On a Subclasses of generalized JanowskiType Functions using Salagean Operator

Attique Ur Rahman¹ and Dr. Rabia Fayyaz²

¹Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan ²Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan

ABSTRACT

In this paper, we present the class $D^{b,\beta}(\alpha,\beta, \hat{R}, A, B)$ of generalized Janowski type functions of complex order defined by Salagean derivative Operator in the open unit disk. A few outcomes of our principle hypotheses are same as the out-comes got in the previous classes.

Keywords: Analytic functions, subordination, λ -spirallike functions, λ -Robertson function, λ -close-to-spirallike function, λ -close-to-Robertson function, Salagean derivative Operator

Introduction and definition

 \sim

let A denote the class of functions of the form

$$\int_{k=1}^{\infty} (z) = z + \sum a_k z^k,$$
(1)

and k = 1, 2, 3, ... which are analytic in the open unit disk. Let *S* denote the subclass of *A* which are univalent in *D*. The Hadamard product or convolution of two functions $f(z) = z + \sum_{k=1}^{\infty} a_k z^k$ and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ denoted by, f * g is defined by

$$(f * g) (z) = z + \sum_{k=g_k} b_k z^k$$

for $z \in D$. In 1983, Salagean [10] introduced a differential and integral operator

$$\sum_{n=2}^{\infty} f(z) = z + \sum n^k a_n z^n$$
(2)

It is easy to see that the series $D^n f(z)$ is convergent in the unit disc for each $k \in N$. Further, we have the following differential operator.

$$D^{1}f(z) = zf(z), D^{-1}f(z) = \int_{zf(\zeta)}^{zf(\zeta)} d\zeta = z + \sum_{\substack{n=2\\ z + \sum_{n=2}^{\infty}}}^{\infty} \int_{z=2}^{z} \sum_{\substack{n=2\\ n=2}}^{\infty} \int_{z=2}^{n-1} (D^{-(n-1)}_{n-1}f(z)) d\zeta = z + \sum_{\substack{n=2\\ n=2}}^{n-1} (D^{-(n-1)}$$

In recent years several authors obtained many interesting results for various subclasses of analyticfunctions defined by using the Salagean derivative operator.

Given two functions f and F which are analytic in unit disk D, we say that the function f issubordinated to F and write f < F or f(z) < F(z), if there exist a function ω analytic in D such that $|\omega(z)| < 1$ and $\omega(0) = 0$, with f(z) = F(z) in D.

In particular, if F is univalent in D, then $f(z) \prec F(z)$ if and only if f(0) = F(0) and $f(D) \subseteq F(D)$.

Let *P* denote the class of all functions of the form $P(z) = 1 + \sum_{n=1}^{\infty} P_n z^n$ that are analytic in *D* and for which R_e (P(z) > 0) in *D*.

For arbitrary fixed numbers A and B with

defined by the subordination principle as follows

 $_1 \le B < A \le 1$, Janowski introduced the class P(A,B),

[Type here]

$$\boldsymbol{P}(A,B) = \boldsymbol{P}: \boldsymbol{P}(z) \neq \sum_{\boldsymbol{R}_{\tau}} \boldsymbol{P}(z) = 1 + \boldsymbol{P}_{1}z + \boldsymbol{P}_{1}z^{2} + \dots \qquad \}$$

Also, if we take A = 1 and B = 1, we obtain the well known class P of functions with positive realpart. In 2006, Polatoglu [8] introduced the class $P(A,B,\delta)$ of the generalization of Janowski functions as follows:

$$P(A,B,\delta) = P: P(z) \prec (1-\delta) \frac{1+Az}{1} + \delta, P(z) = 1 + \frac{P_1 z}{1+Bz} + \frac{P_1 z}{1+Bz} + \dots$$
(3)

for arbitrary fixed numbers A and B with

 $-1 \leq B < A \leq 1, 0 \leq \delta < 1, z \in D.$

Let S * and C be the subclasses of S of all starlike functions and convex functions of order α and the classes of $\leq \alpha < 1$, respectively. convex function of order α , where 0

In particular, we note that $S^* := S^*(0)$ and $C^* = C^*(0)$.

In [9] Reade introduced the class CS^* of close-to-star function as follows

$$CS^* = R_e f \in A : \frac{f(z)}{g(z)} > 0$$

for all $z \in D$. Also, we denote by $CS^*(\beta)$ the class of close-to-star functions of order β where $< \beta < 1$. (See Goodman [3]). 0

In [6], Kaplan introduced the class CC of close-to-convex functions as follows:

$$CC = R_e f \in A : \frac{f(z)}{g(z)} > 0$$

for all z $\in D.$ Also, we denote by $CC(\beta)$ the class of close-to-convex functions of order β where 0 $<\beta$ < 1. (See Goodman [2]).

Clearly, we note that CS^* : = CS^* (0) and CC := CC (0).

 $f \in A$ is an λ -spirallike function, SP^{λ} , if and only if

$$R_e^{h} e^{i\lambda} \frac{zf(z)}{f(z)} \Big|_{f(z)} = 0$$

for some $|\lambda| < \frac{\pi}{2}$, $z \in D$. The class of λ -spirallike functions was introduced by Spacek in [11]. Also, $f \in S P^{\lambda}$ if and only if there exists a function $p \in P$ such that

$$f(z) = z \exp' \cos \lambda \ e^{-i\lambda} \int_{z \ \underline{p(t)} - 1} dt'$$

We note that the extremal function for the class of $S P^{\lambda}$

$$f(z) = \frac{z}{(1-z)}$$
 where $s = e^{-i\lambda} \cos \lambda$

the λ -spiral koebe function.

0

 $f \in A$ is an λ -Robertson function, R^{λ} , if and only if

$$\underset{e}{\overset{h}{e^{\iota\lambda}}} 1 + \frac{z f''(z)}{f'(z)} \stackrel{i}{>} 0$$

for some $|\lambda| < \frac{\pi}{2}$, $z \in D$.

2 **Lemma 1.1.** $f \in R^{\lambda}$ if and only if there exist $p \in P$ such that

 $\overline{2}$

$$f(z) = \underbrace{exp}_{0} \underbrace{e^{-i\lambda} \int_{z}^{z} p(t) \cos \lambda - e^{-i\lambda}}_{t \cos \lambda} dt'$$

for some $|\lambda| < \pi$, $z \in D$.

Proof. Suppose that $f \in \mathbb{R}^{\lambda}$. Since it is λ -Robertson function, there exist a function $p \in P$ such that

$$e^{i\lambda}$$
 $1 + \frac{zf''(z)}{f'(z)} - p(z)\cos\lambda$

From this equality we can easily obtain the result 4.

Conversely, suppose that suppose result holds, then if we take logarithmic derivative then $f \in \mathbb{R}^{\lambda}$. So that, the proof is completed.

We note that $f \in \mathbb{R}^{\lambda}$ if and only if $zf' \in S \mathbb{P}^{\lambda}$.

 $f \in \{A \text{ is an } \lambda \text{ -close-to-spirallike function, } \{CS\{P^{\lambda}, \text{ if there exist a function } g \in SP^{\lambda} \text{ such that} \}$

 $\{R^{\underset{f(z)}{\underline{f(z)}}}i_{\underset{g(z)}{\underline{>}}0}$

 $\frac{\pi}{2}$

We note that the extremal function for the class $C S P^{\lambda}$

for some $|\lambda| < , z \in D$.

 $f(z) = \frac{z+z^2}{(1-z)^{2s+1}}, \text{ where } s = e^{-i\lambda} \cos\lambda.$

the λ -close-to-spirallike koebe function.

$$f \in A$$
 is an λ -close to Robertson function, CR^{λ} , if there exist a function $g \in R^{\lambda}$ such that

 $\overline{2}$

for some $|\lambda| < \pi$, $z \in D$.

We have introduced the class $g \in SP^{\lambda}(b)$ of λ -spirallike functions of complex order b as follows

$$SP^{\lambda}(b) = f \in A : R + \frac{e^{i\hat{z}(D^n f)D^n f}}{b\cos\lambda} - 1 \prec (1-\delta) + \frac{1+Az}{1+Bz}$$

for some $b \in \{C_{-} 0, z \in D.\}$

On the same way we have defined the class
$$R^{\lambda}$$
 follows (b) of λ - Robertson function of complex order b as

$$R^{\lambda}(b) = f \in A : \{R' 1 + \frac{e^{i\lambda} \frac{z(D^{n}f)''}{b\cos \lambda} D^{n}f'}{2} - 1 < (1-\delta) \frac{1+Az}{1+Bz} + \delta$$

Now, respectively, we introduce the classes of λ -close-to-spirallike functions of complex order b and λ -close-to-Robertson function of complex order b, denoted by $CSP^{\lambda}(b)$ and $CR^{\lambda}(b)$, as follows:

$$CSP^{\lambda}(b) = f \in A : \{ \underset{b}{R} \stackrel{i}{\underset{D^{n_g}}{1}} + \stackrel{1}{\underset{-}{1}} \stackrel{D^{n_f}}{\underset{-}{\frac{-1}{1}} \stackrel{i}{\underset{+}{3}} \prec (\underset{1-\delta}{1-\delta}) \stackrel{1+Az}{\underset{+}{3}} + \delta , g \in SP^{\lambda}$$

and

$$CR^{\lambda}(b) = f \in A : \{R_{b}^{1} + \frac{(D^{n}f)'}{(D^{n}g)'} - \frac{1}{2} \prec (1-\delta) \xrightarrow{1+Az} + \delta, g \in R^{\lambda}, g \in R^{\lambda}$$

for some $|\lambda| < \frac{\pi}{2}$, $z \in D$.

Definition 1.2. The class of generalized Janowski functions which are defined by Salagean derivative operator in $z \in D$, denoted by $D^{b,\beta}(\alpha,\beta, \delta, A, B)$, is defined as

for some for some $|\lambda| < \pi$, $z \in D$, $0 \le \delta < 1$, $-1 \le B < A \le 1$.

Nothing that the class $D^{b,\beta}(\alpha,\beta,\delta,A,B)^2$ includes several subclasses which have important role in the analytic and geometric function theory.

By specializing the parameters $\alpha, \beta, \delta, A, B$ we obtained the following subclasses studied earlier:

(1) $C S_b^*(\delta, A, B) := D^0(0, 0, \delta, A, B)$ is the class of the generalized Janowski type close-to-star functions of complex order *b*,

(2) C S^{*}_b (A, B) := D⁰(0,0,0, A, B) is the class of the generalized Janowski type close-to-star functions of complex order b,
 (3) C S^{*} (A, B) := D⁰(0,0,0, A, B) is the class of the generalized Janowski type close-to-star

(4) CS^* (δ , A, B) := $D^0(0, 0, 0, 1 - 2\eta, -1)$ is the class of the close-to-star functions of order

(4)
$$CS^*(0, A, B) := D^0(0, 0, 0, 1 - 2\eta, -1)$$
 is the class of the close-to-star functions of orde $\frac{b}{\eta}$,

(5) $CS^*(\delta, A, B) := D^0(0, 0, 0, 1, -1)$ is the class of the close-to-star functions

(6) $C C (\delta, A, B) := D^0(1, 0, \delta, A, B)$ is the class of the generalized Janowski type close-to-convexfunctions of complex order *b*, (7) $C C (\delta, A, B) := D^0(1, 0, 0, A, B)$ is the class of the generalized Janowski type close-to-convexfunctions of complex order *b*,

(8) $CC(\overline{A}, B) := D^{0}(1, 0, 0, A, B)$ is the class of the generalized Janowski type close-to-convex

(9) functions, (9) (10) (

Lemma 1.3. [1] if the function p(z) of the form, -1) is the class of the close-to-convex functions

$$P(z) = 1 + \sum_{k=1}^{\infty} P_k z^k$$

is analytic in D and

$$P(z) \prec \frac{1+Az}{1+Bz}$$

then $|p_k| \le A - B$, for $k \in \mathbb{N} - 1 \le B < A \le 1$. **Theorem 1.4.** [3] $f \in SP^{\lambda}$, then

$$|a_n| \leq \prod^{n-1} |k+2s-1| k = 1$$

where $s = e^{-i\lambda} \cos \lambda$, $|\lambda| < \frac{\pi}{2}$, $z \in D$.

Subordination result and their Consequences

Theorem 2.1. $f(z) \in D^{b,\lambda}(\alpha,\beta, \delta, A, B)$ if and only if

$$\frac{D_R^{\ \alpha} f(z) - 1}{D_R^{\ \beta} g(z) + Bz} \prec \frac{(1 - \delta) (A - B) k e^{-i\lambda} \cos \lambda z}{(4)}$$

Proof. Suppose that $f(z) \in S^*D^{b,\lambda}(\alpha,\beta,\delta,A,B)$. Using Subordination principle, we write

$$1 + \frac{e^{i\lambda} D^{\alpha} f(z)}{b \cos \lambda} \frac{1}{D^{\beta} g(z)} - \frac{1}{e} \begin{pmatrix} 1 & 0 & \frac{1 + A\omega(z)}{b} & \delta \\ 1 + B\omega(z) & \frac{1}{b} \end{pmatrix} (5)$$

After simple calculations, we get

 $\frac{e^{i\lambda}}{\sum_{\substack{R \\ b\cos\lambda}}^{R} D^{\beta}} \frac{f(z)}{g(z)} -1 = \frac{(1-\delta)(A-B)\omega(z)}{1+Bz}.$

Thus, this equality completes the proof. Similarly, the other side is proved. In this Theorem, if we choice special values α , β , δ , λ , b and A, B we get following corollaries.

Corollary 2.2. $f \in CSP^{\lambda}(b)$ if and only if

$$\frac{f(z)}{q(z)}$$

 $-1 \prec \frac{2be^{-i\lambda}\cos\lambda}{1-z}$

and this result is as sharp as the function

$$\frac{2be^{-i\lambda}\cos\lambda z}{(1-z)^{2s+1}}$$
, where $s = e^{-i\lambda}\cos\lambda$

Proof. We let $\alpha = \beta = \delta = 0$ and A = 1, B = -1 in the Theorem 2.1. **Corollary 2.3.** $f(z) \in CS^*$ (*A*, *B*) if and only if

$$\frac{f(z)}{g(z)} \quad \frac{(A}{1+B} \frac{B)z}{z} \qquad \overline{1}$$

and this result is as sharp as the function

$$\frac{1+Az}{1+Bz(1-z)} \cdot 2 \cdot$$

Proof. We let $\lambda = \alpha = \beta = \delta = 0$ and b = 1 in Theorem 2.1. Corollary 2.4. $f(z) \in CS^*$ if and only if

$$\frac{f(z)}{g(z)} \quad -1 \stackrel{2}{\leftarrow} \frac{z}{1}$$

- z

and the result is as sharp as the function

$$1 \frac{1+z}{-z}$$

Proof. We let $\lambda = \alpha = \beta = \delta = 0$ and A = 1, B = -1 in Theorem 2.1. **Corollary 2.5.** $f(z) \in \mathbb{R}^{\lambda}$ (*b*) if and only if

 $\underline{zf'(z)}$ g(z)

 $-1 \prec \frac{2be^{-i\lambda}\cos\lambda z}{1-z}$

Proof. We let $\alpha = 1$, $\beta = \delta = 0$ and A = 1, B = -1 in Theorem 2.1. **Corollary 2.6.** $f(z) \in C C$ (*A*, *B*) if and only if

$$\frac{zf'(z)}{g(z)} \qquad \qquad \frac{(A}{1+Bz} = \frac{B}{Bz} = \overline{1} - \overline{1}$$

Proof. We let $\lambda = \beta = \delta = 0$ and $\alpha = 1$, b = 1 in Theorem 2.1. **Corollary 2.7.** $f(z) \in CC$ if and only if

$$\frac{zf'(z)}{g(z)} - 1 \prec^2 \frac{z}{1-z}$$

and this result is as sharp as the function

Proof. We let
$$\lambda = \beta = \delta = 0$$
 and $\alpha = 1, b = 1, A = 1, B = -1$.

Coefficient estimates and their Consequences

Lemma 3.1. If the function $\varphi(z)$ of the form

$$\varphi(z) = 1 + \sum_{k=\varphi_k z^k} \varphi_k z^k$$

 $\frac{1+Az}{2}$

is analytic in D and

$$\varphi_k \leq (A - B) (1 - \delta)$$

for $0 \le \delta < 1, -1 \le B < A \le 1, z \in D$. **Proof.** Suppose that $\varphi(z)$ we write

then

$$\swarrow (1 - \delta) \frac{1 + Az}{1 + Bz} + \delta \text{ for } \varphi(z) = 1 + \sum_{k=1}^{\infty} \varphi_k z^k \text{ . Using subordination principle,}$$

 $(S_{1}, S_{2}, S_{2},$

 $\varphi(z) \prec (1 - \delta_{z}) \delta_{z}^{1 + Az} + \delta$

 $1 \pm 4\omega(7)$ $\varphi(z)$

From (3.2.), we get

$$= (1-\delta) \frac{1+A\omega(z)}{1+B\omega(z)} + \delta$$
 1+B $\omega(z)$

 $\kappa(z) = \frac{\varphi(z) - \delta}{(1 - \delta)} \frac{1 + A\omega(z)}{1 + B\omega(z)}$

By using Lemma 1.3. for the above $\kappa(z)$, we get

$$\frac{\varphi_k}{1-\delta} \le A - B$$

(7)

This inequality is equivalent to required result.

Theorem 3.2. If the function
$$f \in A$$
 be in the class $D^{b,\lambda}(\alpha,\beta,\delta,A,B)$, then

$$\sum_{k=1}^{k} \frac{1}{|b|} \times |b|n(\beta) = \prod_{k=1}^{n-1} \frac{|k+2s-1|}{k} + (A-B)(1-\delta) \sum_{m=1}^{n-1} \frac{|k+2s-1|}{k}$$
(8)

where $s = e^{-i\lambda} \cos \lambda$, $|\lambda| \leq \frac{\pi}{2}$, $b \in \mathbb{C} - 0$, $\alpha, \beta > -1$, $0 \leq \delta < 1$ and $-1 \leq B < A \leq 1$. **Proof.** Since $f(z) \in \sum_{k} {}^{*}D^{b,\lambda}(\alpha R \beta, \delta, A, B)$ there are analytic functions $g, \varphi : D \to D$ such that $g(z) = z + \sum_{k=2} b_k z$ $\in S P^{\lambda}, \varphi(z) = 1 + \sum_{k=1} \varphi_k z$ and $\omega(z)$ is a schawarz function as in Lemma3.1 such that

$$1 + \frac{e^{i\lambda} BD^{\alpha}}{b \cos \lambda} \frac{f(z)}{D^{\beta} g(z)} = (1 - \frac{\delta}{2}) \frac{1 + A\omega(z)}{1 + B\omega(z)^{+}} = \varphi(z)$$
(9)
ination principle for $\varphi(z)$

Now, As in subordination principle for $\varphi(z)$

 $(1-\delta)^{1+A\omega(z)} + \delta = \varphi(z)$ $1+B\omega(z)$

So,

 $1 + e^{i\lambda} \qquad \qquad \frac{D^{\alpha}}{D^{\beta}} \frac{R^{f(z)}}{g(x)} - 1 = \varphi(z)$

$$f(z)D^{\beta} g(z) - 1 = be^{-i\lambda} \cos \lambda (\varphi(z) - 1) \text{ as } s = e^{-i\lambda} \cos \lambda, \text{ So we can write}$$

$$\frac{R}{D^{\beta}} \frac{D^{\alpha}}{g(z)} - 1 = sb(\varphi(z) - 1)$$

$$R^{\alpha} f(z) = \{1 + sb(\varphi(z) - 1)\}D_{R} g(z) \qquad D_{R}$$

Now for Salagean operator, we can write

$$z + \sum_{k=2}^{\infty} n^{k} a_{k} z^{k} = \{1 + sb(\varphi(z)^{-1})\} z + \sum_{k=2}^{\infty} n^{k} b_{k} z^{k} \}$$

$$z + \sum_{k=2}^{\infty} n^{k} a_{k} z^{k} = z + \sum_{k=2}^{\infty} n^{k} b_{k} z^{k} + sb \sum_{k=2}^{\infty} (\varphi(z) n^{k} b_{k} z^{k} b_{k} z^{k})$$

$$z + \sum_{k=2}^{\infty} n^{k} a_{k} z^{k} = z + \sum_{k=2}^{\infty} n^{k} b_{k} z^{k} + sb \sum_{k=2}^{\infty} \sum_{m=1}^{\infty} \varphi_{m} z^{m} n^{k} b_{n} z^{n}$$

equating the co-efficient for the power of z, we get

$$n^{2}(\alpha)a_{2} = n^{2}(\beta)b_{2} + sb\varphi_{1}$$
$$n^{3}(\alpha)a_{3} = n^{3}(\beta)b_{3} + sb \quad \varphi_{1}b_{2}n^{2}(\beta) + \varphi_{2}$$

Similarly

$$n^{n}(\alpha)a_{n} = n^{n}(\beta)b_{n} + sb \quad n^{n-1}(\beta).b_{n-1}\varphi_{1} + n^{n-2}(\beta).b_{n-2}\varphi_{2} + \dots + \varphi_{n-1}\varphi_{n-$$

Corollary 3.3. Let $f \in A$ be in the class CSP^{λ} , then

$$|a_n| \leq \frac{1}{|b|} |b| \prod_{k=1}^{n-1} \frac{|k+2s-1|}{k} + 2\sum_{m=1}^{n-1} \frac{1}{m} \prod_{k=1}^{n-(m+1)} \frac{1}{|k+2s-1|}$$

where $s = e^{-i\lambda} \cos \lambda$, $|\lambda| < \frac{\pi}{2}$, $b \in \mathbb{C} - 0$. **Proof.** We let $\alpha = \beta = \delta$ and A = 1, B = -1 in Theorem 3.2.

Corollary 3.4. [7] Let $f \in A$ be in the class CS^* (A, B), then

$$|a_n| \leq n + \frac{(A-B)(n-1)n}{2}$$

where $-1 \le B < A \le 1$. **Proof.** We let $\alpha = \beta = \delta = \lambda = 0$ and b = 1 in Theorem 3.2. Corollary 3.5. [7] Let $f \in A$ be in the class CS^* , then

 $|a_n| \leq n^2$.

Proof. We let $\alpha = \beta = \delta = \lambda = 0$ and b = 1 in Theorem 3.2. **Corollary 3.6.** Let $f \in A$ be in the class R^{λ} , then

$$|a_n| \underset{||b|}{\leq 1} |b| \prod_{k=1}^{n-1} |k+2s-1| \atop k = 1 + 2 \sum_{k=1}^{n-1} m = \prod_{k=1}^{n-(m+1)} |k+2s-1| \atop k = 1 + 2 \sum_{k=1}^{n-1} m = \prod_{k=1}^{n-(m+1)} |k+2s-1| \atop k = 1 + 2 \sum_{k=1}^{n-1} m = \prod_{k=1}^{n-(m+1)} m = \prod_{k=1$$

where $s = e^{-i\lambda} \cos \lambda$, $|\lambda| < \frac{\pi}{2}$, $b \in \mathbb{C} - 0$. **Proof.** We let $\alpha = 1, \beta = \delta = 0$ and A = 1, B = -1 in Theorem 3.2. **Corollary 3.7.** Let $f \in A$ be in the class C C(A, B), then $|a_n| \le 1 + \frac{(A - B)(n - 1)}{2}$, where $-1 \le B < A \le 1$.

Proof. We let $\alpha = 1, \beta = \delta = 0$ and b = 1 in Theorem 3.2.

Corollary 3.8. Let $f \in A$ be in the class CC, then

 $|a_n| \leq n.$

Proof. We let $\alpha = 1, \beta = \delta = 0$ and A = 1, B = -1, b = 1 in Theorem 3.2.

REFERENCES

^[1] R.M. Goel and B.C. Mehrok, A subclass of univalent functions, Houston J. Math. 8, 343-357, 1982.

[2] A.W. Goodman, On close-to-convex functions of higher order, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 15, 17?30, 1972.

^[3] A.W. Goodman, Univalent Functions, Vol II. Somerset, NJ, USA Mariner, 1983.

[4] M.M. Haidan and F.M. Al-Oboudi, Spirallike functions of complex order, J. Natural Geom. 19, 53?72,2000.
 [5] W. Janowski, Some extremal problems for certain families of analytic functions, Ann.Polon. Math. 28, 297?326, 1973.

^[6] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1, 169?185, 1952.

[7] Ö.Ö. K?l?ç, Coefficient Inequalities for Janowski type close-to-convex functions associated with Ruscheweyh Derivative Operator, Sakarya Uni. J. Sci. 23 (5), 714-717, 2019.

^[8] Y. Polato?lu, M. Bolcal, A. ?en and E. Yavuz, A study on the generalization of Janowski functions in the unit disc, Acta Math. Aca. Paed. 22, 27?31, 2006.

[9] M.O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3, 59?62,1955.1734 Ö.Ö. K?l?ç, N. Ero?lu

^[10] A.W.Goodman, Univalent function Vol. I Vol.II polygonal Oublishing House, Washington FI, (1983)

^[11] L. ?pa?ek, Prispevek k teorii funcki prostych, Casopis Pest. Mat. a Fys. 62, 12-19, 193.