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In this paper, we present the class D
b,β 

(α, β,  δ , A, B) of generalized Janowski type functions of complex 

order defined by Salagean derivative Operator in the open unit disk. A few outcomes of our principle hypotheses are 

same as the out-comes got in the previous classes. 
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Introduction and definition 

let A denote the class of functions of the form 

∞ 

f (z) = z + ∑ akzk, (1) 
k=1 

and k = 1, 2, 3, ... which are analytic in the open unit disk. Let S denote the subclass of A which are univalent in D. 

The Hadamard product or convolution of two functions f (z) = z +∑∞ akzk and g(z) = z +∑∞   bkzk 

denoted by, f ∗ g is defined by  
( f ∗ g) (z) = z + ∑∞ 

 
akbkzk 

for z ∈ D. In 1983, Salagean [10] introduced a differential and integral operator 

∞ 

Dn f (z) = z + ∑ nkanzn (2) 
n=2 

It is easy to see that the series Dn f (z) is convergent in the unit disc for each k N.Further , we have the 

following differential operator. 

D1 f (z) = z f (´z). D−1 f (z) = 
∫ z f (ξ ) 

dξ = z + ∑∞ 
 
n−1anzn 

 

= z + ∑∞ n
−kanzn 

In recent years several authors obtained many interesting results for various subclasses of analytic functions defined 

by using the Salagean derivative operator. 

Given two functions f and F which are analytic in unit disk D, we say that the function f is subordinated to F 
and write f ≺ F or f (z) ≺ F(z), if there exist a function ω analytic in D such that 
|ω(z)| < 1 and ω(0) = 0, with f (z) = F(z) in D. 
In particular, if F is univalent in D, then f (z) ≺ F(z) if and only if f (0) = F(0) and f (D) ⊆ F(D). 

Let P denote the class of all functions of the form P(z) = 1 + ∑∞ Pnzn that are analytic in D and 

for which Re (P(z) > 0) in D. 

For arbitrary fixed numbers A and B with 1 B < A 1, Janowski introduced the class P(A, B), 
defined by the subordination principle as follows 
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≤ 

1+Bz 

  } 

− 

1 + Bz 

g(z) 

— ≤ ≤ ≤ ∈ 

≤ 

≤ 
∈ 

2 

f (z) 

f ′(z) 

2 

2 

f ′(z) 

f (z) = z exp 
,
cos λ e−iλ  

∫ z  p(t) − 1  
dt

,
 

f (z)  =  exp 
,

e−iλ   
∫ z  p(t) cos λ  − e−iλ   

dt
,
 

P(A, B) = P : P(z) ≺ 1+Az , P(z) = 1 + P1z + P1z2 + . . . 

Also, if we take A = 1 and B = 1, we obtain the well known class P of functions with positive real part. 
In 2006, Polatoglu [8] introduced the class P(A, B, δ ) of the generalization of Janowski functions as follows: 

P(A, B, δ ) = 

  

P : P(z) ≺ (1 − δ ) 
1 + Az 

+ δ , P(z) = 1 + P1z + P1z2 + . . .  

  

(3) 

for arbitrary fixed numbers A and B with 1 B < A 1, 0 δ < 1, z D. 

Let S ∗ and C be the subclasses of S of all starlike functions and convex functions of order α and the classes of 
convex function of order α, where 0 α < 1, respectively. 

In particular, we note that S ∗ := S ∗ (0) and C ∗ = C ∗(0). 

In [9] Reade introduced the class C S ∗ of close-to-star function as follows 

C S ∗ = Re 
, 
f ∈ A :  f (z) > 0 

,
 

. 

for all z ∈ D. Also, we denote by C S ∗ (β ) the class of close-to-star functions of order β where 

0 β < 1. (See Goodman [3]). 

In [6], Kaplan introduced the class C C of close-to-convex functions as follows: 

C C = Re 
, 
f ∈ A : 

 

 f (́ z) 

g(´z) 
 

for all z D.Also, we denote by C C (β ) the class of close-to-convex functions of order β where 

0 β < 1. (See Goodman [2]). 

Clearly, we note that C S ∗ : =C S ∗ (0) and C C := C C (0). 

f ∈ A is an λ -spirallike function, S Pλ , if and only if 

Re 

h
eιλ z f (´z) 

i 
> 0

 

for some |λ | < π ,z ∈ D. The class of λ -spirallike functions was introduced by Spacek in [11]. 

Also, f ∈ S Pλ if and only if there exists a function p ∈ P such that 

 

0 t 

 

We note that the extremal function for the class of S Pλ 

 

 
the λ -spiral koebe function. 

f (z) = z 2s   where s = e−iλ cos λ 
(1−z) 

f ∈ A is an λ -Robertson function, Rλ , if and only if 

Re 

h
eιλ   

  

1 + 
z f ′′(z) 

  i 
> 0

 

for some |λ | < π , z ∈ D. 

Lemma 1.1.  f ∈ Rλ if and only if there exist p ∈ P such that 

 

 
for some |λ | < π , z ∈ D. 

 
 

0 t cos λ 

Proof. Suppose that f ∈ Rλ . Since it is λ -Robertson function, there exist a function p ∈ P such that 

eιλ  
  

1 + z f 
′′(z) 

   

= p(z) cos λ 

,
> 0 
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∈ 

g(z) 

for some |λ | < , z ∈ D. 

h i 
>

 

2 

b cos λ 

  ′ 

1+Bz 

∈ { − ∈ 

b cos λ 1+Bz 

2 

R 

2 

R 

b 

b 

R b cos β 
1+Bz 

b 1 

From this equality we can easily obtain the result 4. 

Conversely, suppose that suppose result holds, then if we take logarithmic derivative then f Rλ . So that, 
the proof is completed. 

We note that f ∈ Rλ if and only if z f ′ ∈ S Pλ . 

f ∈ {A is an λ -close-to-spirallike function, {CS{Pλ , if there exist a function g ∈ S Pλ such that 

{R 
h

 f (z) 
i 
> 0

 

π 
 

2 

We note that the extremal function for the class C S Pλ 

f (z) = z+z
2

 

(1−z)2s+1
 

the λ -close-to-spirallike koebe function. 

, where s = e−iλ cos λ . 

f ∈ A is an λ -close to Robertson function, C Rλ , if there exist a function g ∈ Rλ such that 

R 
 f ′(z) 

0
 

g′(z) 

for some |λ | < π ,z ∈ D. 

We have introduced the class g ∈ S Pλ (b) of λ -spirallike functions of complex order b as follows 

S Pλ (b) = 
, 
f ∈ A : R 

,
1 + e

iλ
 

z(Dn f ) Dn f 
— 1

  , 
≺ (1 − δ ) 1+Az + δ 

,
 

for some b C 0, z D. 

On the same way we have defined the class Rλ follows 

 
(b) of λ - Robertson function of complex order b as 

Rλ (b) = 
, 
f ∈ A : {R 

,
1 + e

iλ
 

 

 

z(Dn f )′′ 
 

(Dn f )′ — 1
  , 
≺ (1 − δ ) 1+Az + δ 

,
 

Now, respectively, we introduce the classes of λ -close-to-spirallike functions of complex order b and 

λ -close-to-Robertson function of complex order b, denoted by C S Pλ (b) and C Rλ (b), as follows: 

C S Pλ (b) = 
, 
f ∈ A : {R 

,
1 + 1

  
Dn f   

− 1
  , 
≺ (1 − δ ) 1+Az + δ , g ∈ S Pλ 

,
 

 
and 

b     Dng 1+Bz 

C Rλ (b) = 
, 
f ∈ A : {R 

,
1 + 1 

 
(Dn f )′  

− 1
  , 
≺ (1 − δ ) 1+Az + δ, g ∈ Rλ 

,
 

for some |λ | < π ,z ∈ D. 

b     (Dng)′ 1+Bz 

Definition 1.2. The class of generalized Janowski functions which are defined by Salagean derivative operator in z ∈ D, 

denoted by Db,β (α, β, δ, A, B),is defined as 

Db,β (α, β, δ, A, B) = 
,
 f ∈ A : 1 + e

iβ
 

h 
DR f (z) 

— 1
i 
≺ (1 − δ ) 1+Az + δ , g ∈ S Pλ 

,
 

for some for some |λ | < π ,z ∈ D, 0 ≤ δ < 1, −1 ≤ B < A ≤ 1. 

Nothing that the class Db,β (α, β , δ, A, B), includes several subclasses which have important role in the analytic and 
geometric function theory. 
By specializing the parameters α, β, δ, A, B we obtained the following subclasses studied earlier: 

(1) C Sb
∗ (δ , A, B) :=  D 0(0, 0, δ , A, B) is the class of the generalized Janowski type close-to-star 

functions of complex order b, 

(2) C Sb
∗  ( A, B) :=  D 0(0, 0, 0, A, B) is the class of the generalized Janowski type close-to-star functions 

of complex order b, 
(3) C S ∗ ( A, B) := D 0(0, 0, 0, A, B) is the class of the generalized Janowski type close-to-star 

b 1 

functions, 
(4) C S ∗ (δ, A, B) := D 0(0, 0, 0, 1 − 2η, −1) is the class of the close-to-star functions of order 

b 1 

η, 

(5) C S ∗ (δ, A, B) := D 0(0, 0, 0, 1 , −1) is the class of the close-to-star functions 

. 

  

DRg(z) 

http://www.ijsrem.com/
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b 

b 

1 

k=1 

1+Bz 

2 

R 

R 

R 

R 

R 

— 
−
1  ≺ 

R 

R 

0 

(6) C C (δ, A, B) := D 0(1, 0, δ, A, B) is the class of the generalized Janowski type close-to-convex functions 
of complex order b, 

(7) C C (δ, A, B) := D 0(1, 0, 0, A, B) is the class of the generalized Janowski type close-to-convex functions 
of complex order b, 

(8) C C ( A, B) := D 0(1, 0, 0, A, B) is the class of the generalized Janowski type close-to-convex 
functions, 

(9) C C (η) := D 0(0, 0, 0, 1 − 2η, −1) is the class of the close-to-star functions of order η, 
(10) C C , B) := 

1 
D1 (0, 0, 0, 1 , −1) is the class of the close-to-convex functions Lemma 1.3. [1] if the function p(z) of the form 

P(z) = 1 + ∑∞ Pkzk 

is analytic in D and  
P(z) ≺ 1+Az

 

then |pk| ≤ A − B, for k ∈ N −1 ≤ B < A ≤ 1. 

Theorem 1.4. [3] f ∈ S Pλ , then 

|an| ≤ ∏
n − 1 |k+2s−1| 

 

where s = e−iλ cos λ ,|λ | < π ,z ∈ D. 

k=1 k 

Subordination result and their Consequences 

Theorem 2.1. f (z) ∈ Db,λ (α, β,  δ, A, B) if and only if 
 

α  f (z) 
 

 

— 1 ≺ (1 − δ ) (A − B)be−iλ cos λ z 1 
 

 
(4) 

Dβ g(z) + Bz 

Proof. Suppose that  f (z) ∈ S ∗Db,λ (α , β , δ , A, B).Using Subordination principle, we write 
 

1 
eiλ 

  
Dα  f (z) 

1 

!
 

 
 

1 δ  
 1 + Aω(z)  

δ (5) 

+ 
b cos λ Dβ g(z) 

−
 

= ( − ) 
1 + Bω(z) 

+
 

After simple calculations, we get 

 
eiλ 
  

Dα
 

 
 

 

 
f (z) 

— 1

   

= 
(1−δ ) (A − B)ω( z) 

.
 

b cos λ D
β  

g(z) 1+Bz 

Thus, this equality completes the proof. Similarly, the other side is proved. 
In this Theorem, if we choice special values α, β , δ , λ , b and A, B we get following corollaries. 

Corollary 2.2. f ∈ C S Pλ (b) if and only if 

 f (z) 

g(z) 

and this result is as sharp as the function 

2be−iλ cos λ z 

1 − z 

2be−iλ cos λ z , where s = e−iλ cos λ 
(1 − z)2s+1

 

Proof. We let α = β = δ = 0 and A = 1, B = −1 in the Theorem 2.1. 

Corollary 2.3. f (z) ∈ C S ∗ (A, B) if and only if 

 

 
and this result is as sharp as the function 

 f (z) 

g(z) 
(A     B) z 

1 + B z 

1 + Az . z    
2 .

 
 

1 + Bz (1 − z) 

R 

D 

— 1 ≺ 
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1 − z 

— 
−
1   ≺ 

k=1 

1+Bz 

≺ − 

1 + Bω(z) 

. 
1 

φk 
δ 

. 
≤ A − B 

Proof. We let λ = α = β = δ = 0 and b = 1 in Theorem 2.1. Corollary 2.4. f (z) ∈ C S ∗ if and only if 

 

 

and the result is as sharp as the function 

 
 f (z) 

g(z) 
— 1 ≺ 

 
 1+z   . 

1 − z 

 
2 z 

 

1 − z 

Proof. We let λ = α = β = δ = 0 and A = 1, B = −1 in Theorem 2.1. 

Corollary 2.5. f (z) ∈ Rλ (b) if and only if 

z f ′(z) 
 

g(z) 
— 1 ≺ 2be−iλ cos λ z . 

Proof. We let α = 1, β = δ = 0 and A = 1, B = −1 in Theorem 2.1. 

Corollary 2.6. f (z) ∈ C C (A, B) if and only if 

z f ′(z) 
 

g(z) 

 
(A     B) z 

1 + Bz 

Proof. We let λ = β = δ = 0 and α = 1, b = 1 in Theorem 2.1. 

Corollary 2.7. f (z) ∈ C C if and only if 

 

 

and this result is as sharp as the function 

z f ′(z) 
 

g(z) 
— 1 ≺ 

 
 1+z   . 

1 − z 

 
2 z 

 

1 − z 

Proof. We let λ = β = δ = 0 and α = 1, b = 1,A = 1, B = −1. 

Coefficient estimates and their Consequences 

Lemma 3.1. If the function φ (z) of the form 

 

 
is analytic in D and 

φ (z) = 1 + ∑∞ φkzk 

 

 
then 

φ (z) ≺ (1 − δ ) 1+Az + δ 

 
φk ≤ (A − B) (1 − δ ) (6) 

for 0 ≤ δ < 1,−1 ≤ B < A ≤ 1, z ∈ D. 
 
 1+Az ∞ k 

Proof. Suppose that φ (z) (1 δ ) 1+Bz + δ for φ (z) = 1 + ∑k=1 φkz . Using subordination principle, 

we write 

φ (z) = (1 − δ ) 
1 + Aω(z) 

+ δ (7) 
 

From (3.2.), we get  

κ(z) = 
φ (z) − δ 

(1 − δ ) 

 

 
1+Aω(z) 

1+Bω(z) 

By using Lemma 1.3. for the above κ(z), we get 
 

. − . 

= 

http://www.ijsrem.com/
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R 

2 

R 

1+Bω(z) 

R 

R  

R 
β 

  
∑

 

k 1  

2 

nka z 
k=2 

z + ∑∞ n b z + sb ∑∞ 
k=2 

(φ (z k 
k  

k )nkbkz
k 

k 
k  

k 

φmzmnk bn

 } 
zn 

|b| 

This completes the proof. 
k=1 k m=1 k=1 k 

|b| k=1 k m=1 k=1 k 

 1  

R 

  

This inequality is equivalent to required result. 

Theorem 3.2. If the function f ∈ A be in the class Db,λ (α, β, δ, A, B), then 

. k. k 
n − 1 |k + 2s − 1| 

"
n−1    

k
 
n−(m+1) 

|k + 2s − 1|
#!

 

.ann . ≤ 
|b| 

×
 

|b| n (β ) ∏ 
k=1 

k 
+ (A − B)(1 − δ ) ∑ n (β ) 

m=1 

∏ 
k=1 

k 

(8) 

where s = e−iλ cos λ , |λ | < π , b ∈ C − 0, α, β > −1, 0 ≤ δ < 1 and −1 ≤ B < A ≤ 1. 
Proof. Since  f (z) ∈ S ∗Db,λ (α , β , δ , A, B) there are analytic functions g, φ :  D −→ D such that 

∞ k 
R 

∞ k 

g(z) = z + ∑k=2 bkz 
such that 

∈ S Pλ ,φ (z) = 1 + ∑k=1 φkz and ω(z) is a schawarz function as in Lemma3.1 

 

1 
eiλ   

Dα
 

 

f (z) 
1 

!
 
1 δ  

 1 + Aω(z) 
δ φ z

  (9) 

+ 
b cos λ Dβ g(z) 

−
 

= ( − ) 
1 + Bω(z) 

+
 

= ( ) 

Now, As in subordination principle for φ (z) 

(1 − δ ) 1+Aω(z) + δ = φ (z) 

So,  

1 + eiλ 

  
Dα

 

 

 

f (z) — 1 

  

= φ (z) 
 

b cos λ 
 

D
β 

g
 
(z) 

α 
R 

f(z)Dβ g(z) − 1 = be−iλ cos λ (φ (z) − 1) as s = e−iλ cos λ , So we can write 
R 

Dα
 f (z) 

    R  

D
β  

g(z) 
— 1 = sb(φ (z) − 1) 

α f (z) = {1 + sb(φ (z) − 1)} DR g(z) 

Now for Salagean operator, we can write 

z + ∑∞ 

 

 

nkakzk  =  {1  + sb(φ (z) − 1)} z + ∑∞ nkbkzk 

 

equating the co-efficient for the power of z,we get 

n2(α)a2 = n2(β )b2 + sbφ1 

n3(α)a3 = n3(β )b3 + sb 
 
φ1b2n2(β ) + φ2

 
 

Similarly 

nn(α)an = nn(β )bn + sb
 

nn−1(β ).bn−1φ1 + nn−2(β ).bn−2φ2 + ... + φn−1

 
 

by using Lemma 3.1. and Theorem 1.4 we get 

.ann . ≤ × |b| nk(β ) ∏n − 1 |k+2s−1| + (A − B)(1 − δ ) 

h

∑n−1 nk(β ) ∏n−(m+1) |k+2s−1| 

i 

. 

 

 

Corollary 3.3. Let f ∈ A be in the class C S Pλ , then 

|an| ≤
 1 

 

 
|b| ∏

n − 1 |k+2s−1| 
+ 2 

h

∑
n−1 

∏
n−(m+1) |k+2s−1| 

i 
 

where s = e−iλ cos λ , |λ | < π , b ∈ C − 0. Proof. We let α = β = δ = 0 and A = 1,B = −1 in 

Theorem 3.2. 

Corollary 3.4. [7] Let f ∈ A be in the class C S ∗ (A, B), then 

— n b z 

z + ∑ 

R 

D 

D 

k=2 k=2 

z + ∑∞ k=2 k  
k  = 

k=2 k=2 
∞ 
k=2 n

kakzk  = z + ∑∞ nkbkzk + sb ∑∞ 
∞ 
m=1 

 } 
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2 

2 

2 

|b|n k=1 k m=1 k=1 k 

|an| ≤ n + 
(A − B)(n − 1)n 

where −1 ≤ B < A ≤ 1. Proof. We let α = β = δ = λ = 0 and b = 1 in Theorem 3.2. Corollary 3.5. 

[7] Let f ∈ A be in the class C S ∗ , then 

|an| ≤ n2. 

Proof.We let α = β = δ = λ = 0 and b = 1 in Theorem 3.2. 

Corollary 3.6. Let f ∈ A be in the class Rλ , then 

|an| ≤
 1  

 

 
|b| ∏

n − 1 |k+2s−1| 
+ 2 

h

∑
n−1 

∏
n−(m+1) |k+2s−1| 

i 
. 

where s = e−iλ cos λ , |λ | < π  , b ∈ C − 0. 

Proof. We let α =1,β = δ = 0 and A = 1,B = −1 in Theorem 3.2. 

Corollary 3.7. Let f ∈ A be in the class C C (A, B), then 

|an| ≤ 1 + (A − B)(n − 1) , where −1 ≤ B < A ≤ 1. 

Proof. We let α =1,β = δ = 0 and b = 1 in Theorem 3.2. 

Corollary 3.8. Let f ∈ A be in the class C C , then 

|an| ≤ n. 

Proof. We let α = 1, β = δ = 0andA = 1, B = −1,b=1inTheorem3.2. 
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