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Abstract - The study showcases the latest ideas regarding 

architectural and control strategies that juxtapose Artificial 

Intelligence and Machine Learning with fuel cell 

technologies to increase the efficiency, range, and 

reliability of electric vehicles and advance toward the next 

generation of vehicles. A new hybrid framework is 

proposed that unifies physics-based models of fuel cells 

and batteries with data-driven predictive algorithms. 

Within this framework, a hierarchical Energy Management 

System (EMS) is designed in which a reinforcement 

learning layer signals power distribution set points, while a 

model predictive controller ensures safe operation of the 

system in real time! The proposed system, using simulation 

results within multiple driving scenarios, shows 

improvement in energy efficiency and hydrogen 

consumption as compared to traditional EMS along with an 

overall reduction in battery wear. The study considers 

computing challenges while running ML models in Battery 

Management Systems (BMS), predictive maintenance for 

life extension of components, and deployment challenges 

regarding hydrogen infrastructure and safety certification. 

The study ends with suggestions for pilot implementations 

and possible pathways for future enhancements.  
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1.Introduction  

The world is becoming more electrified in regard to 

transportation—not only in response to commitments made 

by governments to achieve challenging sustainability 

targets but also, the rapidly developing technology of 

energy storage systems. While Battery Electric Vehicles 

have certainly been the leaders of the charge for early 

adoption into the marketplace, Fuel Cell Electric Vehicles-

in particular those based on Proton Exchange Membrane 

Fuel Cells-can offer several benefits to the consumer, such 

as significantly improved energy density, distance, and 

extremely short refuelling times closer to that experienced 

from the combustion-based vehicle paradigm. However, the 

exclusive utilization of a fuel cell may limit not only the 

capability to deliver peak demands for electric power but 

also to do so with the greatest efficiency. Consequently, 

modern systems pair a fuel cell with a battery pack in 

conjunction with a smart Energy Management System to 

drive the control of the power flow and to stabilize 

performance. Now, with the integration of AI systems and 

ML systems, such hybrid systems have the opportunity not 

only to learn from operational data but also dynamically re-

distribute the power between the battery and fuel cell to 

optimize the performance and predict the condition of 

batteries. At least several recent pieces of literature or study 

underscore the ability of AI-derived control strategies to 

develop improvements in energy efficiency and useful life, 

but it is equally important to discuss the creation of safety-

centred control design paradigms that will assure the 

reliability and compliance of the ML algorithms to safety 

standards involved in the implementation of smart AI into 

any of the vehicle BMSs. 

 

 
 

2. Literature Review 

2.1 AI & ML in Energy Management 

In the last few years, AI-based approaches have 

experienced fast growth in applications for electric vehicles 

and fuel cell vehicles, especially in real-time state 

estimation tasks such as State of Charge (SOC), State of 

Health (SOH), fault detection, and adaptive control for 

Energy Management Systems (EMS)[2], [5]. The 

performance of a number of data-driven models, like 

ANNs, CNNs, SVMs, and LSTM networks, has been very 

impressive, characterized by high prediction accuracies and 

low latency, which make them suitable for on-board 

automotive applications [3], [6]. Other lightweight AI 

frameworks like tinyML are under study for possible 

adoption in embedded controllers due to their adequate 

performance while asking for little computational 

resources [7]. Among the advanced methods, RL has 

emerged as one of the most recent powerful methods of 

designing adaptive EMS policies. Contrary to conventional 

rule-based approaches, RL enables accommodating the 

simultaneous maximization of multiple objectives, for 

example, maximum driving range, improved efficiency, 

and reduced wear even under conditions of uncertainty or 

dynamic driving [4], [8]. 
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2.2 Fuel Cell Technologies and Hybrid Powertrains 

Due to the fast start-up characteristics, compact design, and 

high power-to-weight ratio, Proton Exchange Membrane 

Fuel Cells (PEMFCs) are still the most commonly utilized 

technology in the automotive fuel cell sector [1], [5]. 

Research shows that fuel cells coupled with batteries in a 

hybrid configuration where the fuel cell provides the 

steady-state load and the battery provides assistance during 

transient or high demand loads experience less mechanical 

and thermal stress on components requiring less 

breakdown, repair, maintenance, and results in a longer 

lifespan [2], [6]. These energy hybrid systems rely on 

intelligent Energy Management Systems (EMS) that 

facilitate real-time power exchange between components to 

ensure stability and efficiency across varied driving 

conditions [4], [7]. However, it has been written by 

researchers that the efficiency advantages of hybrid energy 

systems are heavily dependent on the utilized control 

strategies. If energy distributing algorithms are improperly 

calibrated, excess hydrogen usage and rapid catalyst 

deterioration may occur, thus, implying total or reduced 

lifetime of the fuel cell stack [3], [8]. 

2.3 BMS Computing Architectures and Safety 

The deployment of ML algorithms in the safety-critical 

BMS faces many challenges regarding functional safety 

certification and the isolation of critical and noncritical 

tasks [3], [7]. Recent studies on mixed-criticality 

computing platforms, such as lockstep processors, dual-

controller isolated systems, and systems-on-chip 

architecture with hypervisors, have demonstrated that even 

computationally expensive ML can be supported on these 

types of hardware, while still maintaining clear functional 

separation from core safety functions [4], [8]. On the other 

hand, such hardware configurations, while promising better 

flexibility and enhancement of computational performance, 

are often associated with increased design complexity, 

greater power consumption, and higher cost [6]. Thus, for 

an automotive BMS, the important characteristics of 

temporal and spatial independence in the layers of 

processing and sensible diagnostic coverage have to be 

preserved in order to assure safe, reliable, and certifiable 

ML-based inference [5], [9]. 

3. Research Gaps 

The thorough information that has been presented shows 

that there are quite a few important gaps in the literature on 

research with FCEVs in the context of the development and 

eventual use of AI and ML technologies in use worldwide. 

First, there is a clear absence of high-quality datasets that 

define fuel cell degradation behaviour and what long-term 

fuel cell performance looks like in various real-world use 

case scenarios. A lack of available datasets can affect the 

performance of a predictive maintenance model, which 

relies on real-time continuous datasets from the field. 

Second, hybrid EMS designs from OEMs have yet to 

achieve any measurable degree of standardization - a 

continued path in the way predictive maintenance and 

functional safety have been considered as separate problem 

domains. In doing so, many models being derived and 

studied are operating in isolation from one another, and 

there have been no efforts used to enable models or not for 

use across fleet size. Third, there has been limited work 

published in the literature concerning BMS computing 

architectures, and how those architectures are using trade-

offs between new ML inference functionality, functional 

isolation for safety, and the hardware cost in fleet level or 

scalable applications. Overall, preparing to address the 

above issues is an important pathway towards deploying 

AI-enabled FCEVs at fleet levels in practice. 

4. Problem Statement & Objectives 

Problem: Most of the existing EMS methodologies, which 

have been applied in hybrid FCEV systems, still rely on 

rule-based logic or isolated model predictive control 

methods. While such approaches have traditionally been 

successful, they often fail to manage multiple levels of non-

stationary driving behaviours. Neither of them offers a 

methodology for early detection of fuel cell degradation, 

leading to added hydrogen consumption, mechanical and 

thermal stress of components, and thus to higher overall 

ownership costs. 

Objectives: 

1. The aim is to propose an intelligent EMS framework 

capable of optimally distributing power between the 

PEMFC stack and the battery system using AI and ML to 

increase energy efficiency and driving range without 

compromising on safety. 

2. In developing ML prognostic models capable of 

predictive modelling of fuel cell degradation behaviour in 

support of preventive maintenance scheduling so as to limit 

unexpected failures and reduce hybrid EV systems 

operational costs as a whole [2], [6], [8]. 

5. Methodology 

The methodology behind this study includes the following 

major steps: data collection, system modeling, machine 

learning model development, and the design and 

simulation-based validation of an Energy Management 

System. Taken together, this integration forms a coherent 

approach to quantifying not only the behavior but also the 

performance of hybrid fuel cell vehicles based on realistic 

driving scenarios. In light of this, the methodology 

combines AI-driven analytical tools with the complex 

models of the fuel cell and battery systems in order to 

explore the degree to which intelligent control strategies 

can improve overall system efficiency and reliability 

3,5,7]. 
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5.1 Data Collection and Preprocessing 

The data collection for this research involved a total of 

three primary sources to complete the input for the models. 

First, we collected experimental datasets and published 

polarization curves specifically for Proton Exchange 

Membrane Fuel Cells (PEMFCs) to reflect the 

electrochemical behaviour of the system. Second, we took 

battery performance records collected in previous Battery 

Management System (BMS) research to provide realistic 

representation of the energy storage process. To fill in the 

extra parameters which were missing or incomplete, 

synthetic datasets from standard MATLAB/Simulink 

simulations provided an opportunity to use parameters and 

ensure that the robustness of models running in the 

simulations was still reasonable even when random 

changes were introduced. The raw data collected for 

previous studies were pre-processed before training. These 

preprocessing operations included interpolating across 

gaps to fill for missing entries, removing outliers, 

normalizing data as well as feature engineering which 

included calculating rolling temperature gradients, 

moving-average power outputs, and hydrogen flow 

characteristics. The features were limited to stack voltage, 

current density, hydrogen flow rate, stack and battery 

temperature, battery state of charge (SOC), and motor 

torque demand. These features all provide important 

indicators of the system behaviour and energy balance of 

the model [2], [5]. 

5.2 System Modelling 

A physics-based model of PEMFC is developed, which 

represents the polarization behavior and thermal dynamics 

of the fuel cell stack. Then a multi-cell equivalent circuit 

battery model has been developed for modeling voltage and 

SOC behavior under transient loads. The powertrain was 

finished with DC/DC converters and an inverter, to 

represent realistic driving profiles. Model parameters have 

been tuned using the experimental data found in published 

literature. The model is tested through the urban stop-and-

go, highway and WLTP mixed driving cycles for real world 

validation [3], [5], [6]. 

 

 

5.3 ML & Controller Design 

We have estimated system states using both ANNs and 

LSTMs to predict the SOC and SOH of a battery module 

reliably. Data augmentation techniques were applied 

during training to make the models more robust against 

sensor noise and variability in the data. For prognostic 

analysis, we propose a set of hybrid machine learning 

models developed using degradation curve data and 

capable of detecting early indications of fuel cell 

anomalies, manifested as gradual voltage drops and 

delayed voltage recovery, which are indicative of the initial 

phase of component degradation [4], [7]. The overall 

control framework is structured in a hierarchical EMS for 

optimizing performance with guaranteed safety. The high-

level control involves an RL agent, developed using either 

PPO or DQN algorithms, that is focused on the 

optimization of energy consumption, battery stress, and 

driving range. The low-level control is performed by an 

MPC layer, enforcing real-time voltage, current, and 

temperature limits within safe operating boundaries [8], 

[9]. The RL agent was trained using episodic reinforcement 

learning where some randomness was added to emulate 

random variation in driver behaviour and environmental 

factors to Favor improved generalization of the policy and 

appropriate behaviour under real-world driving conditions. 

5.4 Validation & Metrics 

In order to assess the performance of the recommended 

system, a number of key indicators were adopted that 

allowed the measurement of energy efficiency and 

operational performance. Such factors consist of 

normalized system performance, hydrogen consumed per 

kilometre (kg/km), and electrical battery depth-of-

discharge (DoD) swing as signifying battery degradation 

over a longer period of time. Likewise, the prediction 

accuracy of the model could also be analysed through 

statistical metrics such as the coefficient of determination 

(R²) and root mean square error (RMSE).. Besides, the 

frequency in which safety-limit violations occurred were 

monitored to make sure operation performance remained 

stable and in compliance with operational boundaries. 

During the benchmarking process, the AI-based EMS 

estimation was compared to usual rule-based and MPC-

only estimation strategies. The result of the evaluation has 

identified considerable improvement in energy efficiency 

and system durability that have been able to validate 

intelligently controlling and learning-based optimization in 

hybrid energy systems [2], [3], [6]. 

6. Results 

6.1 Efficiency & Range 

According to the simulation results, the proposed AI-based 

hybrid EMS demonstrated a significant increase in the total 

system efficiency, falling between 12-20%. This increase 

in efficiency consequently extends the total driving range, 

enabling a mid-size vehicle to travel from 420 km to almost 

600-700 km under different mixed driving conditions. 

These results are consistent with the findings from some 

recent research works and provide further credence to the 

successful implementation of AI-based optimization in fuel 

cell hybrid systems [4], [5], [8]. 
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6.2 Hydrogen Consumption 

When we look at the baseline control configurations, the 

AI-optimized Energy Management System (EMS) showed 

substantial hydrogen consumption reduction (~18-25%) for 

each trip. The contribution of the EMS allows the Power 

Management to manage steady-state power demand almost 

only on the fuel cell, and allow the battery subsystem to be 

more involved for transients and peak demand. Additional 

dynamic power sharing lessens the frequency of load 

variation on the fuel cell (and leads then to less 

degradation) and improves the overall efficiency and 

reliability of the hybrid system.

6.3 Predictive Maintenance & Prognostics 

The ML-based prognostic models developed in this 

research were able to detect early signs of membrane and 

catalyst degradation through small changes in the 

polarization curve and the voltage recovery rate of the fuel 

cell. This early fault detection provided grounds for 

proactive maintenance actions, which, according to 

simulations, allowed reducing abrupt failures by 20–30% 

and enhancing overall system reliability at the fleet level. 

Besides, the hybrid ANN–LSTM models demonstrated 

very good predictive accuracy for SOC and SOH 

estimations, as indicated by the range of the R² values 

between 0.88 and 0.94. These values were consistent with 

information documented in other recent studies, further 

supporting the accuracy of the models designed [3], [5], 

[7]. 

 
 

6.4 BMS & Safety Implications 

Onboard machine learning inference in electric vehicles 

creates a multitude of mixed-criticality challenges because 

safety-critical and non-critical processes must share a 

hardware platform. An SoC architecture that incorporates a 

hypervisor can provide some level of separation between 

critical BMS safety functionality and ML computation 

workloads. This architecture delivers determinism for the 

critical functions, i.e., guaranteed execution within 

specified timing boundaries, and also leverages hardware 

accelerators such as FPGAs or NPUs to exploit fast 

inference operating capabilities [4], [8]. The clear 

advantages of this architectural setting are an increase in 

both performance and efficiency of execution. At the same 

time, these gains will be on account of hardware costs, 

power consumption, and higher design complexity. These 

pros and cons continue to represent an ongoing trade-off in 

the maximization of processing performance while 

assuring the safety-critical certification task [6], [9]. All 

these constraints remain the ongoing factors that need to be 

considered in the implementation of future BMS design.

 
 

 
 

 

7. Discussion 

7.1 Technology Trade-offs 

I Integrating AI-driven Energy Management Systems into 

FCEVs yields clear benefits in terms of better efficiency, 

more efficient energy usage, and prolonged component 

lifetime. Of course, there are some associated compromises 

worth noting: amongst them, expensive upfront 

investments required for developing hydrogen refuelling 
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infrastructure and increased software complexity of ML-

integrated control and decision-making layers [5], [6]. 

These issues, though, will get better with time as fuel cell 

production costs come down and BMS computing 

technology improves, thus paving the way toward more 

practical and feasible large-scale deployment of AI-

integrated hybrid vehicles [7], [9]. 

7.2 Data & Model Robustness 

Researchers and academics need a diverse dataset that 

tracks driving patterns, climates, and types of usage to build 

trustworthy ML models to manage vehicle energy usage. 

Aggregating telemetry from large-scale vehicle testing is 

how we understand the actual operation of vehicles, and we 

can study the performance of an AI model on the 

performance of that vehicle after it has been used in other 

settings. We can use transfer learning and domain 

adaptation learning mechanisms to solve this disparity 

between the performance metrics derived using simulation, 

and then observe how well the models have generalized in 

the real world [1], [4], [8]. 

7.3 Deployment Pathways 

Regarding real-world applicability, it is likely that public 

transportation systems and logistics fleets would be the first 

to achieve a real deployment using centralized refueling 

and maintenance networks. Adding renewable production 

of hydrogen to the aforementioned systems replaces fossil 

fuels with a clean resource and provides stability related to 

the operation of these fleets. Furthermore, beneficial 

governmental policies and the potential for private-public 

partnerships, along with previous government funding of 

infrastructure, will act as a facilitator for widespread 

commercialization and acceptance / uptake of hydrogen-

fueled, AI-enabled mobility [2],[5],[9].  

8. Practical Challenges & Limitations 

Despite the positive signs, there are still several practical 

problems and limitations to be resolved prior to large-scale 

deployment of AI-integrated fuel cell electric vehicles. 

First, there is a bound regarding the limited hydrogen 

infrastructure that restricts travel and possibilities for such 

vehicles, especially for long-distance or rural use. The 

standards of model certification and assurance of safety are 

also a challenge because many ML algorithms are "black 

boxes," thus complicating their behaviour verification in 

safety-critical systems. Techniques under investigation to 

construct more transparency and reliability in operation 

include XAI and safety wrappers. The cost of fuel cell 

stacks and the cost of establishing fuelling stations is still a 

barrier to entry compared with more established battery 

charging infrastructures. Finally, there will always be an 

element of risk with data generalization, as a model 

developed on a simulated dataset may not represent rare or 

corner-case degradation events validated by real-world 

extensive field data. 

9. Recommendations & Future Work 

In support of these, some strategic recommendations are 

given that shall ease the transition from simulation-based 

validation to field deployment. First is to initiate fleet-level 

pilot projects in public transport and logistics, which could 

give valuable data regarding operational experience and 

continuously help tune the performance of AI-driven 

energy management models. Second, there has to be a 

strong focus on the development of XAI and hybrid 

physics–ML frameworks that can enhance the 

interpretability of the models, coupled with improving the 

safety certification prospects. Third, hardware acceleration 

using NPUs or FPGAs reduces latency during inference, 

while deterministic execution within safety-critical loops is 

maintained. Fourth, renewable hydrogen sourcing needs 

promotion; this calls for AI-managed refuelling schedules 

to be integrated into renewable energy generation forecasts. 

Finally, well-defined standards and certification 

frameworks for ML-based BMS are needed, considering 

detailed guidelines on mixed-criticality isolation, 

diagnostic procedures, and safety compliance to support 

large-scale industrial adoption. 

12. Conclusion 

The integration of AI and ML in fuel cell technologies acts 

as a strong driver in the development and manufacturing of 

long-range and fast refuelling electric vehicles with 

increased efficiency, without affecting the reliability of the 

operation. Simulation results are presented here and are 

complemented by recent literature to show significant 

improvements in energy efficiency, hydrogen 

consumption, and considerable advantages provided by 

predictive maintenance capabilities Even with these 

advancements, barriers still remain that prevent widespread 

uptake of fuel cell technology: a lack of hydrogen 

refuelling infrastructure, certification of ML models with 

regards to safety-related automotive implications, and very 

limited shots of training datasets from real-world driving. 

We should focus on advancing joint pilot programmes, 

clarifying the understanding of ML approaches, and 

moving forward hardware-software co-design to overcome 

these barriers. If these barriers are surpassed, then again, all 

that will remain to enable the implementation and roll out 

of AI-fuel-cell based vehicles will be the wider use of AI-

fuel-cell based vehicles towards cleaner 
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