i): Let M be any NGŚP closed set of x ∉ M. Then x ∈ X − M and X − M is NGŚP open and so X − M is a NGŚP open neighbourhood of x. By hypothesis there exists a Neutrosophic open Q of x such that x ∈ Q and $cl_N(Q) \subseteq (X - M)$ which implies $M \subseteq (X - cl_N(Q))$. Then $(X - cl_N(Q))$ is Neutrosophic open set containing M and Q ∩ $(X - cl_N(Q)) = \phi$. Therefore (X, τ_N) is NGŚP regular space.

(ii) \Rightarrow (iii): Let $x \in X$ and M be a NGŚP closed set such that $x \notin M$. Then (X - M) is a NGŚP open neighbourhood of x and by hypothesis there exists a Neutrosophic open set Q of x such that $cl_N(Q) \subseteq (X - M)$ and therefore $cl_N(Q) \cap M = \emptyset$ (iii) \Rightarrow (ii): Let $x \in X$ and W be a NGŚP open neighbourhood of x then there exists a Neutrosophic GŚP open set G such that G is NGŚP closed and G is NGŚP closed and G is NGŚP open set G of G and G is NGŚP open set G open set G is NGŚP closed and G is NGŚP open set G open set G of G is NGŚP open set G o

Theorem 3.1.5: A Neutrosophic topological space (X, τ_N) is a NGŚP regular space if and only if given any $x \in P$ and any Neutrosophic open set P of (X, τ_N) there is a NGŚP open set Q such that $x \in Q \subseteq \operatorname{gspcl}_N(Q) \subseteq P$.

Proof: Let P be a Neutrosophic open set, $x \in P$. So X - P is closed set such that $x \notin P$. Since X is a NGŚP regular space then there exist a Neutrosophic GŚP open sets Q_1 and Q_2 such that $Q_1 \cap Q_2 = \varphi$, $X - P \subseteq Q_2$, $x \in Q_1$. Since $Q_1 \cap Q_2 = \varphi$,

we have $\operatorname{gspcl}_{\mathcal{N}}(Q_1) \subseteq \operatorname{gspcl}_{\mathcal{N}}(X-Q_2) = X-Q_2$. Since $X-P \subseteq Q_2$, we have $X-Q_2 \subseteq P$. Hence we have $x \in Q_1 \subseteq \operatorname{gspcl}_{\mathcal{N}}(Q_1) \subseteq X-Q_2 \subseteq P$.

ISSN: 2582-3930

Conversely, let M be a Neutrosophic closed set in X and $x \in X - M$. So X - M is a Neutrosophic open set such that $x \in X - M$. Hence there exists a NGSP open set P such that $x \in P \subseteq gspcl_N(P) \subseteq (X - M)$. Let $Q = X - gspcl_N(Q)$. So Q is a NGSP open set which contains M and $P \cap Q = \varphi$. Hence X is a NGSP regular space.

Theorem 3.1.6: Let (X, τ_N) and (Y, σ_N) be a Neutrosophic topological space and (Y, σ_N) is a regular. If $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ is Neutrosophic closed GŚP irresolute and one to one then X is a NGŚP regular space.

Proof: Let M be a closed set in X, $x \notin M$. Since ϕ_N is closed mapping, then $\phi_N(M)$ is closed set in (Y, σ_N) , $\phi_N(x) = y \notin \phi_N(M)$. But (Y, σ_N) is NGŚP regular space then there are two Neutrosophic open sets P and Q in (Y, σ_N) such that $\phi_N(M) \subseteq Q$, $y \in P$, $P \cap Q = \phi$. Since ϕ_N is NGŚP-irresolute mapping and one to one so $\phi_N^{-1}(P)$, $\phi_N^{-1}(Q)$ are two Neutrosophic open sets in X and $x \in \phi_N^{-1}(P)$, $M \in \phi_N^{-1}(Q)$, $\phi_N^{-1}(P) \in \phi_N^{-1}(Q) = \phi$. Hence X is NGŚP regular space.

Theorem 3.1.7: A Neutrosophic topological space (X, τ_N) is a (NGŚP, NGŚ) regular space if and only if given NGŚP open set P with $x \in P$, there exists NGŚ open sets Q such that $x \in Q \subseteq \operatorname{scl}_N(Q) \subseteq P$.

Proof: Let P be a NGŚP open set, $x \in P$. So X - P is a NGŚP closed set such $x \notin X - P$. Since (X, τ_N) is (NGŚP, NGŚ) regular space then there exist NGŚ open sets Q_1 and Q_2 such that $Q_1 \cap Q_2 = \varphi$, $X - P \subseteq Q_2$, $x \in Q_1$. Since $Q_1 \cap Q_2 = \varphi$, we have $scl_N(Q_1) \subseteq scl_N(X - Q_2) = X - Q_2$. Since $X - P \subseteq Q_2$ we have $X - Q_2 \subseteq P$. Hence we have $x \in Q_1 \subseteq scl_N(Q_1) \subseteq X - Q_2 \subseteq P$. Conversely, let M be a NGŚP closed set in (X, τ_N) and $x \in X - M$. So X - M is a NGŚ open set such that $x \in X - M$. Hence there exists a NGŚ open set P such that $x \in P \subseteq scl_N(Q) \subseteq X - M$. Let $Q = X - gspcl_N(Q)$. So Q is a NGŚ open set which contains M and P $\cap Q = \varphi$. Hence X is a (NGŚP, NGŚ) regular space.

3.2 NŚP, NGŚP normal spaces

In this section, we delve into the fundamental concepts and properties of generalized semi pre normal space in Neutrosophic topology, exploring their significance in Neutrosophic topology.

Definition 3.2.1: A Neutrosophic topological space (X, τ_N) is said to be NGŚP normal if for any pair of disjoint NGŚP closed sets A and B, there exist disjoint Neutrosophic open sets A and A such that $A \subset A$.

Since every NG-closed set is NGSP-closed set so every NGSP normal space is NG normal space.

Theorem 3.2.2: A Neutrosophic topological space (X, τ_N) is a NGŚP normal space if and only if any disjoint NGŚP closed sets P and Q of (X, τ_N) , there exist Neutrosophic open sets M and N of (X, τ_N) such that $P \subset M, Q \subset N$ and $cl_N(M) \cap cl_N(N) = \varphi$.

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36254 | Page 2

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 07 | July - 2024

SJIF Rating: 8.448

Proof: Necessity: Let P and Q be any disjoint NGŚP-closed sets of (X, τ_N) . There exist Neutrosophic open sets M_0 and N of (X, τ_N) such that $P \subset M_0$, $Q \subset N$ and $M_0 \cap N = \phi$ hence $M_0 \cap cl_N(N) = \phi$. Since (X, τ_N) is NGŚP normal there exist Neutrosophic open sets G and H of (X, τ_N) such that $P \subset G$, $cl_N(N) \subset H$ and $G \cap H = \phi$, hence $cl_N(G) \cap H = \phi$. Now put $M = M_0 \cap G$, then M and N are Neutrosophic open sets of (X, τ_N) such that $P \subset M, Q \subset N$ and $cl_N(M) \cap cl_N(N) = \phi$. Sufficiency: Obvious.

Theorem 3.2.3: A Neutrosophic topological space (X, τ_N) is said to be a NGŚP normal space if and only for every Neutrosophi closed set F and for every Neutrosophic open set G contain F there exist NGŚP open set M such that $F \subset M \subset \operatorname{gspcl}_N(M) \subset G$.

Proof: Let F be a Neutrosophic closed set in (X, τ_N) and G be a Neutrosophic open set in (X, τ_N) such that $F \subset M$, X - G is a Neutrosophic closed set and $(X - G) \cap F = \varphi$. Since (X, τ_N) is NGŚP normal space then there exist open sets M and N of (X, τ_N) such that $M \cap N = \varphi$, $X - G \subset N$ and $F \subset M$, $M \subset (X - N)$. Since every Neutrosophic open set is NGŚP open set and hence M and N are NGŚP open sets of (X, τ_N) such that $gspcl_N(M) \subset gspcl_N(X - N) = X - N$. Hence $F \subset M \subset gspcl_N(N) \subset (X - N) \subset G$.

Theorem 3.2.4: If $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ is a open NGŚP-irresolute bijection and (X, τ_N) is NGŚP normal, then (Y, σ_N) is NGŚP normal.

Proof: Let P and Q be any disjoint NGŚP closed sets of (Y, σ_N) . Since φ_N is NGŚP-irresolute, $\varphi_N^{-1}(P)$ and $\varphi_N^{-1}(Q)$ are disjoint NGŚP closed sets (X, τ_N) . Since (X, τ_N) is NGŚP normal then there exists disjoint Neutrosophic open sets M and N such that $\varphi_N^{-1}(P) \subset M$ and $\varphi_N^{-1}(Q) \subset N$. Since φ_N is Neutrosophic open and bijectivity, we obtain $P \subset \varphi_N(M)$, $Q \subset \varphi_N(N)$, $\varphi_N(M) \cap \varphi_N(N) = \varphi$ and also $\varphi_N(M)$ and $\varphi_N(N)$ are Neutrosophic open sets of (Y, σ_N) . This shows that (Y, σ_N) is NGŚP normal.

Theorem 3.2.5: The following properties are equivalent for a space (X, τ_N) .

- (i) (i). (X, τ_N) is (NŚP, NGŚP)- normal
- (ii) (ii). For any pair of disjoint Neutrosophic semi pre closed sets P and Q of (X, τ_N) , there exist disjoint NGŚP open sets M and N such that $P \subset M$ and $Q \subset N$.
- (iii) (iii). For any Neutrosophic semi pre closed set P and Neutrosophic semi pre open set N containing P, there exists $NG\acute{S}P$ open set M such that $P \subset M \subset spcl_N(M) \subset N$.

Proof: (i)⇒(ii) This proof is obvious since every NŚP open set is NGŚP open set.

(ii) \Rightarrow (iii) Let P be any NŚP closed set and N be a NŚP open set containing P. Since P and X-N are disjoint NŚP closed set of (X, τ_N) , since P and X-N are disjoint NŚP closed sets of (X, τ_N) , then there exist NGŚP open sets M, W of (X, τ_N) such that $P \subset M$, $X - N \subset W$ and $M \cap N = \phi$, since $M \cap \text{spint}_N(W) = \phi$. We have $\text{spcl}_N(M) \cap \text{spint}_N(W) = \phi$ and hence $\text{spcl}_N(M) \subset X - \text{spint}_N(W) \subset N$. Therefore, we obtain $P \subset M \subset \text{spcl}(M) \subset N$.

(iii)⇒(i) Let P and Q be any disjoint NŚP closed sets of (X, τ_N) . Since X-Q is a NŚP open set containing P, there exist a NGŚP open set G, such that $P \subset G \subset \operatorname{spcl}_N(G) \subset X - Q$, we have $P \subset \operatorname{spcl}_N(G)$. Put $M = \operatorname{spint}_N(G)$ and $N = X - \operatorname{spcl}_N(G)$. Then M and N are disjoint NŚP open sets and hence are disjoint NGŚP open sets such that $P \subset M$ and $Q \subset N$. Therefore (X, τ_N) is (NŚP, NGŚP)- normal.

ISSN: 2582-3930

Definition: 3.2.6 A function $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ is called Neutrosophic pre generalized semi pre closed (brifly, NP GŚP closed) if for each Neutrosophic semi pre closed set D of (X, τ_N) , $\varphi_N(D)$ is NGŚP closed set in (Y, σ_N) .

Theorem 3.2.7: A surjective function $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ is a NP GŚP-closed if and only if for each subset D of (Y, σ_N) , and NŚP open set M of (X, τ_N) containing $\varphi_N^{-1}(D)$, there exists a NGŚP open set N of (Y, σ_N) such that $D \subset N$ and $\varphi_N^{-1}(N) \subset M$.

Proof: Necessity: Suppose that φ_N is NP GŚP closed. Let D be any subset of (Y, σ_N) and M be NŚP open set of (X, τ_N) containing $\varphi_N^{-1}(D)$. Put $N = Y - \varphi_N(X - M)$. Then N is NGŚP open in (Y, σ_N) , $D \subset N$ and $\varphi_N^{-1}(N) \subset M$.

Sufficiency: Let W be any NŚP closed set of (X, τ_N) . Put $D = Y - \phi_N(W)$, then we have $\phi_N^{-1}(D) \subset X - W$ and X-W is NŚP open in (X, τ_N) . There exists a NGŚP open set N of (Y, σ_N) such that $D = Y - \phi_N(W) \subset N$ and $\phi_N^{-1}(N) \subset X - W$. Therefore, we obtain $\phi_N(W) = Y - N$ and hence $\phi_N(W)$ is NP GŚP closed in (Y, σ_N) . This show that ϕ_N is NP GŚP closed.

Theorem 3.2.8: If $\varphi_N : (X, \tau_N) \to (Y, \sigma_N)$ is a Neutrosophic semi pre-irresolute pre GŚP-closed surjection and (X, τ_N) is semi pre normal. Then (Y, σ_N) is (NŚP, NGŚP)- normal.

Proof: Let P and Q be any disjoint NGŚP closed sets of (Y, σ_N) . Then $\phi_N^{-1}(P)$ and $\phi_N^{-1}(Q)$ are disjoint Neutrosophic semi pre closed sets of (X, τ_N) , as ϕ_N is Neutrosophic semi pre-irresolute. Since (X, τ_N) is Neutrosophic semi pre normal exist disjoint Neutrosophic semi pre open sets M and N of (X, τ_N) such that $\phi_N^{-1}(P) \subset M$ and $\phi_N^{-1}(Q) \subset N$. Since ϕ_N is Neutrosophic pre GŚP-closed. By theorem 3.2.7 there exists NGŚP open sets G and H such that $P \subset G$, $Q \subset H$, $\phi_N^{-1}(G) \subset M$ and $\phi_N^{-1}(H) \subset N$. Since M and N are disjoint, we have $G \cap H = \phi$. This show that (Y, σ_N) is (NŚP, NGŚP)- normal.

REFERENCES

- 1. Atanassov.K. T, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87–96.
- 2. Chang.C. L, Fuzzy topological spaces, Journal of Mathematical Analysis and Application, 24(1968), 183–190.
- 3. Dhavaseelan.R and Jafari, Generalized Neutrosophic closed sets, new trends in Neutrosophic theory and applications, 2(2018), 261-273.
- Dogan Coker, An introduction to intuitionstic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1997), 81–89.
 - 5. Floretin Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM36254 | Page 3

International Journal of Scientific Research in Engineering and Management (IJSREM)

IJSREM e-Journal

- Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301,USA, 2002.
- 6. Floretin Smarandache, Neutrosophic Set:- A Generalization of Intuitionistiic Fuzzy set, Journal of Defense Resourses Management, 1(2010),107–116.
- 7. Floretin Smarandache, A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, Neutrosophic set, Neutrosophic Probability. Ameican Research Press, Rehoboth, NM, 1999.
- 8. Ishwarya.P and K. Bageerathi, On Neutrosophicsemi-open sets in Neutrosophic topological spaces, International Jour. of Math. Trends and Tech. 2016, 214-223.
- 9. Levine N. Generalized closed sets in topology. Rend. Cire. Math. Palermo. 19(2) (1970), 89–96.
- 10.Salama A.A and Alblowi S.A, Neutrosophic set and Neutrosophic topological space, ISOR J. Mathematics, 3(4)(2012), 31–35
- 11. Dogan Coker, An introduction to intuitionstic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1997), 81–89.
 - 12. Shanthi.V.K, Chandrasekar.S and Safina Begam.K, Neutrosophic Generalized Semi Closed sets in Neutrosophic Topological spaces, International Journal of Research in Advent Technology, 6(7)(2018), 2321–9637.
 - 13.SalamaA.A, Florentin Smarandache and Valeri Kroumov, Neutrosophic Closed set and Neutrosophic Continuous Function, Neutrosophic Sets and Systems,4(2014), 4–8.
 - 14. Wadel Faris Al-omeri and Florentin Smarandache, New Neutrosophic Sets via Neutrosophic Topological Spaces, New Trends in Neutrosophic Theory and Applications, Vol(2) June 2016.
 - 15. Zadeh.L.A, Fuzzy set, Inform and Control, 8(1965), 338–353.
 16. Al-Omeri, W.F., and Jafari, S., Neutrosophic precontinuous multifunctions and almost pre-continuous multifunctions, Neutrosophic Sets and Systems, Vol 27, pp 53-69, 2019.
 - 17. Vadivel, M. Seenivasan and C. John Sundar, An introduction to δ -open sets in a neutrosophic topological spaces, Journal of Physics: Conference Series, 1724 (2021), 012011.
 - 18. A. Vadivel and C. John Sundar, Neutrosophic δ-Open Maps and Neutrosophic δ-Closed Maps, International Journal of Neutrosophic Science (IJNS), 13 (2) (2021), 66-74.
 - 19. A. Vadivel, P. Thangaraja and C. John Sundar, Neutrosophic e-continuous maps and neutrosophic e-irresolute maps, Turkish Journal of Computer and Mathematics Education, 12 (1S) (2021), 369-375.
 - 20. A. Vadivel, P. Thangaraja and C. John Sundar, Neutrosophic e-Open Maps, Neutrosophic e-Closed Maps and Neutrosophic e-Homeomorphisms in Neutrosophic Topological Spaces, AIP Conference Proceedings, 2364 (2021), 020016.
 - 21. N. Moogambigai, A. Vadivel, and S. Tamilselvan, Neutrosophic Z-continuous maps and Z-irresolute maps, AIP Conference Proceedings, 2364 (2021), 020020.
 - 22. Bhimraj Basumatary, Nijwm Wary, Jeevan Krishna Khaklary and Usha Rani Basumatary, On Some Properties of Neutrosophic Semi Continuous and Almost Continuous Mapping, Computer Modeling in Engineering & Sciences, cmes. 2022.018066.
 - 23. Gautam Chandra Ray and Sudeep Dey, Relation of Quasi-coincidence for Neutrosophic Sets, Neutrosophic Sets and Systems, Vol. 46, 2022.
 - 24. Charanya,Dr.K.Ramasamy, Pre semi Homeomorphisms and Generalized semi pre Homeomorphisms in Topological spaces,__International Journal of Mathematics Trends and Technology (IJMTT) Volume 42 Number 1- February 2017.
 - 25. Rajeshwaran N and Chandramathi N , , Government Arts College, Udumalpet, India GENERALIZED SEMI PRE CLOSED SETS VIA NEUTROSOPHIC TOPOLOGICAL SPACE, pages 174-180, https://doi.org/10.37896/sr8.12/016

26. Rajeshwaran N and Chandramathi N Government Arts College, Udumalpet, India. Generalized semi pre-homeomorphisms in neutrosophic topological spaces. http://www.index.php/nonlinear/issue/view/205

© 2024, IJSREM | <u>www.ijsrem.com</u> DOI: 10.55041/IJSREM36254 | Page 4