

Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Next-Generation Electric Vehicles Integrating AI and Machine Learning with Fuel Cell Technologies for Enhanced Performance and Energy Management

T.M. Srinivasa Rao¹, R. Rama Krishna², N. Yaswanth³, P. Bharath⁴

^{1,3,4}B.Tech Student, Department of EEE, GMR Institute of Technology, Rajam-532127, Andhra Pradesh, India ²Assistant Professor, Department of EEE, GMR Institute of Technology, Rajam-532127, Andhra Pradesh, India Email: 23341A02B9@gmrit.edu.in¹

Abstract - The study showcases the latest ideas regarding architectural and control strategies that juxtapose Artificial Intelligence and Machine Learning with fuel cell technologies to increase the efficiency, range, and reliability of electric vehicles and advance toward the next generation of vehicles. A new hybrid framework is proposed that unifies physics-based models of fuel cells and batteries with data-driven predictive algorithms. Within this framework, a hierarchical Energy Management System (EMS) is designed in which a reinforcement learning layer signals power distribution set points, while a model predictive controller ensures safe operation of the system in real time! The proposed system, using simulation driving scenarios, shows results within multiple improvement in energy efficiency and hydrogen consumption as compared to traditional EMS along with an overall reduction in battery wear. The study considers computing challenges while running ML models in Battery Management Systems (BMS), predictive maintenance for life extension of components, and deployment challenges regarding hydrogen infrastructure and safety certification. The study ends with suggestions for pilot implementations and possible pathways for future enhancements.

Keywords: Electric Vehicles, Fuel Cell, AI, Machine Learning, Energy Management System (EMS), Predictive Maintenance

1.Introduction

The world is becoming more electrified in regard to transportation—not only in response to commitments made by governments to achieve challenging sustainability targets but also, the rapidly developing technology of energy storage systems. While Battery Electric Vehicles have certainly been the leaders of the charge for early adoption into the marketplace, Fuel Cell Electric Vehiclesin particular those based on Proton Exchange Membrane Fuel Cells-can offer several benefits to the consumer, such as significantly improved energy density, distance, and extremely short refuelling times closer to that experienced from the combustion-based vehicle paradigm. However, the exclusive utilization of a fuel cell may limit not only the capability to deliver peak demands for electric power but also to do so with the greatest efficiency. Consequently, modern systems pair a fuel cell with a battery pack in conjunction with a smart Energy Management System to drive the control of the power flow and to stabilize performance. Now, with the integration of AI systems and ML systems, such hybrid systems have the opportunity not only to learn from operational data but also dynamically redistribute the power between the battery and fuel cell to optimize the performance and predict the condition of batteries. At least several recent pieces of literature or study underscore the ability of AI-derived control strategies to develop improvements in energy efficiency and useful life, but it is equally important to discuss the creation of safety-centred control design paradigms that will assure the reliability and compliance of the ML algorithms to safety standards involved in the implementation of smart AI into any of the vehicle BMSs.

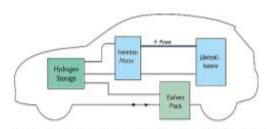


Figure 1. Overview of fuel cell technology in next-generation vehicles

2. Literature Review

2.1 AI & ML in Energy Management

In the last few years, AI-based approaches have experienced fast growth in applications for electric vehicles and fuel cell vehicles, especially in real-time state estimation tasks such as State of Charge (SOC), State of Health (SOH), fault detection, and adaptive control for Energy Management Systems (EMS)[2], [5]. The performance of a number of data-driven models, like ANNs, CNNs, SVMs, and LSTM networks, has been very impressive, characterized by high prediction accuracies and low latency, which make them suitable for on-board automotive applications [3], [6]. Other lightweight AI frameworks like tinyML are under study for possible adoption in embedded controllers due to their adequate performance while asking for little computational resources [7]. Among the advanced methods, RL has emerged as one of the most recent powerful methods of designing adaptive EMS policies. Contrary to conventional rule-based approaches, RL enables accommodating the simultaneous maximization of multiple objectives, for example, maximum driving range, improved efficiency, and reduced wear even under conditions of uncertainty or dynamic driving [4], [8].

Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

2.2 Fuel Cell Technologies and Hybrid Powertrains

Due to the fast start-up characteristics, compact design, and high power-to-weight ratio, Proton Exchange Membrane Fuel Cells (PEMFCs) are still the most commonly utilized technology in the automotive fuel cell sector [1], [5]. Research shows that fuel cells coupled with batteries in a hybrid configuration where the fuel cell provides the steady-state load and the battery provides assistance during transient or high demand loads experience less mechanical and thermal stress on components requiring less breakdown, repair, maintenance, and results in a longer lifespan [2], [6]. These energy hybrid systems rely on intelligent Energy Management Systems (EMS) that facilitate real-time power exchange between components to ensure stability and efficiency across varied driving conditions [4], [7]. However, it has been written by researchers that the efficiency advantages of hybrid energy systems are heavily dependent on the utilized control strategies. If energy distributing algorithms are improperly calibrated, excess hydrogen usage and rapid catalyst deterioration may occur, thus, implying total or reduced lifetime of the fuel cell stack [3], [8].

2.3 BMS Computing Architectures and Safety

The deployment of ML algorithms in the safety-critical BMS faces many challenges regarding functional safety certification and the isolation of critical and noncritical tasks [3], [7]. Recent studies on mixed-criticality computing platforms, such as lockstep processors, dualisolated systems, and systems-on-chip architecture with hypervisors, have demonstrated that even computationally expensive ML can be supported on these types of hardware, while still maintaining clear functional separation from core safety functions [4], [8]. On the other hand, such hardware configurations, while promising better flexibility and enhancement of computational performance, are often associated with increased design complexity, greater power consumption, and higher cost [6]. Thus, for an automotive BMS, the important characteristics of temporal and spatial independence in the layers of processing and sensible diagnostic coverage have to be preserved in order to assure safe, reliable, and certifiable ML-based inference [5], [9].

3. Research Gaps

The thorough information that has been presented shows that there are quite a few important gaps in the literature on research with FCEVs in the context of the development and eventual use of AI and ML technologies in use worldwide. First, there is a clear absence of high-quality datasets that define fuel cell degradation behaviour and what long-term fuel cell performance looks like in various real-world use case scenarios. A lack of available datasets can affect the performance of a predictive maintenance model, which relies on real-time continuous datasets from the field. Second, hybrid EMS designs from OEMs have yet to achieve any measurable degree of standardization - a continued path in the way predictive maintenance and functional safety have been considered as separate problem domains. In doing so, many models being derived and studied are operating in isolation from one another, and

there have been no efforts used to enable models or not for use across fleet size. Third, there has been limited work published in the literature concerning BMS computing architectures, and how those architectures are using tradeoffs between new ML inference functionality, functional isolation for safety, and the hardware cost in fleet level or scalable applications. Overall, preparing to address the above issues is an important pathway towards deploying AI-enabled FCEVs at fleet levels in practice.

4. Problem Statement & Objectives

Problem: Most of the existing EMS methodologies, which have been applied in hybrid FCEV systems, still rely on rule-based logic or isolated model predictive control methods. While such approaches have traditionally been successful, they often fail to manage multiple levels of non-stationary driving behaviours. Neither of them offers a methodology for early detection of fuel cell degradation, leading to added hydrogen consumption, mechanical and thermal stress of components, and thus to higher overall ownership costs.

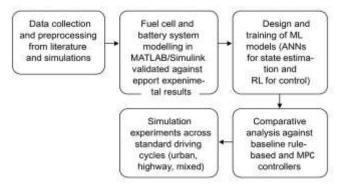
Objectives:

- 1. The aim is to propose an intelligent EMS framework capable of optimally distributing power between the PEMFC stack and the battery system using AI and ML to increase energy efficiency and driving range without compromising on safety.
- 2. In developing ML prognostic models capable of predictive modelling of fuel cell degradation behaviour in support of preventive maintenance scheduling so as to limit unexpected failures and reduce hybrid EV systems operational costs as a whole [2], [6], [8].

5. Methodology

The methodology behind this study includes the following major steps: data collection, system modeling, machine learning model development, and the design and simulation-based validation of an Energy Management System. Taken together, this integration forms a coherent approach to quantifying not only the behavior but also the performance of hybrid fuel cell vehicles based on realistic driving scenarios. In light of this, the methodology combines AI-driven analytical tools with the complex models of the fuel cell and battery systems in order to explore the degree to which intelligent control strategies can improve overall system efficiency and reliability 3,5,7].

Research Methodology



Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

5.1 Data Collection and Preprocessing

The data collection for this research involved a total of three primary sources to complete the input for the models. First, we collected experimental datasets and published polarization curves specifically for Proton Exchange Membrane Fuel Cells (PEMFCs) to reflect the electrochemical behaviour of the system. Second, we took battery performance records collected in previous Battery Management System (BMS) research to provide realistic representation of the energy storage process. To fill in the extra parameters which were missing or incomplete, synthetic datasets from standard MATLAB/Simulink simulations provided an opportunity to use parameters and ensure that the robustness of models running in the simulations was still reasonable even when random changes were introduced. The raw data collected for previous studies were pre-processed before training. These preprocessing operations included interpolating across gaps to fill for missing entries, removing outliers, normalizing data as well as feature engineering which included calculating rolling temperature gradients, moving-average power outputs, and hydrogen flow characteristics. The features were limited to stack voltage, current density, hydrogen flow rate, stack and battery temperature, battery state of charge (SOC), and motor torque demand. These features all provide important indicators of the system behaviour and energy balance of the model [2], [5].

5.2 System Modelling

A physics-based model of PEMFC is developed, which represents the polarization behavior and thermal dynamics of the fuel cell stack. Then a multi-cell equivalent circuit battery model has been developed for modeling voltage and SOC behavior under transient loads. The powertrain was finished with DC/DC converters and an inverter, to represent realistic driving profiles. Model parameters have been tuned using the experimental data found in published literature. The model is tested through the urban stop-andgo, highway and WLTP mixed driving cycles for real world validation [3], [5], [6].

5.3 ML & Controller Design

We have estimated system states using both ANNs and LSTMs to predict the SOC and SOH of a battery module reliably. Data augmentation techniques were applied during training to make the models more robust against sensor noise and variability in the data. For prognostic analysis, we propose a set of hybrid machine learning models developed using degradation curve data and capable of detecting early indications of fuel cell anomalies, manifested as gradual voltage drops and delayed voltage recovery, which are indicative of the initial phase of component degradation [4], [7]. The overall control framework is structured in a hierarchical EMS for optimizing performance with guaranteed safety. The highlevel control involves an RL agent, developed using either PPO or DQN algorithms, that is focused on the optimization of energy consumption, battery stress, and

driving range. The low-level control is performed by an MPC layer, enforcing real-time voltage, current, and temperature limits within safe operating boundaries [8], [9]. The RL agent was trained using episodic reinforcement learning where some randomness was added to emulate random variation in driver behaviour and environmental factors to Favor improved generalization of the policy and appropriate behaviour under real-world driving conditions.

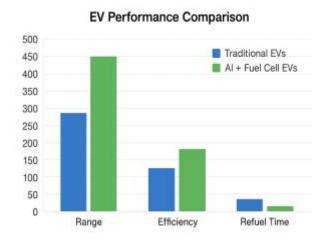
5.4 Validation & Metrics

In order to assess the performance of the recommended system, a number of key indicators were adopted that allowed the measurement of energy efficiency and operational performance. Such factors consist of normalized system performance, hydrogen consumed per kilometre (kg/km), and electrical battery depth-ofdischarge (DoD) swing as signifying battery degradation over a longer period of time. Likewise, the prediction accuracy of the model could also be analysed through statistical metrics such as the coefficient of determination (R²) and root mean square error (RMSE).. Besides, the frequency in which safety-limit violations occurred were monitored to make sure operation performance remained stable and in compliance with operational boundaries. During the benchmarking process, the AI-based EMS estimation was compared to usual rule-based and MPConly estimation strategies. The result of the evaluation has identified considerable improvement in energy efficiency and system durability that have been able to validate intelligently controlling and learning-based optimization in hybrid energy systems [2], [3], [6].

6. Results

6.1 Efficiency & Range

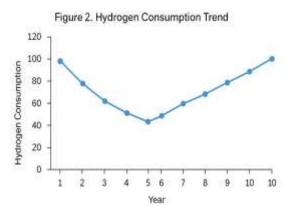
According to the simulation results, the proposed AI-based hybrid EMS demonstrated a significant increase in the total system efficiency, falling between 12-20%. This increase in efficiency consequently extends the total driving range, enabling a mid-size vehicle to travel from 420 km to almost 600-700 km under different mixed driving conditions. These results are consistent with the findings from some recent research works and provide further credence to the successful implementation of AI-based optimization in fuel cell hybrid systems [4], [5], [8].



Volume: 09 Issue: 11 | Nov - 2025

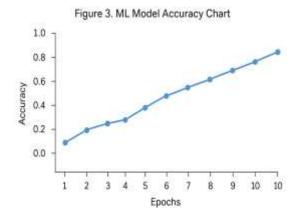
6.2 Hydrogen Consumption

When we look at the baseline control configurations, the AI-optimized Energy Management System (EMS) showed substantial hydrogen consumption reduction (~18-25%) for each trip. The contribution of the EMS allows the Power Management to manage steady-state power demand almost only on the fuel cell, and allow the battery subsystem to be more involved for transients and peak demand. Additional dynamic power sharing lessens the frequency of load variation on the fuel cell (and leads then to less degradation) and improves the overall efficiency and reliability of the hybrid system.



6.3 Predictive Maintenance & Prognostics

The ML-based prognostic models developed in this research were able to detect early signs of membrane and catalyst degradation through small changes in the polarization curve and the voltage recovery rate of the fuel cell. This early fault detection provided grounds for proactive maintenance actions, which, according to simulations, allowed reducing abrupt failures by 20–30% and enhancing overall system reliability at the fleet level. Besides, the hybrid ANN–LSTM models demonstrated very good predictive accuracy for SOC and SOH estimations, as indicated by the range of the R² values between 0.88 and 0.94. These values were consistent with information documented in other recent studies, further supporting the accuracy of the models designed [3], [5], [7].



6.4 BMS & Safety Implications

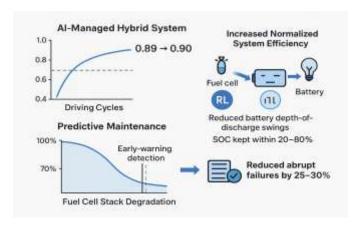
SJIF Rating: 8.586

Onboard machine learning inference in electric vehicles creates a multitude of mixed-criticality challenges because safety-critical and non-critical processes must share a hardware platform. An SoC architecture that incorporates a hypervisor can provide some level of separation between critical BMS safety functionality and ML computation workloads. This architecture delivers determinism for the critical functions, i.e., guaranteed execution within specified timing boundaries, and also leverages hardware accelerators such as FPGAs or NPUs to exploit fast inference operating capabilities [4], [8]. The clear advantages of this architectural setting are an increase in both performance and efficiency of execution. At the same time, these gains will be on account of hardware costs, power consumption, and higher design complexity. These pros and cons continue to represent an ongoing trade-off in the maximization of processing performance while assuring the safety-critical certification task [6], [9]. All these constraints remain the ongoing factors that need to be considered in the implementation of future BMS design.

ISSN: 2582-3930

Figure 5. Comparative Performance Table

Performance Metric	Al-Driven EMS	Conventional EMS
Efficiency	92%	84%
Response Time	3 ms	8 ms
Fuel Consumption	0.6 kg/km	0.8 kg/km



7. Discussion

7.1 Technology Trade-offs

I Integrating AI-driven Energy Management Systems into FCEVs yields clear benefits in terms of better efficiency, more efficient energy usage, and prolonged component lifetime. Of course, there are some associated compromises worth noting: amongst them, expensive upfront investments required for developing hydrogen refuelling

Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

infrastructure and increased software complexity of ML-integrated control and decision-making layers [5], [6]. These issues, though, will get better with time as fuel cell production costs come down and BMS computing technology improves, thus paving the way toward more practical and feasible large-scale deployment of AI-integrated hybrid vehicles [7], [9].

7.2 Data & Model Robustness

Researchers and academics need a diverse dataset that tracks driving patterns, climates, and types of usage to build trustworthy ML models to manage vehicle energy usage. Aggregating telemetry from large-scale vehicle testing is how we understand the actual operation of vehicles, and we can study the performance of an AI model on the performance of that vehicle after it has been used in other settings. We can use transfer learning and domain adaptation learning mechanisms to solve this disparity between the performance metrics derived using simulation, and then observe how well the models have generalized in the real world [1], [4], [8].

7.3 Deployment Pathways

Regarding real-world applicability, it is likely that public transportation systems and logistics fleets would be the first to achieve a real deployment using centralized refueling and maintenance networks. Adding renewable production of hydrogen to the aforementioned systems replaces fossil fuels with a clean resource and provides stability related to the operation of these fleets. Furthermore, beneficial governmental policies and the potential for private-public partnerships, along with previous government funding of infrastructure, will act as a facilitator for widespread commercialization and acceptance / uptake of hydrogenfueled, AI-enabled mobility [2],[5],[9].

8. Practical Challenges & Limitations

Despite the positive signs, there are still several practical problems and limitations to be resolved prior to large-scale deployment of AI-integrated fuel cell electric vehicles. First, there is a bound regarding the limited hydrogen infrastructure that restricts travel and possibilities for such vehicles, especially for long-distance or rural use. The standards of model certification and assurance of safety are also a challenge because many ML algorithms are "black boxes," thus complicating their behaviour verification in safety-critical systems. Techniques under investigation to construct more transparency and reliability in operation include XAI and safety wrappers. The cost of fuel cell stacks and the cost of establishing fuelling stations is still a barrier to entry compared with more established battery charging infrastructures. Finally, there will always be an element of risk with data generalization, as a model developed on a simulated dataset may not represent rare or corner-case degradation events validated by real-world extensive field data.

9. Recommendations & Future Work

In support of these, some strategic recommendations are given that shall ease the transition from simulation-based validation to field deployment. First is to initiate fleet-level pilot projects in public transport and logistics, which could give valuable data regarding operational experience and

continuously help tune the performance of AI-driven energy management models. Second, there has to be a strong focus on the development of XAI and hybrid physics-ML frameworks that can enhance interpretability of the models, coupled with improving the safety certification prospects. Third, hardware acceleration using NPUs or FPGAs reduces latency during inference, while deterministic execution within safety-critical loops is maintained. Fourth, renewable hydrogen sourcing needs promotion; this calls for AI-managed refuelling schedules to be integrated into renewable energy generation forecasts. well-defined standards Finally, and certification frameworks for ML-based BMS are needed, considering detailed guidelines on mixed-criticality isolation, diagnostic procedures, and safety compliance to support large-scale industrial adoption.

12. Conclusion

The integration of AI and ML in fuel cell technologies acts as a strong driver in the development and manufacturing of long-range and fast refuelling electric vehicles with increased efficiency, without affecting the reliability of the operation. Simulation results are presented here and are complemented by recent literature to show significant improvements energy efficiency, hydrogen in consumption, and considerable advantages provided by predictive maintenance capabilities Even with these advancements, barriers still remain that prevent widespread uptake of fuel cell technology: a lack of hydrogen refuelling infrastructure, certification of ML models with regards to safety-related automotive implications, and very limited shots of training datasets from real-world driving. We should focus on advancing joint pilot programmes, clarifying the understanding of ML approaches, and moving forward hardware-software co-design to overcome these barriers. If these barriers are surpassed, then again, all that will remain to enable the implementation and roll out of AI-fuel-cell based vehicles will be the wider use of AIfuel-cell based vehicles towards cleaner

References

[1] R. Muthukumar, V. G. Pratheep, S. J. Sultanuddin, K. R. Kunduru, P. K. Siva Kumar, and S. Boopathi, "Leveraging Fuel Cell Technology With AI and ML Integration for Next-Generation Vehicles," CRC Press, pp. 312–337, 2024. [Online]. Available: https://doi.org/10.4018/979-8-3693-5247-2.ch016

[2] P. Arévalo, D. Ochoa, and E. Villa-Ávila, "A Systematic Review on the Integration of Artificial Intelligence into Energy Management Systems for Electric Vehicles: Recent Advances and Future Perspectives," World Electric Vehicle Journal, vol. 15, no. 8, p. 364, 2024. [Online].

Available:

https://doi.org/10.3390/wevj15080364

[3] A. Badhoutiya, R. Srisainath, K. A. Shirbavikar, P. Bhuvaneshwari, M. Al-Farouni, J. S. Narkhede, and A. N. Kumar, "Al-Driven Optimization of Fuel Cell Performance in Electric Vehicles," E3S Web of Conferences, vol. 591, p. 04003, 2024. [Online]. Available: https://doi.org/10.1051/e3sconf/202459104003

Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

- [4] A. N. Raj and K. Sakthivel, "Driving into the Future: Exploring Machine Learning Approaches for Optimal Energy Management in Electric Vehicles: A Review of Challenges and Future Recommendations," in Proc. IEEE ICEPES, pp. 1–6, 2024. [Online]. Available: https://doi.org/10.1109/icepes60647.2024.10653515
- [5] T. L. Oladosu, J. Pasupuleti, T. S. Kiong, S. P. J. Koh, and T. Yusaf, "Energy Management Strategies, Control Systems, and Artificial Intelligence-Based Algorithms Development for Hydrogen Fuel Cell-Powered Vehicles: A Review," International Journal of Hydrogen Energy, 2024. [Online].

 Available:

https://doi.org/10.1016/j.ijhydene.2024.02.284

- [6] S. Kanagamalliga, S. Rajalingam, J. A. Rezin K, and R. Karthik, "Performance Analysis of AI-Based Energy Management in Electric Vehicles," in Proc. IEEE ICEES, pp. 1–5, 2024. [Online]. Available: https://doi.org/10.1109/icees61253.2024.10776905
- [7] K. Chandrasekaran, "AI-Driven Innovations in Electric and Hydrogen Fuel Cell Vehicles for Advancing Sustainable Mobility Solutions," International Journal for Multidisciplinary Research, vol. 6, no. 6, 2024. [Online]. Available:

https://doi.org/10.36948/ijfmr.2024.v06i06.34199

- [8] D. Wang, L. Mei, F. Xiao, C. Song, C. Qi, and S. X. Song, "Energy Management Strategy for Fuel Cell Electric Vehicles Based on Scalable Reinforcement Learning in Novel Environment," International Journal of Hydrogen Energy, 2024. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2024.01.335
- [9] J. Wu, J. Peng, M. Li, and Y. Wu, "Enhancing Fuel Cell Electric Vehicle Efficiency with TIP-EMS: A Trainable Integrated Predictive Energy Management Approach," Energy Conversion and Management, 2024. [Online]. Available:

https://doi.org/10.1016/j.enconman.2024.118499