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ABSTRACT 

This paper is concerned with the dynamical problem of an infinite type-III which occurs a finite linear mode-I crack 

due to load inside the homogeneous and isotropic medium of thermoelastic space. The temperature distribution and 

stress leads to the crack in the boundary. The basic governing equation developed by Green and Naghdi have been 

solved by using integral transform and reduces to four dual integral equation by employing boundary conditions which 

is equivalent to Fredholm’s integral equation of first kind. For numerical solution inversion of Laplace transform has 

been used. 
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1.1 Introduction 

Biot [2] investigated the coupled thermoelasticity to remove the paradox inherent in the classical theory that elastic 

changes have no effect on the temperature. This theory, based on firm grounds of irreversible thermo-dynamics, had 

been widely assuming to study the coupling effects of elastic and thermal effects. The detailed discussions and 

applications of Biot’s theory have been discussed by some researchers, such as Chadwick [8], Carlson [5], Nowinski 

[1], Nowacki [6], Dhaliwal and Singh [3], Parkus [7], Boley and Wiener [4]. One of the earliest development of a 

second sound theory for thermoelasticity was reported by Fox [9]. The generalized theories were specially formulated 

to Lord and Shulman [10] developed the theory of generalized themoelasticity with one relaxation time parameter for 

the special case of an isotropic medium. Two thermal relaxation time were introduced in the theory elaborated by 

Green and Lindsay[11]. The book “thermoelasticity with finite wave speeds” by Ignaczak and Ostoja-Starzewski[12] 

addressed a detailed analysis of the generalized thermoelasticity theory. During the period (1986-1999), 

Chandrashekhariah [13, 14] and Hetnarski and Ignaczak [15] also investigated review articles. 

Subsequently, Green and Naghdi [16-18] described theories of thermoelasticity in different types like GN-I, G-II and 

GN-III. GN-I model corresponds to the classical thermoelastic model. In GN-II model, the internal rate of production of 

entropy is considered to be identically zero i.e., there is no decadence of thermal energy. It admits undamped 

thermoelastic waves in a thermoelastic material which is referred as the theory of thermoelasticity without energy 

dissipation. In GN-III model, Fourier law of heat conduction is generalized in the form of equation  

q   P, t    [K T   P, t     K *    P, t  ]   0 , 

where  the thermal displacement gradient is satisfying  and the two material constants K and K* are the 

thermal conductivity and the rate of thermal conductivity respectively. 

The thermoelasticity theories reported by Green and Naghdi have drawn the attention of several researchers during last few 

years. Puri and Jordon [14], Kothari and Mukhopadhyay [42], Kovalev and Radayev [43] have investigated the harmonic 

plane wave propagating in thermoelastic medium of type III in a detailed way. The variational reciprocity theorems in the 

contexts of linear theory of thermoelasticity of type-II and type-III are developed by Mukhopadhyay and Prasad [44] and 

Chirita and Ciarletta [45]. Quintanilla [46] and Quintanilla and Straughan [47] have established the growth of solutions and 

uniqueness theorem in the contexts of both the thermoelasticity type-II and III theories. The nature of discontinuity waves 

propagating in type-III thermoelastic media has been reported by Quintanilla and Straughan [48]. 
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Over the years, significant efforts are taken to study the cracks and failures in solid which has great deal in various 

engineering industries like aerospace, aircraft fuselage, wings, earthquake engineering, fabrication of electronic 

components and geophysics. Mostly, dynamical problem creates non-homogeneity of the body i.e. crack are done using 

the equations of coupled theories of thermoelasticity. The application of mathematical theory of homogeneous elastic 

solids to real substances may lead to error, unless the smallest material load involved. Considering two-dimensional 

crack problems constituted by a line segment was developed by Griffith [19]. In two dimension, there are three types 

of cracks in three different modes like Mode-I, II and III. In Mode-I, Griffith studied crack in a solid medium of the 

length 2a due to tensile force in the direction perpendicular to the line of the crack. In case of opening crack, Mode-1 

represents a symmetric opening the displacement of the surface medium being normal to the crack region, Irwin [20]. 

Florence and Goodier [21] discussed the flow-induced thermal stresses in the infinite isotropic solids. Several 

researchers Choudhuri and Ray [22], Prasad and Aliabadi [23], Sih [24], Raveendra and Banerjee [25], Kassir and 

Bergman [26] have investigated crack problems in thermoelastic medium. Mallik and Kanoria [27] investigated a 

unified way generalized thermoelasticity problem formulation to the a penny-shaped crack analysis. Recently, Sherief 

and El-Maghraby [28], Prasad and Mukhopadhyay [29], and S. Kant et al.[30] have enumerated the opening mode 

crack problem of infinite thermoelasticitic medium in the context of Lord-Shulman’s [11] and Green-Naghdi’s [18] 

theory respectively. Furthermore, Lotfy [31] studied on plane waves for Mode-I crack problem in generalized 

thermoelasticity. 

 

1.2 Formulation of the problem: 

In this present work, we construct a dynamical problem for an infinite elastic medium  

with a crack on the  The crack region is subjected to the temperature and normal stress distributions. 

The equations of motion are 

  (1)   

   (2) 

The heat conduction equation, (Green and Naghdi) type-III [18] 

  (3) 

The following constitutive relations supplement the above mention equations 

  (4) 

  (5) 

  (6) 

where   and are Lame’s elastic constants,  is the coefficient of linear thermal expansion,   

is the density of the material, T is the absolute temperature,   is the reference temperature, K is the thermal 

conductivity, K* is the rate of thermal conductivity,  is the specific heat at constant strain or volume, u is 

horizontal displacement along x direction, v is the vertical displacement along y direction,  are the stress 

components,  is the Laplacian operator, t is the time and  is the cubical dilatation given by : 

 (7) 

For the sake of simplicity, we use the following non-dimensional quantities/ variables as Sherief and El-

Maghraby [28] 
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, , , , ,   

With  , where  is the speed of propagation of longitudinal elastic  

waves. Now from above mention non-dimensional quantities, then Eqs. (1)-(6) reduce to the following forms 

   (8) 

 (9) 

 (10) 

 (11) 

 (12) 

 (13) 

where,  ,    

Using Eq.(7), eliminating  and from Eqs.(8) and (9), we finally obtain  

 , (14) 

where,  

1.2 Solution in the Laplace transform domain: 

Applying the Laplace transform to both sides of Eqs. (7)-(10) and (14), we obtain  

 (15)   

 (16) 

 (17) 

 (18) 

 (19) 

Now eliminating  from Eqs.(18) and (19), we obtain the differential equation satisfied 

by   as 

  (20) 

where  and  are thr roots with real parts of the following bi- quadratic equation 

  (21) 

where,  

We can write , the solution of Eq. (20), in the following standard form  
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Where  is the solution of the equation given as  

    (22)            

1.3 Solution in the Fourier transform domain: 

Applying the exponentional Fourier transform to both sides of Eq. (22), we get 

  (23) 

where,  

 The solution of Eq. (23) is bounded at infinity can be obtained in the following form 

  (24a) 

Where,    and  is the parameter which depends on of  and  for  For the case of 

symmetry, we take the  Then above Eq. (24a) can be expressed as : 

  (24b) 

In a similar way, now eliminating  from Eqs.(18) and (19), we get  

            (25) 

   are also which depend only on q and p. 

Therefore, substituting from Eqs. (24b) and (25) into Eq. (19), we get the equation which relates the  and 

 for  in the following expression; 

  (26) 

Therefore, putting Eq. (26) into Eq. (25), we find 

  (27) 

Now, we use exponential Fourier transform to Eqs. (16) and (17) to obtain  

 (28) 

 (29) 

Taking Eqs. (24) and (27), Eqs. (28) and (29) reduces to  

 (30) 

 (31) 

The solution  of equation (30) has the form 

  (32) 

where,  and  is a parameter depending on q and p. 

Applying the exponential Fourier transform w.r.t. x to both sides of above Eq.(15),  

We obtain 

  (33) 

With help of Eqs.(27) and (32) along with the integration w.r.t. y Eq.(33) is rewritten as : 
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  (34) 

Taking the Laplace transform and then exponential Fourier transforms to both sides of Eqs.  

(11)-(13) and using the main results of Eqs. (24), (27), (32) and (34), we can write the stress  

Components in the Laplace and Fourier transform domain in the following expression 

 (35) 

 (36) 

 (37) 

Taking the inverse Fourier transform of Eqs. (24), (27), (32) and (34) –(37), we Obtain solution in the Laplace 

transform domain. 

 (38) 

 (39) 

 (40) 

 (41) 

 (42) 

 (43) 

 (44) 

1.5 Boundary condition: 

 Now, we consider the boundary conditions for heat conduction problem at as 

 (45) 

 (46) 

 (47) 

 (48) 

 (49) 

where,  is the Heaviside unit step function. 

1.6 Dual integral equation formulation: 

 Now, using the boundary conditions given by above Eqs. (45) and (47), Eq.(38) is rewritten as below : 

 (50) 

 (51) 

and using the boundary conditions Eqs.(46), (48) and (49). Eqs.  (41),(43) and (44) are written  as below : 
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 (52) 

 (53) 

         (54) 

Now  from Eq. (54), we obtain : 

  (55) 

 Then, using Eq.(55) and for the case symmetry of the problem to consider  only intervals  and  

(see Ref.[28]), Eqs.(50)-(53) are written as below : 

     (56) 

   (57) 

   (58) 

   (59) 

 Eqs.(56) –(59) from a set of four dual integral equations. From above equations, we can find the unknown 

parameters  and  and the solve these dual integral equation, we follow the (Sherief and El-Maghraby [28]), from 

which we assume the following 

            (60) 

Where  is the Bessel function of the first kind with order zero and  are functions of  

Parameter  and  only. Now  substituting the value  from Eq. (60) into Eq.(56),  

  After changing order of integration, we get the following equation  

   (61) 

Eq. (61) reduces to 

  (62) 

Eq. (61) reduces to  

                     

 Multiply the above equation with   and integrate w.r.t. x from  to  after changing the order of integration 

and differentiating the final equation, we obtain : 

          (63) 

where,  (64) 
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Multiply both sides of above Eq. (63) by   and integrate w.r.t.  from  to  

We finally get  

                                                  (65) 

Where,  (66) 

 For  obtaining the similar relation Eq. (65) between  and  for the case when 

 we finally obtain 

,    (67) 

Now, using Eq.(62) into Eq. (57) and after changing the order of integration, we get  

  

In similar manner follows, multiply both sides of the above relation by  and integrate  

w.r.t.  from  to  After changing the order of integration and with the help of Eq. (67), 

we finally obtain 

      (68) 

using  Eq. (65) into Eq. (59), we obtain  

 (69) 

Where,   

 (70) 

Substituting from Eq.(68) into Eq.(58), we get 

 (71) 

 We have replaced the four dual integral Eqs.(56)- (59) in the parameters  and  are  

Obtained to only two dual integral from Eqs. (69) and (71) in the parameter   

1.7 Solution of the dual integral equations: 

For solving the above mention two integral Eqs. (69) and (71), we take the substitution [28]: 

 (72) 

Therefore, from Eqs. (69) and (71) are reduced into the following expressions  

 (73) 

 (74) 

In order to mention for all values of  we are extending the definition of the integral  

which is in Eq. (74) manner: 
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 (75) 

Where,  is a function which has to be determined. 

We see that left side of Eq.(75) is just the Fourier cosine transform of the function  

Therefore, by using the Fourier transform formula [26,35,36] we obtain  

 (76) 

Now using integration by parts and followed by changing the order of integration to solve  

above Eq. (76), we have  

  (77) 

Using the formula [35, 36] 

                     

We can write  in the form  

  (78) 

Now, substituting from equation (78) into equation (73), we get  

  (79) 

where,  

To solve the integral equation Eq.(79) numerically, we follow the regularization method [37]. For inverting the 

Laplace transforms, we employ a numerical method used by Bellman et. al. [32]. 

1.8 Numerical results: 

We have considered the copper material having the opening mode crack (Mode-I) with  

unit length. The material constants are taken as follows Sherief and El-Maghraby[28]: 

  

  

. 
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 Fig 1.1   Temperature distributions at the vertical distance  

 

 

Fig 1.3   Vertical  stress distributions at the vertical distance  

 

 Fig 1.2   Stress distributions at the vertical distance  
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Fig 1.4 Horizontal displacement distributions at the vertical distance y = 0 .3 

 

  

1.5 Vertical displacement distributions at the vertical distance y = 0 .3 

 

 

1.9 Conclusion: 

In this work, we investigated a dynamical problem of an infinite two-dimensional elastic medium with a crack of 

Mode-I type in the contexts of thermo elasticity theory, namely Green and Naghdi [28]. The temperature and impact 

loading are considered at the boundary of the crack region inside the medium. Laplace and Fourier transform 

techniques are used to solved above the problem. We obtain the four dual integral equations which are reduced into 

two dual integral equations. The dual integral equations are solved by using the regularization method and a Bellman 

method is used to inverted the Laplace transform numerically to obtain the final solution of the above mention 

problem. The most important part of the analysis is the study of behavioral changes of the horizontal and vertical 

stresses in the vicinity of the crack. Therefore, it may be concluded that the study of thermoelastic interaction in the 

elastic medium in the presence of a crack will benefit the scientist working in the area of thermoelasticity. 
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