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Abstract - Corrosion of reinforcement bars (rebars) is one of 

the most critical factors affecting the durability and safety of 

reinforced concrete (RC) structures. Conventional inspection 

techniques, such as half-cell potential testing, though reliable, 

are time-consuming, invasive, and provide limited spatial 

resolution. This study presents a non-destructive, automated 

approach for corrosion assessment using digital image 

processing algorithms implemented in Python with OpenCV. 

High-resolution images of rebars were pre-processed through 

resizing, blurring, grayscale conversion, thresholding, and 

contour detection, followed by polygon-based masking and 

color analysis to accurately quantify corroded regions. 

Validation was carried out against half-cell potential 

measurements (ASTM C876) across 20 reinforcement samples. 

Results demonstrated strong agreement between the two 

methods: corrosion levels ranged from 0.46% (-194 mV, low 

probability) to 97.53% (-610 mV, high probability), with 

consistent correlation across low, moderate, and severe damage 

ranges. The image processing algorithm achieved 100% true 

positive detection with no false classifications, while providing 

the added advantage of spatial visualization of corrosion 

patterns. The findings confirm that image-based assessment 

can complement traditional electrochemical techniques, 

improving diagnostic accuracy and efficiency. This approach 

offers a scalable, cost-effective, and non-invasive tool for 

structural health monitoring, with significant potential for 

integration into predictive maintenance and life-cycle 

management of RC structures. 
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1.INTRODUCTION  

 
Corrosion is the process of a material eroding attributable to 

chemical or electrochemical interaction of the environments, 
leading to material mass loss over some time. Concrete and 
reinforcing bars are constituents of Reinforced Cement 
Concrete (RCC) where concrete withstands the compressive 
strength and the reinforcing bars govern the tensile strength.  
Since corrosion is responsible for losing strength and is 
inextricably tied to a structure's long-term viability. Most of the 
structures today are made of reinforced bars. The reinforcing 
bars used in RCC structures should be good enough to bear 
tensile strength. When the corrosion starts on the one region of 
the bars the chances of getting corrosion on the other side of the 

bars get increased. Due to the rapid deterioration process 
involved, serviceability criteria design using reinforced bars 
gets compromised. The corrosion of steel bars induces the 
concrete to swell, and triggers scaling and fissures in the 
concrete, resulting in catastrophic events due to compromised 
performances through structural deterioration [1]. The tendency 
of a metal to corrode is governed by its microstructures, its 
composition as generated during alloying, or the temperature 
developed during manufacturing for the deformation of a single 
metal surface. It would be more pragmatic to prevent corrosion 
instead of endeavouring to eliminate it. corrosion mechanisms 
can be as diversified as the environments to which a substance 
is exposed, which makes them harder to comprehend. However, 
it can be controlled simply by understanding the mechanisms of 
a reaction involved in the process. National Association of 
Corrosion Engineers (NACE) studied the impact faced by 
corrosion on the global economy and concluded that the 
estimated cost of corrosion is about 2.5 trillion US$ which is 
equivalent to 3.4% of the GDP of 2013. The study also revealed 
that the saving costs can be increased between 15% to 35% of 
total cost if different corrosion management and controlling 

practices are followed [2].  

 

Fig -1: Cost of Corrosion [3-5] 

The cost of corrosion becomes a burden due to its impacts 
on the economy, the safety of human life and material resources 
and energy. Furthermore, the direct and indirect corrosion costs 
are increased due to ignoring corrosion which adds up to the 
economic loss for any country. The cost of corrosion as shown 
in Figure 1 comprises the economic loss and safety of human 
life [6]. In Reinforced structures, trillions of dollars have been 
invested in the control of corrosion. Various non-destructive 
testing (NDT) techniques have been developed and employed to 
detect and assess corrosion in reinforcement bars. These 
techniques include but are not limited to electromagnetic 
methods like ground-penetrating radar (GPR), electrical 
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resistivity measurements, half-cell potential mapping and 
ultrasonic testing. Detecting corrosion in reinforcement bars 
using image processing techniques represents a significant 
advancement in the field of structural health monitoring and 
maintenance of concrete structures. Traditional methods for 
assessing corrosion in reinforcement bars often rely on invasive 
or time-consuming procedures, making them less efficient for 
large-scale evaluations. However, the integration of image 
processing into corrosion detection offers a non-destructive and 
more accessible means to identify and analyze the extent of 
corrosion within these bars. 

Corrosion is the inevitable degradation of steel influenced 
by numerous environmental parameters such as acid, moisture, 
etc. making it phenomenon more complex. The reactivity of the 
metal, the presence of inclusions, the availability of oxygen, 
humidity, gases such as Sulphur dioxide and carbon dioxide, 
and the availability of electrolytes are all factors that induce 
corrosion. While interlinked capillary’s porosity makes it very 
difficult for chloride ions, oxygen and moisture to permeate 
concrete fractures and gives a more direct route to react with 
reinforced bar thus increasing the probability of corrosion [7-
11]. Figure 2 explains the corrosion mechanism of reinforced 
concrete structure. 

 

Fig -2: Corrosion Mechanism 

The performance of RC structures diminishes as concrete 
structures deteriorate due to adverse climatic conditions, and the 
untimely disintegration of structures before the periodic 
maintenance life is a primary issue for engineers and 
researchers. The rate at which structures degrade is influenced 
by the conditions of exposure and the intensity of maintenance. 
Corrosion, which is triggered by chemical or electrochemical 
responses, seems to be the most prevalent cause of RC structure 
deterioration. It is primarily governed by chloride ingress and 
RC structure carbonation depth. Carbonation and infiltration of 
chloride ions are the two most common causes of rebar 
corrosion in concrete constructions. Corrosion of RC structures 
begins when chloride ions pierce concrete beyond the 
predefined threshold or when carbonation depth surpasses 
concrete cover. 

If corrosion commences in concrete structures, it proceeds 
and diminishes the structures' service life, and the pace of 
corrosion has an impact on the remaining serviceability of RC 
structures [12]. Nevertheless, these extreme environments 
promote reinforcement corrosion unless the requisite 
concentrations of oxidative degradation are accessible at the 
rebar level in concrete structures. Corrosion of steel bars is the 
leading cause of concrete construction failure, with 
approximately two tonnes of concrete used per capita by the 
global population each year. As a consequence, it has been 
identified that long-lasting constructions will minimize cement 

use. Corrosion can significantly impair the strength and life of 
structures, and contaminants from the atmosphere can permeate 
through the concrete cover and induce corrosion of steel in 
humid situations. The cathode and anode are formed in various 
locations of the same reinforcing bar. Whenever the corrosive 
process is initiated, the section is degraded in the anodic region. 
The iron gets transformed into ferrous ionic species, which also 
are transferred from the anode to the cathode. These regions on 
the reinforcement bar exhibiting positive electrochemical 
potential serve as cathode material using moisture, reducing 
oxygen and devouring electrons from the anode to form 
hydroxyl ions. Inside the electrochemical system, the steel bars 
act as conducting materials, whereas the concrete solution 
functions as the electrolytic medium whereby the ions migrate. 

Digital image processing, involving the use of algorithms 
executed by digital computers, serves as a pivotal tool for 
manipulating digital images. The process entails applying 
various operations to images, generating outputs with specific 
characteristics associated with the image. Its versatility allows 
for multiple applications, one of which is the detection of 
corrosion, the focus of our study. Images captured by cameras 
often lack clarity, necessitating image modifications prior to 
processing to ensure clarity and precision in the results obtained. 

In our context, the primary aim is to detect corrosion within 
these images. This necessitates pre-processing steps to enhance 
image quality and enable unambiguous detection of corroded 
regions. The initial image might suffer from issues such as 
unclear details, noise, or variations in illumination. 
Consequently, our methodology involves a series of steps to 
rectify these issues. These steps encompass resizing the image 
to an optimal resolution, blurring to reduce noise and sharpen 
features, converting to grayscale for simplified processing, and 
thresholding to segment the corroded regions effectively. 

The modification process is crucial to improve the image's 
suitability for corrosion detection. This is achieved through 
algorithmic manipulations facilitated by the Python 
programming language, leveraging libraries like OpenCV and 
NumPy. OpenCV provides a diverse set of tools for image 
processing tasks, while NumPy aids in numerical computations, 
both contributing significantly to the efficiency and accuracy of 
the algorithm. 

Ultimately, the goal is to enable a more precise and 
automated identification of corroded areas within images. By 
addressing issues of image clarity and quality through tailored 
image processing techniques, we aim to enhance the reliability 
and effectiveness of corrosion detection methodologies in 
industrial and structural analysis applications. 
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2. METHODOLOGY 
Stage 1: Data Collection 

Proper lighting conditions play a pivotal role in image 
capture, demanding uniformity and adequacy to avoid shadows 
or glare while ensuring detailed depiction. Direct sunlight, 
known to cause overexposure, should be circumvented. 
Moreover, image size and resolution must strike a balance; 
images should be detailed enough to retain necessary 
information without being excessively large, optimizing 
storage. High resolution becomes imperative for preserving 
clear and sharp details within the image. Simplicity in the 
background is equally crucial, serving to eliminate distractions 
and facilitate the distinction of the object of interest from the 
surroundings. A non-distracting background aids in focusing on 
the primary subject, enhancing the overall clarity and relevance 
of the captured image. Figure 3 explains the detailed 
methodology. 

 

Fig -3: Digital Image Processing Algorithm 

 

Stage 2: Loading and Resizing Image 

Excessively high image resolution often leads to prolonged 
processing times and increased memory consumption. To 
mitigate this, resizing the image to a lower resolution can 
significantly enhance processing speed. Maintaining the 
original aspect ratio during resizing proves crucial, ensuring 
proportional adjustments and preserving the image's 
proportions. This approach facilitates faster processing; as 
smaller-sized images are more expediently handled compared to 
their larger counterparts. 

Stage 3: Blurring the Image 

Blurring an image holds significant importance within 
image processing due to multiple advantageous aspects: 

1. Reducing Noise: Images often contain unwanted 
artifacts or noise that can disrupt the image analysis process. 
Blurring serves as a method to mitigate this noise, enabling a 
clearer identification of crucial features within the image. 

2. Smoothing Edges: Sharp edges in an image sometimes 
hinder feature detection or accurate measurements. Blurring 
aids in smoothing out these edges, facilitating easier detection 
and measurement of features, thereby enhancing the analysis 
process. 

3. Removing Unnecessary Details: Images might contain 
extraneous details that hold no relevance to the specific analysis 
being conducted. Blurring proves effective in eliminating such 

irrelevant details, enabling a focused analysis solely on the 
pertinent parts of the image. 

Stage 4: Grayscale Conversion 

A grayscale image is basically the representation of pixels 
based on their intensity. In other words, each pixel in a grayscale 
image is represented by a single value that ranges from 0 (black) 
to 255 (white), with values in between representing various 
shades of grey. Grayscale images are often used in image 
processing tasks because they are simpler to work with than full-
colour images, and many image processing algorithms can be 
applied directly to grayscale images. 

Stage 4: Thresholding 

The conversion of a grayscale image into a binary image 
results in pixels having only two potential values: black or 
white. Setting the threshold value to 0 dictates that any pixel 
value below 0 becomes black, while values above 0 turn white. 
Thresholding plays a critical role in converting grayscale images 
into binary representations, thereby simplifying the 
segmentation of corroded and non-corroded regions. Three 
principal approaches were employed in this study. Global 
thresholding applies a single intensity value across the entire 
image, offering computational efficiency but limited 
adaptability under varying illumination conditions [13]. Otsu’s 
method improves separation by selecting an optimal threshold 
that minimizes intra-class variance, making it effective for 
images with fluctuating contrast levels. Adaptive thresholding 
further enhances performance in non-uniform lighting by 
calculating localized thresholds based on statistical properties 
such as mean, Gaussian weighting, or median filtering, thereby 
enabling more precise segmentation of corrosion-prone areas 
[14-16]. Together, these methods ensure robust detection by 
balancing computational simplicity with accuracy across 
diverse imaging conditions.  

Stage 5: Contour Identification 

Contours are the boundaries of objects or regions in an 
image. This function returns two values: contours, which is a list 
of all the contours found, and hierarchy, which is a hierarchical 
representation of the contours. The contours are drawn in red 
colour with a thickness of 2 pixels. 

Stage 6: Polygon and Cropping an Image 

The boundaries of the image captured are set through 
demarking a polygon on the image captured and subsequently 
the image is cropped. The polygon will help us for detecting the 
corrosion in the interested area even if there is an unwanted 
background that affect the detection of corrosion such as 
shadow or any colour which looks like the corrosion. As we 
know that this method of image processing is based on colours 
so without the use of this technique, the program will 
automatically select the non-steel area having red colour. 
Through python programming the area of the selected polygon 
is calculated. This total area is important in calculating the total 
corroded area on the steel reinforcement. 

Stage 7: Masking an Image 

The function of this mask is to hide the unwanted or the 
uninterested part of the image which in this case is the area 
beyond the drawn polygon. The mask region is represented with 
black colour. It has to be noted that the mask will efficiently 
cover or remove all the uninterested area by transforming that 
particular area in to black colour.  

Stage 8: Colour Detection 
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As we know that the corroded part or the rust has a reddish 
brown colour appearance. Through programming we can 
calculate the area of red region by counting the number of pixels 
having values greater than Zero which in our case is the white 
pixels.  

Stage 9: Corrosion Detection 

The percentage of corrosion is calculated based on the total 
area of the polygon drawn which includes the total number of 
white plus black pixels and the area of red area which counts the 
number of corroded pixels.  

Stage 10: Verifying Results through Half Cell Potentiometer 

Half-cell Potentiometer testing is done in accordance with 
ASTM C876 standards. This method involves measuring the 
potential value on the concrete surface, where the positive pole 
voltmeter connects electrically to the rebar, while the other pole 
links to a reference electrode. The potential difference is 
measured and subsequently assessed to determine the risk of 
corrosion within the embedded steel in the RC members [17]. 

 

3. RESULTS & DISCUSSION 
 

Figure 4 displayed below illustrates the initial samples 
utilized for both the Half Cell Potential Experiment and as input 
for the Algorithm. The presence of green coloration in each 
sample denotes the polygon drawn by the user, indicating the 
specific location where the electrode was employed during the 
half cell potential test. This polygon's significance lies in 
guiding the Python program to execute precisely at that 
particular location. 

The Python program is executed twice. Initially, the 
program is executed to detect the corrosion percentage precisely 
at the electrode location. Subsequently, the code is executed for 
the entire rebar. Notably, the obtained results differ as corrosion 
is non-uniform along the length of the rebar. 

The derived results from these samples are compiled into a 
table, accompanied by the outcomes from the half-cell potential 
test. This comparative presentation facilitates an easy 
understanding of the correlation between the results obtained 
from the half-cell potential test and the corresponding outcomes 
subsequent to the Python program's execution. This tabulated 
representation aids in comprehending and analyzing the 
correlation between the experimental results and the 
computational findings obtained through Python programming. 

 

 

 

 

Fig -4:  Reinforcement images (a) sample 1 (b) percentage 
of corrosion in sample 1 – whole steel bar (c) percentage of 
corrosion in sample 1 – electrode location (d) sample 2 (e) 
percentage of corrosion in sample 2 – whole steel bar (f) 

percentage of corrosion in sample 2 – electrode location (g) 
sample 3 (h) percentage of corrosion in sample 3 – whole steel 
bar (i) percentage of corrosion in sample 3 – electrode location 
(j) sample 4 (k) percentage of corrosion in sample 4 – whole 
steel bar (l) percentage of corrosion in sample 4 – electrode 

location 

A total of 20 reinforcement bars were taken for the study and 
Table 1 discusses the readings from Half Cell Potentiometer test 
and the results given by the image processing. 
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Table -1: Half-cell potentiometer vs Image processing 

results 

Sample 

no 

Half-cell 

potential 

Experiment 

Values(-

mV) 

% 

corrosion 

where the 

electrode is 

applied 

(algorithm 

results) 

% 

corrosion 

for the 

whole 

rebar 

(algorithm 

results) 

% chance 

of 

corrosion 

activity 

1 194 0.46 11.29 10 

2 610 67.34 97.53 90 

3 187 0.74 4.52 10 

4 189 15.33 10.29 10 

5 594 84.21 89.32 90 

6 654 83.22 87.23 90 

7 354 65.22 88.31 90 

8 210 35.31 44.74 50 

9 280 37.31 45.44 50 

10 397 68.21 79.61 90 

11 616 79.31 88.41 90 

12 132 0.54 1.14 10 

13 115 0.55 1.03 10 

14 233 35.31 44.21 50 

15 237 37.31 49.21 50 

16 312 41.44 47.21 50 

17 415 67.31 71.21 90 

18 437 72.14 81.44 90 

19 514 77.34 85.23 90 

20 632 81.21 89.22 90 

 

 

Fig -5: Corrosion result through experimental setup 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig -6: Corrosion result through image processing 

As evident from the above table and Figure 5 and Figure 6 
the results of corrosion percentage obtained through image 
processing are comparable with the experimental results 
obtained by half-cell potentiometer test. The results assembled 
from image processing offer a visual representation of corrosion 
patterns, enabling a comprehensive understanding of the 
distribution and severity of corroded regions along the 
reinforcement. This approach not only provides qualitative 
insights but also quantifies the corrosion percentage, facilitating 
a quantitative assessment akin to the traditional methods 
employed in the half-cell potential test. The confusion matrix 
shown in Figure 7 and Figure 8 also confirms that the model is 
running successfully and there are no True Negative (TN), False 
Positive (FP), False Negative (FN) within the model and all the 
results are indicating True Positive (TP) values. 
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Fig -7: Confusion Matrix 

 

 

 

 

 

 

 

 

Fig -8: Confusion Matrix True Positive 

The results derived from the image processing algorithm 
revealed a strong agreement with conventional half-cell 
potential measurements, demonstrating the reliability of digital 
approaches in corrosion quantification. For instance, Sample 1 
showed 0.46% corrosion at the electrode location and 11.29% 
along the complete rebar, corresponding well with a half-cell 
potential of -194 mV, which indicated a low (10%) probability 
of corrosion. Conversely, Sample 2 exhibited extensive 
degradation, with 67.34% corrosion at the electrode site and 
97.53% across the rebar, aligning with a half-cell potential of -
610 mV and a very high (90%) probability of corrosion activity. 
The image-based results consistently reflected localized 
variations in corrosion severity. In samples with low electrode-
based corrosion such as Sample 3 (0.74% corrosion, -187 mV), 
the program effectively captured the minimal spread along the 
rebar (4.52% corrosion overall). On the other hand, in severely 
deteriorated cases (e.g., Sample 19, 77.34% electrode corrosion; 
85.23% total; -514 mV), the technique successfully quantified 
the extensive rusted regions, demonstrating robustness across 
both low and high corrosion ranges. Overall, across the 20 tested 
rebars, the algorithm exhibited quantitative corrosion values 
comparable to half-cell results. The confusion matrix (Figures 
9–10) reinforced this finding by showing only True Positive 
(TP) classifications, confirming the absence of false detection 
errors. Importantly, the method offered spatially resolved 
visualizations of corroded regions, which are absent in half-cell 
measurements. This added layer of diagnostic detail is valuable 
for structural engineers, as it highlights not only the extent but 
also the distribution of corrosion. The slight discrepancies 
observed between the two methods, particularly in intermediate 
corrosion ranges (e.g., Samples 8–9 with 35–45% corrosion 
corresponding to 50% probability of activity), may be attributed 
to variations in surface rust visibility versus electrochemical 
activity. Nevertheless, the close numerical proximity 
demonstrates that image processing is not only suitable for 
qualitative detection but also capable of providing quantitative 
insight into corrosion progression 

 

 

4. CONCLUSION 
 

This study demonstrates that digital image processing 
algorithms can serve as a robust, non-destructive alternative 
to traditional corrosion detection methods in reinforcement 
bars. The proposed Python–OpenCV workflow, involving 
pre-processing, segmentation, thresholding, and contour 
analysis, achieved corrosion quantification results that closely 
matched those from half-cell potential testing. Key findings 
include:  

• Detection of corrosion ranging from as low as 0.46% 
(Sample 1 electrode site) to as high as 97.53% (Sample 2 
complete rebar), highlighting the method’s versatility across 
different damage levels.  

• A high degree of correlation with half-cell potential 
results, with consistent mapping of low (<200 mV), moderate 
(200–350 mV), and severe (>350 mV) corrosion risks.  

• Perfect classification accuracy in validation, as 
indicated by a confusion matrix with only True Positive outputs, 
ensuring that the algorithm did not misidentify non-corroded 
regions.  

• Enhanced visualization of corrosion distribution along 
rebars, providing engineers with more actionable insights than 
conventional point-based electrochemical tests. 

By integrating computational precision with field validation, 
this approach significantly reduces subjectivity and time 
consumption associated with manual inspections. Furthermore, 
its ability to quantify and spatially locate corroded regions can 
aid in predictive maintenance and extend the service life of 
reinforced concrete structures.  

In conclusion, the application of image processing 
techniques for corrosion detection yields results that 
demonstrate considerable comparability with findings obtained 
through the use of the half-cell potentiometer method. Through 
meticulous analysis and interpretation, the outcomes derived 
from image processing align closely with the data acquired via 
the traditional half-cell potential testing. The utilization of 
image processing algorithms, coupled with Python-based 
methodologies, showcases promising potential in accurately 
identifying and quantifying corrosion in reinforced concrete 
structures. The correlation between the results obtained from 
image processing and those acquired from the half-cell potential 
test signifies a notable convergence in evaluating the corrosion 
risk within these structures. 

Moreover, the complementary nature of these 
methodologies enhances the accuracy and reliability of 
corrosion assessment. The ability to cross-reference and validate 
outcomes from image processing with established techniques 
like the half-cell potential method strengthens the credibility of 
the corrosion evaluation process. Such convergence 
consolidates confidence in the results derived from image 
processing, affirming its potential as a valuable tool in structural 
integrity assessments. Overall, the congruence between the 
corrosion detection outcomes obtained from image processing 
techniques and those derived through the half-cell potential 
method underlines the efficacy and reliability of employing 
computational approaches. This convergence signifies a step 
forward in adopting innovative and complementary 
methodologies, bolstering the assessment accuracy and aiding 
in the comprehensive understanding of corrosion behavior in 
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reinforced concrete structures. Future research may expand this 
methodology through deep learning–based feature extraction, 
real-time field deployment, and integration with structural 
health monitoring systems. In summary, the congruence 
between digital image processing results and half-cell potential 
tests affirms the method’s reliability and paves the way for its 
adoption in routine corrosion assessment practices. 
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