

Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Nutrient Analysis System Using Gen AI

Mohammed Azam¹ Mrs. Roopa R²

¹ Student, 4th Semester MCA, Department of MCA, BIET, Davanagere ²Assistant Professor, Department of MCA, BIET, Davanagere

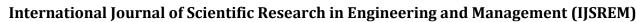
ABSTRACT

With the rise of lifestyle-related diseases and the growing emphasis on personalized healthcare, nutrition science is rapidly evolving through the integration of artificial intelligence (AI). Traditional nutrient analysis methods—requiring manual data entry and expert oversight—are often inefficient, time-consuming, and error-prone. This project proposes an AI-powered nutrient analysis system that leverages computer vision, machine learning, and generative AI to automate and personalize dietary recommendations. By analyzing food images, user preferences, and health data, the system can provide real-time insights into nutrient content and dietary patterns. It integrates wearable devices, health records, and food databases to offer adaptive meal planning and predictive nutritional guidance. The architecture combines semantic text analysis with deep nutritional modeling to ensure precision. This system aims to bridge the gap between nutrition science and modern technology, offering a scalable, accurate, and user-centric solution to improve health outcomes and support preventive healthcare through intelligent dietary monitoring.

Keywords: AI-powered nutrient analysis, personalized healthcare, preventive healthcare, nutrition science, computer vision, machine learning.

I. INTRODUCTION

Nutrition research aims to explore the connection between health and diet at both community and individual levels. The practice of nutrition, which involves providing essential elements to promote growth, development, and the prevention of chronic diseases, is increasingly reliant on AI for diagnoses, predictions, and data interpretation. Areas such as diet, physical activity levels, and the prevention of diet-related diseases are integral to nutrition research.


AI holds the promise of addressing numerous nutritional issues, including identifying causes and potential treatments related cardiovascular diseases, diabetes, cancer, and obesity. It can enhance our understanding of the intricate relationships between food and health, particularly the consequences of not maintaining a healthy diet. Generative AI- powered nutrient analysis systems can assess food consumption, evaluate nutrient content, and create personalized dietary recommendations tailored user preferences, health conditions, and dietary objectives.

Given its significant impact on human health, nutrition research is essential. Nutritionists can offer education and guidance on nutrition, as well as meal planning advice, while dietitians may manage medical conditions such as allergies, eating disorders, diabetes,

and kidney disease (among others) to ensure that an individual's nutritional needs are fulfilled. However, these services are undergoing substantial changes due to transformative technologies that include patient records, chatbots, and artificial intelligence (AI) to address health concerns. With the increasing worries surrounding diet, nutrition, and health, the demand for a comprehensive nutrient analysis system has become more critical.

II. LITERATURE SURVEY

This paper presents an approach for generating individual meal plans based on nutritional data. The system enables flexible, user-tailored diet recommendations that balance between simplicity and

IJSREM e Journal

Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

detail by a deep analysis of food calories, macro-, and micronutrients. The applicability of the system is easy for different dietary requirements but highly depends on detailed food data, and therefore, it can be accessible for use only to users who have acquired at least basic knowledge in nutritional science.[1]

The present paper introduces a system using machine learning to offer diet plans specifically for diabetic patients. The system gives real-time dynamic advice in respect to managing diabetes, such as analyses of the medical data like blood sugar and BMI. This special approach to diabetes management somewhat restricts wider application of the system to other health conditions.[2]

Machine learning in this research helps predict the risk of a person having diabetes by recommending the diet plan. They do so with models, including Decision Trees and Random Forests, that help with early intervention for people at risk. However, the accuracy depends on the quality of the data set, and its use is limited beyond diabetes management [3].

This paper uses deep learning in particular; we use LSTM networks for adaptive diet plans that can evolve according to the user's habits. This is a dynamic system and improves with time. Given that it is quite high in its computational resource demands, it suits tech-oriented users or advanced environments more.[4]

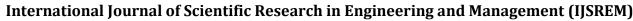
Build a hybrid food recommendation system for diabetic and hypertensive patients and provide diet charts maintaining low sugar and low salt balances. Extremely detailed as is, the present system is quite largely one of static data inputs with a dash of dynamics added to make it increasingly flexible towards the end user. Developed the Food Recipe Recommendation System to solve some of the daily problems in home cooking, such as meal selection according to ingredient availability and maintaining a healthy diet by considering all the essential nutrients. Here, the system implements image processing, K-Nearest Neighbors, and content-based filtering for

personal recommendation [5]

2.1 EXISTING SYSTEM

1. Manual Nutrient Analysis

Manual nutrient analysis necessitates that users document their food consumption, approximate portion sizes, and compute nutrient values using established food databases. This method is extremely time- intensive and susceptible to human mistakes, which can result in inaccuracies in calorie and nutrient tracking. Users are required to manually look up nutritional data, which can pose challenges when consuming homemade or restaurant meals. Conventional approaches


depend on generalized values that fail to consider differences in cooking techniques or ingredient quality. Furthermore, manual analysis does not provide real-time tracking, complicating the efficient monitoring of daily dietary intake. The lack of automation means that users must depend on external resources or personal judgment for nutrient evaluation. Over time, this process can become monotonous, discouraging users from consistently tracking their diet. To enhance accuracy and ease of use, AI-driven automation is essential for contemporary nutrition tracking systems [1].

2. Limited Personalization

Current nutrient analysis tools generally create diet plans based on fundamental parameters such as age, gender, and weight. Nevertheless, they do not offer extensive personalization that takes into account genetic information, lifestyle choices, and health conditions. This shortcoming leads to generic dietary recommendations that may not be appropriate for individuals with particular dietary requirements or health objectives[2].

3. Static Databases

Most current nutrient analysis tools depend on established food databases that do not automatically refresh with new research or user-contributed data. These databases frequently contain outdated or incomplete nutritional details, resulting in inaccurate dietary evaluations.

IJSREM Le Jeurnal

Volume: 09 Issue: 08 | Aug - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

Furthermore, they do not consider regional food differences, ingredient substitutions, personalized recipes, which restricts their usefulness. Consequently, users may receive misleading nutrient calculations that do not accurately represent their actual dietary consumption. Static databases also neglect to integrate emerging research on nutrition, rendering the recommendations less trustworthy time.[3]

4. Lack of AI-Driven Insights

Numerous existing nutrition tracking applications depend on basic calorie counting without utilizing AI-driven predictive analytics. These systems do not offer significant insights into the long-term effects of dietary habits on overall health. In the absence of machine learning algorithms, they are unable to identify patterns in eating behavior or forecast potential nutrient deficiencies. Users are presented with raw data instead of actionable recommendations, complicating the implementation of effective dietary modifications. Moreover, traditional systems do not employ AI to create adaptive meal plans based on evolving health conditions or preferences. This deficiency in intelligence diminishes the system's capacity to provide proactive nutritional guidance.[4]

5. Time-Consuming & Inefficient

Conventional methods for nutrient analysis necessitate that users manually input meal information, search for nutritional data, interpret the results. This procedure is not only laborious exceedingly but also inefficient, particularly for those with hectic schedules. In the absence of automation, users are required to invest considerable time in logging each meal and crossreferencing nutrient values. The manual method frequently results in inconsistencies, as users might overlook entering meals or inaccurately gauge portion sizes. Furthermore, the lack of intelligent automation complicates the tracking of nutritional intake over prolonged periods. As a result of these inefficiencies, numerous users discontinue manual tracking methods after a brief period. Solutions powered by AI can resolve this problem by automating data entry, identifying food items, and delivering immediate nutritional analysis.[5]

2.2 PROBLEM STATEMENT

1. Inefficiency in Traditional Nutrient Analysis

Traditional methods of nutrient analysis are characterized by inefficiency, necessitating manual input and expert oversight. Users are required to document their food consumption, estimate serving sizes, and seek out nutritional data, which can lead to inaccuracies. The absence of automation results in labor-intensive procedures that deter consistent dietary monitoring. Furthermore, in the absence of AI-driven support, users find it challenging to obtain precise, real-time feedback regarding their habits. These inefficiencies render eating traditional approaches less viable for those in pursuit of accurate and effective nutritional advice.

2. Lack of AI-Powered Personalization

Current systems are deficient in AI-driven personalization, rendering them ineffective in catering to individual dietary requirements. They fail to take into account genetic information, lifestyle choices, or health conditions when formulating diet plans. Consequently, users are provided with generic suggestions that may not meet their unique needs. Moreover, conventional systems do not offer real-time food identification or automated nutritional evaluation, which restricts their precision. AI-enhanced solutions have the potential to fill this void by delivering tailored insights and flexible meal recommendations.

PROPOSAL SYSTEM

1. AI-Driven Nutrient Recognition

The proposed system will employ AI- based computer vision and machine learning techniques to identify food items and assess portion sizes. By utilizing deep learning models, it will evaluate images of meals to ascertain their nutritional content. This method removes the necessity for

Volume: 09 Issue: 08 | Aug - 2025

SJIF Rating: 8.586

wellness and disease prevention. AI-driven manual data entry, thereby accelerating nutrient analysis and enhancing accuracy. Furthermore, the suggestions will improve the efficacy of diet system will perpetually refine its recognition management by taking into account real-time precision by learning from user inputs and food physiological variations.[4] databases. Real-time food identification will improve the user experience by delivering

2. **Gen AI-Driven Personalization**

immediate nutritional feedback.[1]

The system will produce customized dietary recommendations based on user preferences, genetic markers, health history, and lifestyle factors. AI models will scrutinize user data to formulate personalized meal plans that adjust to evolving dietary requirements. In contrast to conventional methods, the system will take into account metabolic rate, activity level, and medical conditions when providing recommendations.[2]

3. **Automated Data Processing**

The system will incorporate natural language processing (NLP) and AI-driven automation to extract nutrient information from food descriptions, restaurant menus, and product labels. This will enable users to obtain real-time nutritional analysis without the need for manual information searches. Automated processing will improve accuracy by minimizing human error in data entry. Additionally, the system will leverage AI to verify food labels against existing databases to guarantee current nutrient values. By automating data extraction, users will gain immediate insights into their dietary intake.[3]

4. **Health and Wellness Integration**

The system is designed to connect with wearable devices and health monitoring applications to deliver real-time insights regarding dietary consumption and nutrient shortfalls. It will monitor user activity, track biometric information, and recommend dietary modifications as needed. By evaluating ongoing health data, the system will provide proactive nutritional advice customized to the user's lifestyle. This integration aims to assist users in optimizing their diet for comprehensive

III. METHODOLOGY

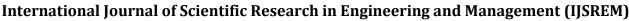
The proposed Nutrient Analysis System Using Gen AI follows a multi-stage methodology that integrates computer vision, machine learning, and generative AI to provide accurate and personalized nutritional insights. The methodology is designed to automate food recognition, extract nutrient data, and offer AI-driven dietary recommendations. The major phases are as follows:

DATA COLLECTION AND 3.1 **PREPROCESSING**

The system collects data from multiple sources, including:

- User-uploaded food images
- Health records and wearable device outputs
- Restaurant menus and packaged food labels
- Public and proprietary food nutrient databases such as USDA FoodData Central

The collected data undergoes preprocessing steps such as:


- Image normalization and resizing for computer vision models
- Cleaning and encoding of textual and categorical data
- Removal of duplicate and irrelevant entries
- Handling missing values using imputation techniques

FOOD RECOGNITION USING 3.2 **COMPUTER VISION**

A convolutional neural network (CNN)-based computer vision model is employed to:

Detect and classify food items from

© 2025, IJSREM www.ijsrem.com DOI: 10.55041/IJSREM52006 Page 4

IJSREM Le Jeurnal

Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

uploaded images

- Estimate portion sizes using depth estimation and pixel analysis
- Map recognized items to known food categories in the nutrient database

Transfer learning is applied using pre-trained models such as InceptionV3 or ResNet to improve recognition accuracy on food datasets.

3.3 NUTRIENT ANALYSIS USING NLP AND AI MODELS

Natural Language Processing (NLP) techniques are applied for:

- Extracting nutritional data from food descriptions and labels
- Performing semantic analysis on foodrelated texts using tools like Word2Vec and TF-IDF
- Matching food names and synonyms to database entries using Levenshtein Distance, Jaccard Similarity, and BM25 ranking

AI models are used to compute detailed nutrient values based on recognized items, portion sizes, and preparation methods.

3.4 PERSONALIZED DIETARY RECOMMENDATIONS USING GENERATIVE AI

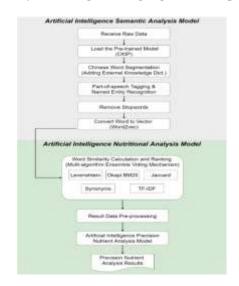
Generative AI models are leveraged to generate user-specific meal plans based on:

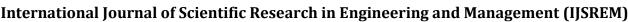
- User profile (age, weight, height, gender, activity level)
- Medical history and dietary restrictions
- Nutrient deficiencies and health goals
- Real-time inputs from wearable health devices

Content-based and collaborative filtering recommendation systems are integrated to enhance personalization. These models adapt over time by learning from user interactions and preferences.

3.5 SYSTEM INTEGRATION AND REAL-TIME FEEDBACK

The entire pipeline is integrated into a crossplatform application, enabling:


- Real-time food scanning and analysis
- Visual nutrient breakdown and alerts for deficiency or excess intake
 - Secure user authentication and data storage
- Compatibility with mobile and web platforms and synchronization with health monitoring devices


IV. SYSTEM REQUIREMENT SPCIFICATION

4.1 FUNCTIONAL REQUIREMENTS

- AI-powered food identification for automated nutrient assessment.
- Customized meal suggestions based on health information.
- Compatibility with wearable technology for real-time monitoring .
- Automated retrieval of nutritional details from food packaging .
- AI-enhanced predictive analysis for dietary understanding .
- User verification for secure data access.
- Cross-platform availability through web and mobile applications .

4.2 ARCHITECTURE DIAGRAM

Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-39

4.3 ARCHITECTURE OVERVIEW

4.3.1 Artificial Intelligence Semantic Analysis Model (Text Processing)

- Receives Raw Data: The system accepts unprocessed text input.
- Loads Pre-trained Model (CKIP): Utilizes CKIP, a Chinese NLP toolkit, for text processing.
- Chinese Word Segmentation: Divides text into significant word units, using an external knowledge dictionary.
- Part-of-Speech Tagging & Named Entity Recognition (NER): Recognizes grammatical roles and named entities (e.g., food names, ingredients).
- Removes Stopwords: Eliminates common words that do not add meaning.
- Converts Words to Vectors (Word2Vec): Changes text into numerical vectors for subsequent processing .

4.3.2. ARTIFICIAL INTELLIGENCE NUTRITIONAL ANALYSIS MODEL (ANALYSIS & PREDICTION)

• Word Similarity Calculation & Ranking (Ensemble Method): Employs various NLP algorithms to assess similarity.

Levenshtein Distance: Evaluates character- based differences .

Okapi BM25: A ranking function utilized for text retrieval.

- Jaccard Similarity: Assesses common elements between sets.
- Synonyms Matching: Verifies similar words. TF-IDF: Evaluates term significance.
- Result Data Pre-processing: Refines text data for final analysis.
- AI Precision Nutrient Analysis Model: Leverages AI to ascertain precise nutritional information .
- Precision Nutrient Analysis Results:
 Produces the final nutrient analysis.

IMPLEMENTATION

The recommendation system was implemented using Python, leveraging its extensive libraries for data processing and machine learning. Initially, the dataset containing user preferences and item details was collected and thoroughly preprocessed by removing duplicates, handling missing values, and encoding categorical variables where necessary. Once the data was cleaned, feature extraction techniques were applied to identify For meaningful patterns building content-based recommendation model, both filtering and collaborative filtering approaches were explored. Content-based filtering analyzed the item attributes to suggest similar products, while collaborative filtering utilized user-item interaction data to predict preferences identifying similarities between users or items .The model's performance was assessed using evaluation metrics such as Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), ensuring its accuracy and reliability. Finally, the system was integrated into a simple user interface, allowing users to receive personalized and accurate recommendations based on their historical interactions and preferences.

V. REFERENCES

- Thomas Pikes, Robert Adams.
 Computational Nutrition: An Algorithm to Generate a
 Diet Plan to Meet Specific Nutritional Requirements.
- Nadia Tabassum, Abdul Rehman. Intelligent
 Nutrition Diet Recommender System for Diabetic

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Patients.

3. Shraddha Mithbavkar. Diet Planner Using Deep Learning.

4. Abraham Evwiekpaefe, Mariam Ugbede

Akpa, Oghenegueke Fortune

Amrevuawho. A Food Recommender System for

Patients with Diabetes and Hypertension

5. Sharma, P.P., Gupta, A., Parmar, H.,

Patidar, D., Rana, K., & Dave, D. (2021). Food Recipe

Recommendation System. Smart Computing.