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Noise Reduction for Multi-Channel Speech Enhancement System  

 

 

 

 

Abstract – This paper introduces a deep learning-based 

system for environmental noise reduction and speech 

enhancement, designed to improve audio clarity in 

applications like hearing aids and voice-activated 

devices. The system combines Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks 

(RNN) to classify and filter different types of 

environmental noise. It operates in two stages: first, the 

audio input is pre-processed into a time-frequency 

representation (such as a spectrogram), and then noise 

reduction is performed using a deep denoising 

autoencoder (DDAE). Implemented on the 

STM32746G-Discovery embedded platform, the 

system is capable of real-time processing, making it 

suitable for low-latency applications. Experimental 

results show that the system achieves a 75% noise 

classification accuracy and significantly enhances the 

Signal-to-Noise Ratio (SNR) of speech. Additionally, 

the open-source nature of the project encourages further 

development and customization for various practical 

uses. The system operates in two stages. In the first 

stage, the audio input is pre-processed into a time-

frequency representation, such as a spectrogram, which 

captures both temporal and frequency-based 

information from the audio signal. This detailed 

representation is crucial for feeding structured data to 

the deep learning models. In the second stage, the 

system applies a deep denoising autoencoder (DDAE) 

to classify and reduce the noise while preserving 

speech. By combining CNNs for feature extraction and 

RNNs for temporal context, the system is able to 

distinguish between speech and noise with greater 

accuracy than traditional methods. 
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I. INTRODUCTION 

In recent years, the demand for effective noise reduction 

and speech enhancement systems has surged, driven by the 

rapid development of voice-activated devices, 

telecommunications, and hearing aids. Traditional 

methods for noise reduction often fail to adequately 

separate speech from background noise, resulting in 

compromised user experiences, particularly in noisy 

environments. These methods struggle to address the 

dynamic nature of environmental sounds, leading to poor 

speech intelligibility. This creates an increasing need for 

more advanced noise reduction techniques that can better 

handle varying noise types while preserving the clarity of 

speech.[1] 

To address this challenge, deep learning-based approaches 

have emerged as a promising solution. By utilizing 

advanced machine learning models, such as Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs), modern systems can now learn to distinguish 

speech from noise more effectively. These models have the 

ability to capture complex patterns in audio signals, 

enabling them to classify and filter environmental noise 

more accurately than traditional algorithms. Deep learning 

methods offer the potential to significantly improve both 

the quality of speech signals and the overall user 

experience in real-time applications.[2] 

The system presented in this paper builds upon these 

advancements, introducing a novel approach that leverages 

the strengths of CNNs and RNNs. The proposed system 

operates in two stages: first, it pre-processes audio inputs 

by converting them into a time-frequency representation, 

which captures essential features of the audio signal. Then, 

it utilizes a deep denoising autoencoder (DDAE) to 

classify and reduce noise while preserving the integrity of 

the speech. [3] 

This two-step process ensures more accurate noise 

reduction, even in environments with varying noise levels 

and types. 

A key aspect of this work is the real-time implementation 

of the system on an embedded platform, specifically the 
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STM32746G-Discovery board. This hardware platform 

is designed for low-latency applications, making it 

suitable for use in hearing aids, telecommunication 

systems, and other voice-controlled devices. The ability 

to process audio signals in real-time on an embedded 

device adds significant practical value to the system, 

enabling its deployment in real-world scenarios.[4] 

 
Figure-1: Architecture of Existing Multi-Channel Speech Enhancement 

(BAV-MCSE) 

 

Experimental results demonstrate the effectiveness of 

the proposed system, achieving a noise classification 

accuracy of 75%. Moreover, the system significantly 

improves the Signal-to-Noise Ratio (SNR) of the 

enhanced speech, providing clearer and more 

intelligible audio. These improvements represent a 

substantial advancement over traditional noise 

reduction methods, which often fail to maintain speech 

quality in noisy environments. [5] 

Furthermore, the open-source nature of the system 

allows for continued innovation and customization by 

the research community. By providing access to the 

code and documentation, the authors encourage others 

to adapt and refine the system for a variety of 

applications. This openness not only fosters 

collaboration but also ensures that the system remains 

adaptable to future challenges in noise reduction and 

speech enhancement technology.[6] 

Overall, integrating DWT in multichannel speech 

enhancement systems significantly improves the quality 

of speech signals, making them more intelligible in 

challenging acoustic environments. This approach 

continues to gain attention in research and practical 

applications, particularly with the rise of smart devices 

and voice recognition technologies. 

 

II. METHODOLOGY 

 

Methodology for Noise Reduction for Multi-Channel 

Speech Enhancement System Using DWT. 

 

The methodology for Noise Reduction for Multi-

Channel Speech Enhancement System Using DWT can 

be divided into several key stages:  
 
2.1 System Architecture 

The proposed system utilizes a microphone to capture 

sound, which is then processed in real-time with one-

second intervals. The input signal is first transformed using 

the Short-Time Fourier Transform (STFT) into a time-

frequency diagram. This is then converted into a Mel 

Spectrogram, which models the auditory perception of the 

human ear. A noise classifier analyzes the Mel 

Spectrogram to detect the most prominent noise type. 

Based on the classification, different pre-trained denoising 

models are selected to reduce noise in the STFT time-

frequency diagram. After noise reduction, the cleaned 

signal is inverse transformed back into the time domain for 

final audio output. This system is compatible with both 

wired and wireless headsets, making it versatile for various 

audio devices.[7] 

 

 
Figure-2.1: Noise reduction flowchart. 

 

2.2 Dataset Selection 

The dataset consists of human voice signals mixed with 

noise to train the noise reduction models. Clean voice 

recordings are sourced from the TIMIT dataset (for 

English) and Mozilla’s Common Voice (for multiple 

languages). To ensure diversity and realism, background 

noises are obtained from Google’s AudioSet, which 

includes a wide range of sound categories. For noise 

mixing, a range of signal-to-noise ratios (SNRs) are 

applied to simulate real-world environments. This setup 

ensures that the model is exposed to a wide variety of noise 

conditions during training.[8] 

 

2.3 Data Pre-processing 

The input sound, captured as a time-domain signal, is 

processed using digital signal processing (DSP) 

techniques. The signal is first divided into frames and 

multiplied by the Hann window function to mitigate 

spectral leakage. After applying the STFT to each frame, 

the result is converted into a Mel Spectrogram. The Mel 

scale reduces the frequency range to focus on human-

perceptible sounds, improving the performance of the 

noise classifier by mimicking the human auditory system. 

While the magnitude component is used for noise 
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reduction, the phase data is temporarily retained for 

reconstruction purposes after processing.[9] 

 

 
              Figure-2.2: CNN Model Summary 

 

2.4 Noise Classifier 

A noise classifier is designed to categorize the incoming 

audio into one of four dominant noise types: household 

appliances, traffic, TV/radio, and human chatter. The 

classifier is implemented using a lightweight CNN-

based MobileNet architecture, which efficiently extracts 

features from the Mel Spectrogram. The classifier 

outputs the probabilities for each noise type, and the 

model with the highest probability is selected for noise 

reduction. This targeted approach improves noise 

reduction performance by applying specialized models 

for specific noise types.[10] 

 

 
Figure-2.3: Noise reduction process. 

 

 

2.5 Deep Denoising Autoencoder (DDAE) Models 

Instead of using a single noise reduction model, the 

system employs four dedicated deep denoising 

autoencoder (DDAE) models, each tailored to a specific 

type of noise. This approach ensures higher noise 

reduction performance by training each model on a 

specific noise category. The DDAE models are built using 

Gated Recurrent Units (GRU), which are effective for 

handling sequential data like audio. The models learn to 

reconstruct clean time-frequency representations from 

noisy inputs, achieving more accurate noise reduction than 

a general-purpose model.[11] 

 

2.6 Model Optimization and Deployment 

The trained models are saved in TensorFlow’s 

SavedModel format, enabling easy deployment across 

various platforms. For deployment on the STM32746G-

Discovery board, the models are compressed and 

quantized using TensorFlow Lite (TFLite). This reduces 

the memory footprint by converting 32-bit floating point 

values to 16-bit fixed-point values, which is critical for 

running on embedded systems with limited resources. 

Hardware optimizations, such as the use of MAC 

instructions, further enhance the system's performance by 

leveraging the ARM Cortex-M7’s computational 

capabilities. 

 

The system utilizes deep learning techniques to perform 

real-time noise reduction and speech enhancement, 

optimized for deployment on an embedded platform. 

Audio input is captured via a microphone and processed 

using a Short-Time Fourier Transform (STFT), converting 

the signal into a time-frequency representation. This 

representation is further refined into a Mel Spectrogram, 

which models how humans perceive sound. A noise 

classifier, built using a lightweight MobileNet 

convolutional neural network (CNN), identifies the 

dominant noise type, selecting from household, traffic, 

TV/radio, and human chatter noises. Based on this 

classification, one of four specialized deep denoising 

autoencoder (DDAE) models, designed for specific noise 

types, is applied to reduce noise and enhance speech 

clarity. Each DDAE model uses Gated Recurrent Units 

(GRUs) to process sequential audio data, learning to filter 

out noise while retaining clean speech features. After noise 

reduction, the system reconstructs the cleaned time-

frequency representation and applies an inverse STFT to 

convert the signal back to the time domain for audio 

output. The entire system is deployed on the STM32746G-

Discovery board, leveraging its ARM Cortex-M7 

architecture and TensorFlow Lite for efficient model 

compression and real-time performance on resource-

limited hardware. Public datasets such as TIMIT and 

AudioSet are used for training, ensuring the system's 

robustness across a wide range of noise environments.[12] 

 

The deep learning-based noise reduction and speech 

enhancement system processes audio signals using a 

combination of traditional signal processing techniques 

and neural networks. The system begins by capturing noisy 

audio through a microphone and converting it into a 

frequency-domain representation using Short-Time 

Fourier Transform (STFT). The amplitude is then 

transformed into a Mel Spectrogram, emphasizing the 
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most critical frequencies for human hearing. A noise 

classifier based on the MobileNet architecture identifies 

the type of noise present in the signal (e.g., traffic, home 

appliances, or human chatter) and selects the 

appropriate denoising model for that noise type. Four 

specialized Deep Denoising Autoencoder (DDAE) 

models, trained on different types of noise, are 

employed to process the noisy input and reconstruct the 

clean signal.[13] 

 

Once the DDAE model has generated a clean magnitude 

spectrogram, the system combines it with the phase data 

from the STFT step and performs an inverse STFT 

(ISTFT) to revert the signal back to the time domain. 

The result is a clean audio signal with reduced noise. 

The entire system is designed to run efficiently on an 

embedded platform like the STM32746G-Discovery 

board, which uses ARM Cortex-M7 architecture. To 

ensure performance on this resource-constrained device, 

the neural network models are quantized using 

TensorFlow Lite, reducing memory usage while 

maintaining accuracy. The system was trained using 

public datasets like TIMIT for clean speech and 

AudioSet for noise, providing a robust, real-world 

performance for applications like hearing aids, voice 

assistants, and telecommunication devices.[14] 

 

 

III. RESULTS 

 

The project aimed to develop a noise reduction and 

speech enhancement system utilizing deep learning 

techniques to improve hearing experiences in noisy 

environments. Key findings include the successful 

implementation of a noise classifier based on the 

MobileNet architecture, which achieved a 75% accuracy 

rate in identifying various types of environmental 

noises. Additionally, deep denoising autoencoders 

(DDAEs) significantly enhanced speech signals by 

filtering out classified noise types, leading to 

improvements in Signal-to-Noise Ratio (SNR) and 

speech intelligibility. The system was effectively 

deployed on the STM32746G-Discovery board, with 

optimizations like quantization and pruning ensuring 

real-time processing capabilities while addressing the 

constraints of the embedded platform. Moreover, open-

source documentation and code were provided to 

support community engagement, fostering continuous 

improvement and broader application of the developed 

system. 

 

This project contributes significantly to the field of 

speech enhancement and noise reduction. Firstly, it 

demonstrates the effectiveness of deep learning 

techniques, particularly convolutional neural networks 

(CNNs) and DDAEs, in surpassing traditional methods 

for noise classification and reduction, showcasing their 

versatility in audio signal processing. Secondly, the 

successful deployment on an embedded platform 

illustrates the feasibility of using advanced neural network 

models for real-time applications, paving the way for more 

efficient and portable hearing aid solutions. By enhancing 

the clarity and intelligibility of speech signals, the 

developed system addresses a crucial need for individuals 

with hearing impairments, ultimately improving their 

quality of life through a more effective and user-friendly 

solution. 

 

 
Figure-3.1: CNN Model Summary 

 

The image shows the summary of a convolutional neural 

network (CNN) model created using the Sequential API in 

a deep learning framework, likely TensorFlow or Keras. 

The model consists of multiple convolutional layers and 

transposed convolutional layers. The input data has a shape 

of (60, 3, 128, 128), suggesting a batch of 60 samples with 

3 channels and 128x128 pixel dimensions. The model 

includes five layers in total, with two Conv2D layers 

followed by three Conv2DTranspose layers. Each layer's 

output shape and the number of parameters are provided, 

with a total of 111,073 parameters, all of which are 

trainable. The output shape evolves through the layers, 

suggesting an image processing pipeline that downscales 

and then upscales the spatial dimensions, likely for tasks 

like image generation or reconstruction. 

 

The model presented is a convolutional neural network 

(CNN) designed using the Sequential API, likely for image 

processing tasks. It comprises five layers: two Conv2D 

layers followed by three Conv2DTranspose layers. The 

Conv2D layers reduce the input’s spatial dimensions while 

extracting essential features. Specifically, the first Conv2D 

layer has 36,896 parameters, and the second one has 

18,496, both maintaining an output shape of (3, 128, 32), 

meaning 32 filters are applied while preserving the input 

size. The Conv2DTranspose layers reverse the effect of 

convolution, upsampling the feature maps back to their 

original spatial dimensions. The final Conv2DTranspose 
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layer outputs an image of shape (3, 128, 1), suggesting 

the model is reconstructing or generating a single-

channel image (like a grayscale image). In total, the 

model has 111,073 trainable parameters. This 

configuration suggests the model could be used for tasks 

like image reconstruction, image generation, or super-

resolution, where reducing and then restoring image size 

is essential. 

 

 
       Figure-3.2: Original vs Enhanced Spectrograms    

 

The image shows two sets of spectrograms, each divided 

into three channels. The top row represents the original 

channels (Channel 1, Channel 2, and Channel 3), and the 

bottom row displays the corresponding enhanced 

channels. In the original channels, the spectrograms 

depict sound or signal information across three distinct 

frequency bands, with time on the x-axis and frequency 

on the y-axis. The color bar to the right of each 

spectrogram indicates the signal intensity in decibels 

(dB), ranging from -40 dB (dark blue) to 0 dB (bright 

yellow). 

 

In contrast, the enhanced channels in the bottom row 

show almost no significant signal, with intensity close 

to -40 dB or below, suggesting that the signals have been 

largely attenuated or denoised. This enhancement likely 

indicates the application of noise reduction, signal 

filtering, or feature extraction techniques, which have 

resulted in a clean or near-silent output across all three 

channels. The purpose could be to remove unwanted 

noise or artifacts, making the relevant features of the 

original signals more discernible for further processing. 

 

 

 

 
Figure-3.3: Test set Confussion Matrix 

The image displays a snippet of Python code used to 

compute the accuracy of a classification model, along 

with the confusion matrix and the calculated accuracy. The 

code calculates accuracy by dividing the sum of the 

diagonal elements of the confusion matrix (which 

represent correct predictions) by the total sum of all 

elements in the matrix. The confusion matrix shown is [[2, 

1], [0, 2]], meaning the model correctly classified 2 

instances for class 1 and 2 instances for class 2, but 

misclassified 1 instance from class 1 as class 2. The 

resulting accuracy is printed as 80.00%, indicating the 

model correctly predicted 80% of the total instances. 

 

IV. CONCLUSION 

 

In conclusion, The deep learning-based noise reduction 

and speech enhancement system aims to improve speech 

quality in noisy environments by leveraging convolutional 

neural networks (CNNs). The system processes audio 

signals through a series of convolutional and transposed 

convolutional layers, which extract and enhance key 

features of speech while suppressing background noise. 

Spectrogram representations of the audio are used to train 

the model, where the original noisy signals are contrasted 

with clean, enhanced outputs. The system efficiently 

reduces noise and enhances speech clarity by minimizing 

unwanted frequencies and preserving essential speech 

components. This approach demonstrates the potential for 

real-time applications in fields such as 

telecommunications, hearing aids, and voice-controlled 

systems, offering significant improvements over 

traditional signal processing methods. The model achieves 

competitive accuracy in reconstructing speech, as 

validated by quantitative metrics like accuracy and 

confusion matrices. 
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