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Abstract 

Non – linear Programming Applications are becoming increasingly important as managers and operations researchers 

become more sophisticated in implementing decision – oriented mathematical models, as well as computer routines 

capable of solving large – scale nonlinear problems become more widely available. By means of this paper, we 

investigate two of the very widely and varied NLP techniques, namely the Gauss – Newton method and the Quasi – 

Newton method. When computation or iteration is expensive, Quasi –Newton methods are an effective method for 

function optimization. Even if their precise approaches differ, when the issues are complicated, they can all determine 

the optimum more quickly and effectively than Newton's Method. Gauss – Newton can be used to locate a single point 

or, as it is most frequently use, to evaluate how well a theoretical model matches a collection of experimental data 

points. We get the most accurate estimates of the unknown variables in a theoretical model by solving the system of 

nonlinear equations. In this review we present an overview of the methods mentioned earlier, discuss the scope of them, 

and advocate a comparison between the two. 
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1. Introduction  

We have been taught how to solve problems using various algebraic techniques in elementary school. Some of the basic 

tactics which were taught to us were replacement and elimination procedures. In linear algebra, row reduction is one of 

the alternatives to solve systems of linear equations. No analytical methods are present which can be helpful for solving 

nonlinear systems of practical importance, such as engineering design optimization, solving equilibrium models, which 

are treated as complicated ODEs and PDEs. Many additional challenges for analytical techniques are presented to us by 

these non – linear situations. Iterative algorithms must be developed when using a single value decomposition method, 

initial estimates for solutions are improved until the function's value at such estimations converges to something. This 

increases the numerical mistakes in the context of nonlinear equations, where it is not practical to know how many 

possible solutions the system has. Additionally, only locally unique solutions may be successfully found using numerical 

approaches (explained later). The open methodology known as Newton's method (comprising of a single initial 

condition), is used to solve systems of equations of the type. There are many iterative techniques, including Bisection 

and false position method, but these call for two basic guesses in order to achieve the estimations. In this paper, we are 

giving a brief introduction and comparison between two of the most widely used methods of NLP: the Quasi – Newton 

method and Gauss – Newton method. In quasi – Newton techniques, we only estimate the Hessian using a positive – 

definite matrix B, which is updated from iteration to iteration using data derived from prior stages, rather than computing 

the actual Hessian. We can see right away that this technique would result in a significantly less expensive algorithm 

than Newton's method since we are mostly using already computed numbers rather than calculating a significant number 

of new quantities at each iteration. A common iterative technique for resolving nonlinear least squares issues is the 

Gauss – Newton algorithm. Issues with the assimilation of enormous diverging data that arise in weather and marine 

projections is particularly well suited to it. The approach consists of a series of "inner" direct or iterative processes that 

approximate the nonlinear issue using linear least squares in each step. The technique is intriguing because, unlike 

Newton's method and its adaptations, it does not necessitate the evaluation of descendant derivatives in the Matrix of 

the objective function. 

 

2. Method Description  

2.1 Quasi – Newton method 

 

2.1.1 Overview 

 

In Nonlinear Programming, Quasi – Newton Methods (QNMs) are a family of optimization techniques that are typically 

utilized when complete Newton's Methods are either too time – consuming or challenging to use. These techniques are 

more explicitly utilized to locate the global minimum of a twice – differentiable function f(x). For large – scale and 

intricate non – linear situations, Quasi – Newton Methods provide clear benefits over the complete Newton's Method. 

However, depending on the specific Quasi – Newton Method utilized and the issue being addressed, these approaches 

may have various shortcomings. Despite this, except for straightforward issues, Quasi – Newton Methods are often 

worthwhile to use. 

Newton's approach has drawbacks that Quasi – Newton methods avoid. Newton's law fails if H (k) is not positive 

definite, second derivatives are required, and a linear system must be solved at each iteration. Learn about limited-

memory quasi-Newton methods and more recent Quasi – Newton techniques. Overcome Newton's computational pitfalls 

preserve quick local convergence. 
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2.1.2 Description 

 

Due to the rarity of work, focusing on determining the square matrix of second – order partial derivatives of a scalar – 

valued function numerically using a function that is used to control the location is of utmost importance. However, the 

expense of computing the same is relatively high., hence efforts were undertaken to develop a more efficient technique 

to calculate the Hessian. Broyden (1969) provided a crucial idea that led to the development of the present quasi-Newton 

techniques: compute the new Hessian using data from the current iteration. 

Let 

sk = xm+1 − xm = αmδm 

be the parameter modification in the present cycle, and 

ηm = gm+1 − gmm 

be the slopes changing. Then, in the subsequent iteration, a natural estimate of the functional determinants the answer 

to the set of affine equations would be Hm+1. 

Hm+1δm = etam 

that is, Hm+1 is the proportion of the gradient's change to the parameters' change. The Quasi – Newton condition refers 

to this. This set of equations has several solutions. A second update was the approach that Broyden proposed. 

Hm+1 = Hm + uvt 

Other types of secant updates have been produced via further research, with the DFP and the BFGS being the most 

significant. The best performing approach is typically thought to be the BFGS: 

Hm+1 = Hm +   
𝑛𝑚 𝑛𝑚

𝑡  

  𝑛𝑚
𝑡 𝑠𝑚

 - 
𝐻𝑚𝑠𝑚 𝑠𝑚

𝑡 𝐻𝑚

 𝑠𝑚
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        = Hm +  
𝑛𝑚 𝑛𝑚
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the fact that Hmsm = αmHmδm = αmgm. The GAUSS function QNEWTON employs the BFGS technique. Instead of the 

Hessian itself, or R where H = RtR, the triangular decomposition of H is revised. H is not calculated anywhere in the 

iterations of QNEWTON. CHOLSOL is used to calculate the direction δm as a solution to 

Rt
mRmδm = gm 

where Rm and gm are its arguments, and Rm is the decomposition devised by Hm. Then Rm+1 is computed as an evolution 

and devolution to Rm using the hypergeometric function Cholesky Update and Cholesky Downdate. 
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2.2 Gauss – Newton  

2.2.1 Overview 

A common iterative technique for resolving nonlinear least squares issues is the Gauss – Newton algorithm. Particularly 

well adapted to it is the handling of outsized dynamic data assimilation problems that arise in climatic and marine trend 

analysis. The approach consists of a series of "inner" direct or iterative processes that approximate the nonlinear issue 

using linear least squares in each step. The method is intriguing as it doesn't demand the evaluation of the derivative of 

the first derivative of the given function in the Matrix of the objective function, unlike Newton's method and its 

variations. In order to lower calculation costs and provide real-time solutions, several approximations are used in place 

of the precise Gauss – Newton technique in meteorological forecasting since it is too expensive to use. Here, we 

investigate how the Gauss – Newton approximation approach, which is frequently employed in data assimilation, affects 

its convergence. We look at Gauss – Newton techniques that "truncate" the inner linear least squares issue. In addition 

to deriving rates of convergence for the iterations, we provide criteria guaranteeing that the shortened Gauss – Newton 

technique will converge. 

 

2.2.2 Truncated Gauss – Newton method 

 

The simultaneous least squares problem is too pricey theoretically to answer accurately in the first run of the method, 

which poses a significant challenge for the employment in wide range of uses like data gathering of the gradient 

descent method. 

The first foundation for regular matrices computations frequently has dimensions that are large even in factored form, 

the design values are incompatible with central storage space. Therefore, approximations inside the Gauss – Newton 

process are required in order to effectively address the entire complex problem in the anticipated period. There are two 

typical approximation kinds. First, an "inner" iteration approach that is trimmed before solving the linearized least 

squares results in a rough solution. 

We answer the standard problems at each step k of the Marquardt method. 

J(xk)
T J(xk)s = - J(xk)

T f(xk) 

when solving the rectilinear Linear regression equation iteratively. Intuitively, If the function f is non – linear and xk is 

distant from x*, it is not feasible to solve it with high precision. When the relative residual satisfies, the iterative 

procedure naturally comes to an end 

|| J(xk)
T J(xk)sk + J(xk)

T f(xk)||2/|| J(xk)
T f(xk)||2 ≤ βk. 

Here, the variable stands for the most recent estimate of the answer, and k is a defined tolerance. Due to this, the 

Truncated Gauss – Newton method is defined as follows.  

Truncated Gauss – Newton Algorithm (TGN) 

Step 0: Choose an initial x0 ∈ Rn
 

Step 1: Repeat until convergence: 

Step 1.1: Find sk such that 

(J(xk)
T J(xk))sk = - J(xk)

T f(xk) + rk,  
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 with ||rk||2 ≤ βk ||J(xk)
Tf(xk) ||2 

Step 1.2: Alter the previous action 

The tolerances variable where, k = 0, 1, 2… must be selected to guarantee overall convergence of the method to the 

nonlinear OLS's ideal x star. 

 Since they are beyond the purview of this paper's investigation, conditions ensuring the convergence approach are not 

discussed. 

3. Comparison between Quasi – Newton and Gauss – Newton methods 

Smoothness – constrained least – squares is a common method for the rotation of impedance data points in two 

dimensions and three dimensions. The Gauss – Newton method, which dynamically adjusts the Mathematical model of 

derivative for each iteration, is widely used to solve the minimum squares problem. 

The computer time has also been decreased by using the Quasi – Newton approach. In this approach, the first iteration 

uses the Hessian matrix, and the matrices for following runs computed using an ever – dynamic mechanism. The GN 

approach should converge faster since it employs accurate partial derivatives. However, the Quasi – Newton approach 

has the potential to be much quicker than the GN algorithm for a variety of data sets. The Gauss – Newton approach 

greatly outperforms the Quasi – Newton method in regions with high resistivity contrasts. 

4. Conclusion 

After an exhaustive rumination we presented a study of the two extensively used methods of Optimization in Nonlinear 

Programming. It has been observed that both the methods discussed in this paper are effective when tested only against 

experimental data and when they are applied to industrially beneficial commercial applications. The true extent and 

further implications of these methods are still under scrutiny and further studies in the methods can give an extent of the 

widespread implications of these methods.  
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