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Abstract - The study showcases the latest ideas regarding
architectural and control strategies that juxtapose Artificial
Intelligence and Machine Learning with fuel cell
technologies to increase the efficiency, range, and
reliability of electric vehicles and advance toward the next
generation of vehicles. A new hybrid framework is
proposed that unifies physics-based models of fuel cells
and batteries with data-driven predictive algorithms.
Within this framework, a hierarchical Energy Management
System (EMS) is designed in which a reinforcement
learning layer signals power distribution set points, while a
model predictive controller ensures safe operation of the
system in real time! The proposed system, using simulation
results within multiple driving scenarios, shows
improvement in energy efficiency and hydrogen
consumption as compared to traditional EMS along with an
overall reduction in battery wear. The study considers
computing challenges while running ML models in Battery
Management Systems (BMS), predictive maintenance for
life extension of components, and deployment challenges
regarding hydrogen infrastructure and safety certification.
The study ends with suggestions for pilot implementations
and possible pathways for future enhancements.
Keywords: Electric Vehicles, Fuel Cell, Al, Machine
Learning, Energy Management System (EMS), Predictive
Maintenance

1.Introduction

The world is becoming more electrified in regard to
transportation—not only in response to commitments made
by governments to achieve challenging sustainability
targets but also, the rapidly developing technology of
energy storage systems. While Battery Electric Vehicles
have certainly been the leaders of the charge for early
adoption into the marketplace, Fuel Cell Electric Vehicles-
in particular those based on Proton Exchange Membrane
Fuel Cells-can offer several benefits to the consumer, such
as significantly improved energy density, distance, and
extremely short refuelling times closer to that experienced
from the combustion-based vehicle paradigm. However, the
exclusive utilization of a fuel cell may limit not only the
capability to deliver peak demands for electric power but
also to do so with the greatest efficiency. Consequently,
modern systems pair a fuel cell with a battery pack in
conjunction with a smart Energy Management System to
drive the control of the power flow and to stabilize
performance. Now, with the integration of Al systems and
ML systems, such hybrid systems have the opportunity not
only to learn from operational data but also dynamically re-

distribute the power between the battery and fuel cell to
optimize the performance and predict the condition of
batteries. At least several recent pieces of literature or study
underscore the ability of Al-derived control strategies to
develop improvements in energy efficiency and useful life,
but it is equally important to discuss the creation of safety-
centred control design paradigms that will assure the
reliability and compliance of the ML algorithms to safety
standards involved in the implementation of smart Al into
any of the vehicle BMSs.
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Figure 1. Overview of fuel cell technology in next-generation vehicles

2. Literature Review

2.1 AI & ML in Energy Management

In the last few years, Al-based approaches have
experienced fast growth in applications for electric vehicles
and fuel cell vehicles, especially in real-time state
estimation tasks such as State of Charge (SOC), State of
Health (SOH), fault detection, and adaptive control for
Energy Management Systems (EMS)[2], [5]. The
performance of a number of data-driven models, like
ANNSs, CNNs, SVMs, and LSTM networks, has been very
impressive, characterized by high prediction accuracies and
low latency, which make them suitable for on-board
automotive applications [3], [6]. Other lightweight Al
frameworks like tinyML are under study for possible
adoption in embedded controllers due to their adequate
performance while asking for little computational
resources [7]. Among the advanced methods, RL has
emerged as one of the most recent powerful methods of
designing adaptive EMS policies. Contrary to conventional
rule-based approaches, RL enables accommodating the
simultaneous maximization of multiple objectives, for
example, maximum driving range, improved efficiency,
and reduced wear even under conditions of uncertainty or
dynamic driving [4], [8].
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2.2 Fuel Cell Technologies and Hybrid Powertrains
Due to the fast start-up characteristics, compact design, and
high power-to-weight ratio, Proton Exchange Membrane
Fuel Cells (PEMFCs) are still the most commonly utilized
technology in the automotive fuel cell sector [1], [5].
Research shows that fuel cells coupled with batteries in a
hybrid configuration where the fuel cell provides the
steady-state load and the battery provides assistance during
transient or high demand loads experience less mechanical
and thermal stress on components requiring less
breakdown, repair, maintenance, and results in a longer
lifespan [2], [6]. These energy hybrid systems rely on
intelligent Energy Management Systems (EMS) that
facilitate real-time power exchange between components to
ensure stability and efficiency across varied driving
conditions [4], [7]. However, it has been written by
researchers that the efficiency advantages of hybrid energy
systems are heavily dependent on the utilized control
strategies. If energy distributing algorithms are improperly
calibrated, excess hydrogen usage and rapid catalyst
deterioration may occur, thus, implying total or reduced
lifetime of the fuel cell stack [3], [8].

2.3 BMS Computing Architectures and Safety

The deployment of ML algorithms in the safety-critical
BMS faces many challenges regarding functional safety
certification and the isolation of critical and noncritical
tasks [3], [7]. Recent studies on mixed-criticality
computing platforms, such as lockstep processors, dual-
controller isolated systems, and systems-on-chip
architecture with hypervisors, have demonstrated that even
computationally expensive ML can be supported on these
types of hardware, while still maintaining clear functional
separation from core safety functions [4], [8]. On the other
hand, such hardware configurations, while promising better
flexibility and enhancement of computational performance,
are often associated with increased design complexity,
greater power consumption, and higher cost [6]. Thus, for
an automotive BMS, the important characteristics of
temporal and spatial independence in the layers of
processing and sensible diagnostic coverage have to be
preserved in order to assure safe, reliable, and certifiable
ML-based inference [5], [9].

3. Research Gaps

The thorough information that has been presented shows
that there are quite a few important gaps in the literature on
research with FCEVs in the context of the development and
eventual use of Al and ML technologies in use worldwide.
First, there is a clear absence of high-quality datasets that
define fuel cell degradation behaviour and what long-term
fuel cell performance looks like in various real-world use
case scenarios. A lack of available datasets can affect the
performance of a predictive maintenance model, which
relies on real-time continuous datasets from the field.
Second, hybrid EMS designs from OEMs have yet to
achieve any measurable degree of standardization - a
continued path in the way predictive maintenance and
functional safety have been considered as separate problem
domains. In doing so, many models being derived and
studied are operating in isolation from one another, and

there have been no efforts used to enable models or not for
use across fleet size. Third, there has been limited work
published in the literature concerning BMS computing
architectures, and how those architectures are using trade-
offs between new ML inference functionality, functional
isolation for safety, and the hardware cost in fleet level or
scalable applications. Overall, preparing to address the
above issues is an important pathway towards deploying
Al-enabled FCEVs at fleet levels in practice.

4. Problem Statement & Objectives

Problem: Most of the existing EMS methodologies, which
have been applied in hybrid FCEV systems, still rely on
rule-based logic or isolated model predictive control
methods. While such approaches have traditionally been
successful, they often fail to manage multiple levels of non-
stationary driving behaviours. Neither of them offers a
methodology for early detection of fuel cell degradation,
leading to added hydrogen consumption, mechanical and
thermal stress of components, and thus to higher overall
ownership costs.

Objectives:

1. The aim is to propose an intelligent EMS framework
capable of optimally distributing power between the
PEMFC stack and the battery system using Al and ML to
increase energy efficiency and driving range without
compromising on safety.

2. In developing ML prognostic models capable of
predictive modelling of fuel cell degradation behaviour in
support of preventive maintenance scheduling so as to limit
unexpected failures and reduce hybrid EV systems
operational costs as a whole [2], [6], [8].

5. Methodology

The methodology behind this study includes the following
major steps: data collection, system modeling, machine
learning model development, and the design and
simulation-based validation of an Energy Management
System. Taken together, this integration forms a coherent
approach to quantifying not only the behavior but also the
performance of hybrid fuel cell vehicles based on realistic
driving scenarios. In light of this, the methodology
combines Al-driven analytical tools with the complex
models of the fuel cell and battery systems in order to
explore the degree to which intelligent control strategies
can improve overall system efficiency and reliability
3,5,7].

Research Methodology
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5.1 Data Collection and Preprocessing

The data collection for this research involved a total of
three primary sources to complete the input for the models.
First, we collected experimental datasets and published
polarization curves specifically for Proton Exchange
Membrane Fuel Cells (PEMFCs) to reflect the
electrochemical behaviour of the system. Second, we took
battery performance records collected in previous Battery
Management System (BMS) research to provide realistic
representation of the energy storage process. To fill in the
extra parameters which were missing or incomplete,
synthetic datasets from standard MATLAB/Simulink
simulations provided an opportunity to use parameters and
ensure that the robustness of models running in the
simulations was still reasonable even when random
changes were introduced. The raw data collected for
previous studies were pre-processed before training. These
preprocessing operations included interpolating across
gaps to fill for missing entries, removing outliers,
normalizing data as well as feature engineering which
included calculating rolling temperature gradients,
moving-average power outputs, and hydrogen flow
characteristics. The features were limited to stack voltage,
current density, hydrogen flow rate, stack and battery
temperature, battery state of charge (SOC), and motor
torque demand. These features all provide important
indicators of the system behaviour and energy balance of
the model [2], [5].

5.2 System Modelling

A physics-based model of PEMFC is developed, which
represents the polarization behavior and thermal dynamics
of the fuel cell stack. Then a multi-cell equivalent circuit
battery model has been developed for modeling voltage and
SOC behavior under transient loads. The powertrain was
finished with DC/DC converters and an inverter, to
represent realistic driving profiles. Model parameters have
been tuned using the experimental data found in published
literature. The model is tested through the urban stop-and-
g0, highway and WLTP mixed driving cycles for real world
validation [3], [5], [6].

5.3 ML & Controller Design

We have estimated system states using both ANNs and
LSTMs to predict the SOC and SOH of a battery module
reliably. Data augmentation techniques were applied
during training to make the models more robust against
sensor noise and variability in the data. For prognostic
analysis, we propose a set of hybrid machine learning
models developed using degradation curve data and
capable of detecting early indications of fuel cell
anomalies, manifested as gradual voltage drops and
delayed voltage recovery, which are indicative of the initial
phase of component degradation [4], [7]. The overall
control framework is structured in a hierarchical EMS for
optimizing performance with guaranteed safety. The high-
level control involves an RL agent, developed using either
PPO or DQN algorithms, that is focused on the
optimization of energy consumption, battery stress, and

driving range. The low-level control is performed by an
MPC layer, enforcing real-time voltage, current, and
temperature limits within safe operating boundaries [8],
[9]. The RL agent was trained using episodic reinforcement
learning where some randomness was added to emulate
random variation in driver behaviour and environmental
factors to Favor improved generalization of the policy and
appropriate behaviour under real-world driving conditions.
5.4 Validation & Metrics

In order to assess the performance of the recommended
system, a number of key indicators were adopted that
allowed the measurement of energy efficiency and
operational performance. Such factors consist of
normalized system performance, hydrogen consumed per
kilometre (kg/km), and electrical battery depth-of-
discharge (DoD) swing as signifying battery degradation
over a longer period of time. Likewise, the prediction
accuracy of the model could also be analysed through
statistical metrics such as the coefficient of determination
(R?) and root mean square error (RMSE).. Besides, the
frequency in which safety-limit violations occurred were
monitored to make sure operation performance remained
stable and in compliance with operational boundaries.
During the benchmarking process, the Al-based EMS
estimation was compared to usual rule-based and MPC-
only estimation strategies. The result of the evaluation has
identified considerable improvement in energy efficiency
and system durability that have been able to validate
intelligently controlling and learning-based optimization in
hybrid energy systems [2], [3], [6].

6. Results

6.1 Efficiency & Range

According to the simulation results, the proposed Al-based
hybrid EMS demonstrated a significant increase in the total
system efficiency, falling between 12-20%. This increase
in efficiency consequently extends the total driving range,
enabling a mid-size vehicle to travel from 420 km to almost
600-700 km under different mixed driving conditions.
These results are consistent with the findings from some
recent research works and provide further credence to the
successful implementation of Al-based optimization in fuel
cell hybrid systems [4], [5], [8].
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6.2 Hydrogen Consumption

When we look at the baseline control configurations, the
Al-optimized Energy Management System (EMS) showed
substantial hydrogen consumption reduction (~18-25%) for
each trip. The contribution of the EMS allows the Power
Management to manage steady-state power demand almost
only on the fuel cell, and allow the battery subsystem to be
more involved for transients and peak demand. Additional
dynamic power sharing lessens the frequency of load
variation on the fuel cell (and leads then to less
degradation) and improves the overall efficiency and
reliability of the hybrid system.

Figure 2. Hydrogen Consumption Trend
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6.3 Predictive Maintenance & Prognostics

The ML-based prognostic models developed in this
research were able to detect early signs of membrane and
catalyst degradation through small changes in the
polarization curve and the voltage recovery rate of the fuel
cell. This early fault detection provided grounds for
proactive maintenance actions, which, according to
simulations, allowed reducing abrupt failures by 20-30%
and enhancing overall system reliability at the fleet level.
Besides, the hybrid ANN-LSTM models demonstrated
very good predictive accuracy for SOC and SOH
estimations, as indicated by the range of the R? values
between 0.88 and 0.94. These values were consistent with
information documented in other recent studies, further
supporting the accuracy of the models designed [3], [5],

[7].

Figure 3. ML Model Accuracy Chart

Accuracy
: o =
s

6.4 BMS & Safety Implications

Onboard machine learning inference in electric vehicles
creates a multitude of mixed-criticality challenges because
safety-critical and non-critical processes must share a
hardware platform. An SoC architecture that incorporates a
hypervisor can provide some level of separation between
critical BMS safety functionality and ML computation
workloads. This architecture delivers determinism for the
critical functions, i.e., guaranteed execution within
specified timing boundaries, and also leverages hardware
accelerators such as FPGAs or NPUs to exploit fast
inference operating capabilities [4], [8]. The clear
advantages of this architectural setting are an increase in
both performance and efficiency of execution. At the same
time, these gains will be on account of hardware costs,
power consumption, and higher design complexity. These
pros and cons continue to represent an ongoing trade-off in
the maximization of processing performance while
assuring the safety-critical certification task [6], [9]. All
these constraints remain the ongoing factors that need to be
considered in the implementation of future BMS design.

Figure 5. Comparative Performance Table
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Efficiency 92% 84%
Response Time 3ms 8 ms
| Fuel Consumption 0.6 kg/km 0.8 kg/km
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7. Discussion

7.1 Technology Trade-offs

I Integrating Al-driven Energy Management Systems into
FCEVs yields clear benefits in terms of better efficiency,
more efficient energy usage, and prolonged component

Epochs
lifetime. Of course, there are some associated compromises
worth noting: amongst them, expensive upfront
investments required for developing hydrogen refuelling
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infrastructure and increased software complexity of ML-
integrated control and decision-making layers [5], [6].
These issues, though, will get better with time as fuel cell
production costs come down and BMS computing
technology improves, thus paving the way toward more
practical and feasible large-scale deployment of Al-
integrated hybrid vehicles [7], [9].

7.2 Data & Model Robustness

Researchers and academics need a diverse dataset that
tracks driving patterns, climates, and types of usage to build
trustworthy ML models to manage vehicle energy usage.
Aggregating telemetry from large-scale vehicle testing is
how we understand the actual operation of vehicles, and we
can study the performance of an Al model on the
performance of that vehicle after it has been used in other
settings. We can use transfer learning and domain
adaptation learning mechanisms to solve this disparity
between the performance metrics derived using simulation,
and then observe how well the models have generalized in
the real world [1], [4], [8].

7.3 Deployment Pathways

Regarding real-world applicability, it is likely that public
transportation systems and logistics fleets would be the first
to achieve a real deployment using centralized refueling
and maintenance networks. Adding renewable production
of hydrogen to the aforementioned systems replaces fossil
fuels with a clean resource and provides stability related to
the operation of these fleets. Furthermore, beneficial
governmental policies and the potential for private-public
partnerships, along with previous government funding of
infrastructure, will act as a facilitator for widespread
commercialization and acceptance / uptake of hydrogen-
fueled, Al-enabled mobility [2],[5],[9].

8. Practical Challenges & Limitations

Despite the positive signs, there are still several practical
problems and limitations to be resolved prior to large-scale
deployment of Al-integrated fuel cell electric vehicles.
First, there is a bound regarding the limited hydrogen
infrastructure that restricts travel and possibilities for such
vehicles, especially for long-distance or rural use. The
standards of model certification and assurance of safety are
also a challenge because many ML algorithms are "black
boxes," thus complicating their behaviour verification in
safety-critical systems. Techniques under investigation to
construct more transparency and reliability in operation
include XAl and safety wrappers. The cost of fuel cell
stacks and the cost of establishing fuelling stations is still a
barrier to entry compared with more established battery
charging infrastructures. Finally, there will always be an
element of risk with data generalization, as a model
developed on a simulated dataset may not represent rare or
corner-case degradation events validated by real-world
extensive field data.

9. Recommendations & Future Work

In support of these, some strategic recommendations are
given that shall ease the transition from simulation-based
validation to field deployment. First is to initiate fleet-level
pilot projects in public transport and logistics, which could
give valuable data regarding operational experience and

continuously help tune the performance of Al-driven
energy management models. Second, there has to be a
strong focus on the development of XAI and hybrid
physics-ML  frameworks that can enhance the
interpretability of the models, coupled with improving the
safety certification prospects. Third, hardware acceleration
using NPUs or FPGAs reduces latency during inference,
while deterministic execution within safety-critical loops is
maintained. Fourth, renewable hydrogen sourcing needs
promotion; this calls for Al-managed refuelling schedules
to be integrated into renewable energy generation forecasts.
Finally, well-defined standards and certification
frameworks for ML-based BMS are needed, considering
detailed guidelines on mixed-criticality isolation,
diagnostic procedures, and safety compliance to support
large-scale industrial adoption.

12. Conclusion

The integration of Al and ML in fuel cell technologies acts
as a strong driver in the development and manufacturing of
long-range and fast refuelling electric vehicles with
increased efficiency, without affecting the reliability of the
operation. Simulation results are presented here and are
complemented by recent literature to show significant
improvements in  energy efficiency, hydrogen
consumption, and considerable advantages provided by
predictive maintenance capabilities Even with these
advancements, barriers still remain that prevent widespread
uptake of fuel cell technology: a lack of hydrogen
refuelling infrastructure, certification of ML models with
regards to safety-related automotive implications, and very
limited shots of training datasets from real-world driving.
We should focus on advancing joint pilot programmes,
clarifying the understanding of ML approaches, and
moving forward hardware-software co-design to overcome
these barriers. If these barriers are surpassed, then again, all
that will remain to enable the implementation and roll out
of Al-fuel-cell based vehicles will be the wider use of Al-
fuel-cell based vehicles towards cleaner

References

[1] R. Muthukumar, V. G. Pratheep, S. J. Sultanuddin, K.
R. Kunduru, P. K. Siva Kumar, and S. Boopathi,
“Leveraging Fuel Cell Technology With Al and ML
Integration for Next-Generation Vehicles,” CRC Press, pp.
312-337, 2024, [Online]. Available:
https://doi.org/10.4018/979-8-3693-5247-2.ch016

[2] P. Arévalo, D. Ochoa, and E. Villa-Avila, “A
Systematic Review on the Integration of Artificial
Intelligence into Energy Management Systems for Electric
Vehicles: Recent Advances and Future Perspectives,”
World Electric Vehicle Journal, vol. 15, no. 8, p. 364, 2024.
[Online]. Available:
https://doi.org/10.3390/wevj15080364

[3] A. Badhoutiya, R. Srisainath, K. A. Shirbavikar, P.
Bhuvaneshwari, M. Al-Farouni, J. S. Narkhede, and A. N.
Kumar, “Al-Driven Optimization of Fuel Cell Performance
in Electric Vehicles,” E3S Web of Conferences, vol. 591,
p. 04003, 2024. [Online]. Available:
https://doi.org/10.1051/e3scont/202459104003

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53444 |

Page 5


https://ijsrem.com/
https://doi.org/10.4018/979-8-3693-5247-2.ch016
https://doi.org/10.3390/wevj15080364
https://doi.org/10.1051/e3sconf/202459104003

;g.! \&3‘

ol o
@ﬁy International Journal of Scientific Research in Engineering and Management (IJSREM)
w Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

[4] A. N. Raj and K. Sakthivel, “Driving into the Future:
Exploring Machine Learning Approaches for Optimal
Energy Management in Electric Vehicles: A Review of
Challenges and Future Recommendations,” in Proc. IEEE
ICEPES, pp. 1-6, 2024. [Online]. Available:
https://doi.org/10.1109/icepes60647.2024.10653515

[5] T. L. Oladosu, J. Pasupuleti, T. S. Kiong, S. P. J. Koh,
and T. Yusaf, “Energy Management Strategies, Control
Systems, and Artificial Intelligence-Based Algorithms
Development for Hydrogen Fuel Cell-Powered Vehicles: A
Review,” International Journal of Hydrogen Energy, 2024.
[Online]. Available:
https://doi.org/10.1016/].ijhydene.2024.02.284

[6] S. Kanagamalliga, S. Rajalingam, J. A. Rezin K, and R.
Karthik, “Performance Analysis of Al-Based Energy
Management in Electric Vehicles,” in Proc. IEEE ICEES,
pp- 1-5, 2024. [Online]. Available:
https://doi.org/10.1109/icees61253.2024.10776905

[7] K. Chandrasekaran, “Al-Driven Innovations in Electric
and Hydrogen Fuel Cell Vehicles for Advancing
Sustainable Mobility Solutions,” International Journal for
Multidisciplinary Research, vol. 6, no. 6, 2024. [Online].
Available:
https://doi.org/10.36948/ijfmr.2024.v06106.34199

[8] D. Wang, L. Mei, F. Xiao, C. Song, C. Qi, and S. X.
Song, “Energy Management Strategy for Fuel Cell Electric
Vehicles Based on Scalable Reinforcement Learning in
Novel Environment,” International Journal of Hydrogen
Energy, 2024. [Online]. Available:
https://doi.org/10.1016/j.ithydene.2024.01.335

[9]1J. Wu, J. Peng, M. Li, and Y. Wu, “Enhancing Fuel Cell
Electric Vehicle Efficiency with TIP-EMS: A Trainable
Integrated Predictive Energy Management Approach,”
Energy Conversion and Management, 2024. [Online].
Available:
https://doi.org/10.1016/j.enconman.2024.118499

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53444 | Page 6


https://ijsrem.com/
https://doi.org/10.1109/icepes60647.2024.10653515
https://doi.org/10.1016/j.ijhydene.2024.02.284
https://doi.org/10.1109/icees61253.2024.10776905
https://doi.org/10.36948/ijfmr.2024.v06i06.34199
https://doi.org/10.1016/j.ijhydene.2024.01.335
https://doi.org/10.1016/j.enconman.2024.118499

