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ABSTRACT

This paper is concerned with the dynamical problem of an infinite type-III which occurs a finite linear mode-I crack
due to load inside the homogeneous and isotropic medium of thermoelastic space. The temperature distribution and
stress leads to the crack in the boundary. The basic governing equation developed by Green and Naghdi have been
solved by using integral transform and reduces to four dual integral equation by employing boundary conditions which
is equivalent to Fredholm’s integral equation of first kind. For numerical solution inversion of Laplace transform has
been used.

Keywords: Dynamical problem, Thermoelasticity, type-11I, mode-I crack, Fredholm’s integral equation, Inversion of
Laplace transform etc.

1.1 Introduction

Biot [2] investigated the coupled thermoelasticity to remove the paradox inherent in the classical theory that elastic
changes have no effect on the temperature. This theory, based on firm grounds of irreversible thermo-dynamics, had
been widely assuming to study the coupling effects of elastic and thermal effects. The detailed discussions and
applications of Biot’s theory have been discussed by some researchers, such as Chadwick [8], Carlson [5], Nowinski
[1], Nowacki [6], Dhaliwal and Singh [3], Parkus [7], Boley and Wiener [4]. One of the earliest development of a
second sound theory for thermoelasticity was reported by Fox [9]. The generalized theories were specially formulated
to Lord and Shulman [10] developed the theory of generalized themoelasticity with one relaxation time parameter for
the special case of an isotropic medium. Two thermal relaxation time were introduced in the theory elaborated by
Green and Lindsay[11]. The book “thermoelasticity with finite wave speeds” by Ignaczak and Ostoja-Starzewski[12]
addressed a detailed analysis of the generalized thermoelasticity theory. During the period (1986-1999),
Chandrashekhariah [13, 14] and Hetnarski and Ignaczak [15] also investigated review articles.

Subsequently, Green and Naghdi [16-18] described theories of thermoelasticity in different types like GN-I, G-1I and
GN-III. GN-I model corresponds to the classical thermoelastic model. In GN-II model, the internal rate of production of
entropy is considered to be identically zero i.e., there is no decadence of thermal energy. It admits undamped
thermoelastic waves in a thermoelastic material which is referred as the theory of thermoelasticity without energy
dissipation. In GN-III model, Fourier law of heat conduction is generalized in the form of equation

q Rt I [KCT B¢ 1 K [u[rRtNLO,

where U the thermal displacement gradient is satisfying U =T and the two material constants K and K* are the
thermal conductivity and the rate of thermal conductivity respectively.

The thermoelasticity theories reported by Green and Naghdi have drawn the attention of several researchers during last few
years. Puri and Jordon [14], Kothari and Mukhopadhyay [42], Kovalev and Radayev [43] have investigated the harmonic
plane wave propagating in thermoelastic medium of type III in a detailed way. The variational reciprocity theorems in the
contexts of linear theory of thermoelasticity of type-1I and type-1ll are developed by Mukhopadhyay and Prasad [44] and
Chirita and Ciarletta [45]. Quintanilla [46] and Quintanilla and Straughan [47] have established the growth of solutions and
uniqueness theorem in the contexts of both the thermoelasticity type-1I and III theories. The nature of discontinuity waves
propagating in type-III thermoelastic media has been reported by Quintanilla and Straughan [48].
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Over the years, significant efforts are taken to study the cracks and failures in solid which has great deal in various
engineering industries like aerospace, aircraft fuselage, wings, earthquake engineering, fabrication of electronic
components and geophysics. Mostly, dynamical problem creates non-homogeneity of the body i.e. crack are done using
the equations of coupled theories of thermoelasticity. The application of mathematical theory of homogeneous elastic
solids to real substances may lead to error, unless the smallest material load involved. Considering two-dimensional
crack problems constituted by a line segment was developed by Griffith [19]. In two dimension, there are three types
of cracks in three different modes like Mode-I, II and III. In Mode-I, Griffith studied crack in a solid medium of the
length 2a due to tensile force in the direction perpendicular to the line of the crack. In case of opening crack, Mode-1
represents a symmetric opening the displacement of the surface medium being normal to the crack region, Irwin [20].
Florence and Goodier [21] discussed the flow-induced thermal stresses in the infinite isotropic solids. Several
researchers Choudhuri and Ray [22], Prasad and Aliabadi [23], Sih [24], Raveendra and Banerjee [25], Kassir and
Bergman [26] have investigated crack problems in thermoelastic medium. Mallik and Kanoria [27] investigated a
unified way generalized thermoelasticity problem formulation to the a penny-shaped crack analysis. Recently, Sherief
and El-Maghraby [28], Prasad and Mukhopadhyay [29], and S. Kant et al.[30] have enumerated the opening mode
crack problem of infinite thermoelasticitic medium in the context of Lord-Shulman’s [11] and Green-Naghdi’s [18]
theory respectively. Furthermore, Lotfy [31] studied on plane waves for Mode-I crack problem in generalized
thermoelasticity.

1.2 Formulation of the problem:

-

In this present work, we construct a dynamical problem for an infinite elastic medium —oo < x < oo, —oo <y < o9,
with a crack on the |x| =< @, ¥ = 0. The crack region is subjected to the temperature and normal stress distributions.

The equations of motion are

ay 7 aT 8%u
A+m) o +uVu—y=p2 (1)
aY 2, 9T _ 8
A+ g +uaViv—y - =pa (2)
The heat conduction equation, (Green and Naghdi) type-III [18]
e K2V = pp BT g B
(K +Kar)? T'=pe, e +1To 8t )
The following constitutive relations supplement the above mention equations
Opx = 2HU, T AY — F(T - Tl}j (4)
gy = 2pv, +AY —y(T — T) ()
du dv
Ty = I (E + E) (6)

where 4 and & are Lame’s elastic constants, ®: is the coefficient of linear thermal expansion, ¥ = (34 +2p)a,, p
is the density of the material, T is the absolute temperature, Ip is the reference temperature, K is the thermal
conductivity, K is the rate of thermal conductivity, ©» is the specific heat at constant strain or volume, u is
horizontal displacement along x direction, v is the vertical displacement along y direction, ;; are the stress
components, V7 is the Laplacian operator, ¢ is the time and ¥ is the cubical dilatation given by :

Bu dv
y=2u,2 ©
For the sake of simplicity, we use the following non-dimensional quantities/ variables as Sherief and El-

Maghraby [28]
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— — E.L _T-T;
x'=cmx, v =y, =cpqu v’ = e t' = cl:r;rt r:r #,5' =
o
c A+2u
With =22 ¢, = [===£ where ¢ is the speed of propagation of longitudinal elastic
x 't "-.|| P 1

waves. Now from above mention non-dimensional quantities, then Egs. (1)-(6) reduce to the following forms

5 8%u

(rx'—lj—+?u—b +|:x' 3= v
(a '—l]_‘|"IF v=>b — +ﬂ::zrf Y
AP g

(ﬂ,,} +§) Ve =§(5'+ b,Y) 1o
JI=EILI+(QZ_EJY_1}19 (11)
0,y = 2v, + (a®* —2)Y — b, 6 (12)
Oxy = Uy + Va -

_ - YTy — L 2 — .l+:,'.'!

where, a, = P T b, En @ wo

Using Eq.(7), eliminating ¥ and 1 from Eqgs.(8) and (9), we finally obtain
2 B\ 2
(v2—3=)y =cvie, (14)

b,
where, ¢ = —.
o

1.2 Solution in the Laplace transform domain:

Applying the Laplace transform to both sides of Egs. (7)-(10) and (14), we obtain

= av

Y= ax+a} (15)

by 3~ (a® = 1) 5 = (V* —a®p?it (16)
28 2 Y _ oz 2 a2y

bla_;;_ a —1]3—}_— (V- —a“p-)v (17)

[(ag +p)V? — p%]6 = p*b,¥ (18)

(V2 —p?)T = V28 (19)

Now eliminating Y from Eqgs.(18) and (19), we obtain the differential equation satisfied
by & as
(V2 —m}))(V*—md)d =0 (20)
where mi and m::' are thr roots with real parts of the following bi- quadratic equation
(ag+p)m* —p*(L+ay+p+e)m® +p*=0 (21)
where, € = cb,.
We can write 8, the solution of Eq. (20), in the following standard form

§=§1+ 2
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Where é:‘ is the solution of the equation given as

(VP—m2)d, =0, i=1,2 (22)
1.3 Solution in the Fourier transform domain:
Applying the exponentional Fourier transform to both sides of Eq. (22), we get

[D* = (m? +47)]6; =0, (23)
where, D = E%.
The solution of Eq. (23) is bounded at infinity can be obtained in the following form

0; = G,(q,p)(m} —p?)e i (24a)

Where, fjri: =g~ + mf and G;(g,p) is the parameter which depends on of g and p for i = 1,2. For the case of
symmetry, we take the ¥ = 0. Then above Eq. (24a) can be expressed as :

9 = 6,(q.p)(m} —p*e™ ¥ (24b)
In a similar way, now eliminating 8 from Eqgs.(18) and (19), we get Y= ?I + ?f-’,

Y'=G!(q.p)e 7, i=12. (25)
G!(g,p), i = 1,2 are also which depend only on q and p.

Therefore, substituting from Egs. (24b) and (25) into Eq. (19), we get the equation which relates the G;(g.p) and
G!(q,p) for i = 1,2 in the following expression;

Gi(q,p) = em;G;(q.p) (26)
Therefore, putting Eq. (26) into Eq. (25), we find
Y = cG,(q.p)mie ™ 27

Now, we use exponential Fourier transform to Egs. (16) and (17) to obtain

(D% — g% — a®p?)it* = qb,8* — (a® — 1)ig¥; (28)

(D — g% — a*p*)¥* = b,DO* — (a® — 1)DY; (29)
Taking Egs. (24) and (27), Egs. (28) and (29) reduces to

(D* —q® — a®p?)it* = igeXi,(mi — a®p?) G,(q,p)e™ 7 (30)

(D —q® — a®p?)¥* = —c L (m? — a®p?) G,(q,p)q,e™ % (31)

The solution it* of equation (30) has the form
i = ige(Xi, Gie ™ + Hie ™), (32)
where, § = /g% + @?p?and H; = H,(q, p) is a parameter depending on q and p.

Applying the exponential Fourier transform w.r.t. X to both sides of above Eq.(15),

We obtain
Z—} = ¥* —igi* (33)

With help of Eqgs.(27) and (32) along with the integration w.r.t. y Eq.(33) is rewritten as :
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5 = —c[2 Gi(q,p)g,e™m + TEIE o8] (34)

&

Taking the Laplace transform and then exponential Fourier transforms to both sides of Egs.
(11)-(13) and using the main results of Egs. (24), (27), (32) and (34), we can write the stress

Components in the Laplace and Fourier transform domain in the following expression

&1, = c|Xi, G;(a’p® —2q})e™ %Y — 2H, g% e 7] (35)
5., = cl(a®p? +2¢9) Xk, G}-e"fﬁ" + Zqufe‘5>'] (36)

- H, e~ (37)

Taking the inverse Fourier transform of Egs. (24), (27), (32) and (34) —(37), we Obtain solution in the Laplace
transform domain.

g,, = —icq [EE} 1G;q;e

- 1 oo

2] == W[EJ 1G; [:m' —p- )e 'Tl-"] 9x dg (38)

— e e .

V== [Z}=1 GmieTm7 ] e9%dg (39)

i = ; = [Z3-16,e7U9 + Hi e ] qe'%dg (40)

w o TF =2 — H-_I!T: —&Far ;

V==l [E} 169,677 +=—e "J]e“”dq (41)

&= éfjﬂm (23, 6,(a’p® — 2q7)e ™9 + 2H,q% e %] e'?¥dqg (42)

&y = »-57 fj:_u [(a®p® +2¢%) X, Ge Y + 2H,q%e %] e'9%dq (43)

L o~ q¥ (a%+57) -8y igx g

Ty = =) EE} 1 G;q;e +- H e qge q (44)
1.5 Boundary condition:

Now, we consider the boundary conditions for heat conduction problem at ¥ = 0 as

a2

a—}_=l], x| = a (45)
v=0, x| >a (46)
8 =g(x)H(t), |xl<a (47)
Oy = —ay(x)H(t), |xl<a (48)
Tyyy = 0, —oo=<x=00 (49)

where, H(-) is the Heaviside unit step function.
1.6 Dual integral equation formulation:
Now, using the boundary conditions given by above Eqs. (45) and (47), Eq.(38) is rewritten as below :

_i' =1 _J[m — P )e“”dq—» ‘?f

()

x| < a (50)

_rm Ej -1 }q}(m p:)ei‘”dq=ﬂ, x| = a (51)

and using the boundary conditions Eqs.(46), (48) and (49). Eqs. (41),(43) and (44) are written as below :
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fj:.u [qul +Gyq, +H;TF:] e¥dg=0, |x|>a (52)
[7 [(a®p? +2a%)(G, + G,) + 2¢°H le"dg = — 22 x| < a (53)
jjum [E(qul + G,q.) + I:EI=;§=:| Hl] gei9*dg = 0, . 54
Now from Eq. (54), we obtain :
H, = 25(6,9,+6q5) 55

g2+&°

Then, using Eq.(55) and for the case symmetry of the problem to consider ¥ only intervals [0,a] and [a, oo
(see Ref.[28]), Egs.(50)-(53) are written as below :

—
Y2, (m? —p®) [T G, cos(gx)dg = 'Eg‘—ﬂ, 0O<x<a (56)
i=1 i — i |5 s
(=) w 2
E?:i(mf —p:] _Irj; G, cos(gx)dg =0, x> a (57)
Zizi(m? —p?) f;ﬁcnstﬁqﬂ dg=0 x>a (58)
Z: fm G |:n«=p3+2q=5\}_4q=rr[5 [ jd _ ||E P__I:_r:l l:] cx<a 59
i=1lJp “i api+iql cosigxjaq = "'.Il: e ! (59)

Egs.(56) —(59) from a set of four dual integral equations. From above equations, we can find the unknown
parameters Gy and G5, and the solve these dual integral equation, we follow the (Sherief and El-Maghraby [28]), from
which we assume the following

G(q.p) =[] h;(v,p)p(qu)dv, x<a i=12, (60)
Where [ (qw) is the Bessel function of the first kind with order zero and h; are functions of

Parameter v and P only. Now substituting the value G;(gq,p) from Eq. (60) into Eq.(56),

After changing order of integration, we get the following equation
— -
, ,, \ - wglx)
Iy (m? —p?) [ h(v.p)dv [ cos(gx)]y(qv)dg = Hﬂf%, 0O<x<a (6]

Eq. (61) reduces to

1
_r: cos(tx)],(tv)dt = { Vit —at when x < v, (62)
0

when x > v,

Eq. (61) reduces to

B2 (m —p?) [THep - 19 oy <q
i=1 LT x ViE—x® ,,qlg n "

Multiply the above equation with and integrate w.r.t. X from ¥ to d. after changing the order of integration

VT —uT

and differentiating the final equation, we obtain :

(m] —p®)h(v,p) + (m3 — p?)h,(vp) =_“1;”}, D<x<a (63)

[ .
where, A(v) = l"_i J‘“M o

«.me v vWxt—wv®
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Multiply both sides of above Eq. (63) by J;(gv) and integrate w.r.t. v from O to a,

We finally get
6, =z I+ (mi - p?)6,), 0<x<a (65)
Where, /(q) = [ A(v)],(qv)dv (66)

For obtaining the similar relation Eq. (65) between G 4 and G, for the case when

x = a, we finally obtain

q:6,(a.p) = [ h(v,p)](qv)dv, x> a, i =12 (67)
Now, using Eq.(62) into Eq. (57) and after changing the order of integration, we get

Th(mi —p) [FEEEL g, x>gq

—r—
VUT X

In similar manner follows, multiply both sides of the above relation by = and integrate
L1 s L

w.r.t. X from ¥ to ©2. After changing the order of integration and with the help of Eq. (67),

we finally obtain

_ Im_ pzjlq_
G: = —m Gl’ ¥ >=a (68)

using Eq. (65) into Eq. (59), we obtain

erGrr Migp)

0 pgiiatpt cos(gx)dg = R(x,p), =x<a, (69)

Im..—m :l q"+n' o :l —4:;:5[:3._[:'11::—;.::)—:3:[mi‘—p::l]

Where, M(g,p) = - ,
—.
_ _ z2(mi- 2% )p, (x) 2g7+ap”)-4q78q,
Blxp) = [ 7 () [P s cos(ax)da, x<a (70)

Substituting from Eq.(68) into Eq.(58), we get

Jrc-u G,q,coslqx)
o :q:_l_ﬁ.:p:

g=0 x>a (71)
We have replaced the four dual integral Eqs.(56)- (59) in the parameters &3 and G5 are

Obtained to only two dual integral from Egs. (69) and (71) in the parameter G, .

1.7 Solution of the dual integral equations:

For solving the above mention two integral Egs. (69) and (71), we take the substitution [28]:

(2q%4a"p?)

G,(q.p) = ¥(q.p) (72)

Therefore, from Egs. (69) and (71) are reduced into the following expressions
I, M(q,p) ¥(q,p) cos(gx)dg =R(x,p), 0 <x <a (73)
I, ¥(q,p) cos(qx)dg =0, x>a (74)

In order to mention for all values of x, we are extending the definition of the integral

which is in Eq. (74) manner:
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e [x _Irﬁ w—l‘z’p}dz], 0<x<an

I ¥(q.p) cos{qx}dq={‘"ﬂ dx [ e VEToa® (75)

x>=a
Where, ¥(z,p) is a function which has to be determined.
We see that left side of Eq.(75) is just the Fourier cosine transform of the function ¥(q,p),

Therefore, by using the Fourier transform formula [26,35,36] we obtain

W(g,p) = Jy = (x [ 252 cos(gx)dx (76)

X* vEt—x~

Now using integration by parts and followed by changing the order of integration to solve

above Eq. (76), we have

a = xeinlgxldx
Y(q,p) = q [, ¥(g p)dz [ “me=— (77)

Using the formula [35, 36]

I )

0 V=-xt
We can write ¥(g,p) in the form
¥(q.p) =7 [; 2¥(z.p)]i(q2)dz, (78)
Now, substituting from equation (78) into equation (73), we get

[ M(z,%,p)¥(z,p)dz =R(x,p), x<a (79)
where, M(z,x,p) = Z—E f: gM(z,p)J,(gz)cos(qx)dg,

To solve the integral equation Eq.(79) numerically, we follow the regularization method [37]. For inverting the
Laplace transforms, we employ a numerical method used by Bellman et. al. [32].

1.8 Numerical results:

We have considered the copper material having the opening mode crack (Mode-I) with
unit length. The material constants are taken as follows Sherief and EI-Maghraby[28]:
a=2a, =178 X107% ¢, =4.158 X 10®ms™!,¢c = 0.01,p = 8954kgm™3,
n = 88886.73ms *,a = 1,c, = 383.1Jkg k™, A =776 x 10 Nm™?,
u=3.86x10°Nm™%,6, = 1K,T, = 293K, b, = 0.042,
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1.5 Vertical displacement distributions at the vertical distancey =0.3

1.9
In this

Conclusion:

work, we investigated a dynamical problem of an infinite two-dimensional elastic medium with a crack of
Mode-I type in the contexts of thermo elasticity theory, namely Green and Naghdi [28]. The temperature and impact
loading are considered at the boundary of the crack region inside the medium. Laplace and Fourier transform
techniques are used to solved above the problem. We obtain the four dual integral equations which are reduced into
two dual integral equations. The dual integral equations are solved by using the regularization method and a Bellman
method is used to inverted the Laplace transform numerically to obtain the final solution of the above mention
problem. The most important part of the analysis is the study of behavioral changes of the horizontal and vertical
stresses in the vicinity of the crack. Therefore, it may be concluded that the study of thermoelastic interaction in the

elastic medium in the presence of a crack will benefit the scientist working in the area of thermoelasticity.
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