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ABSTRACT

In this paper, we present the class PRA (a8, A A B) of generalized Janowski type functions of complex
order defined by Salagean derivative Operator in the open unit disk. A few outcomes of our principlehypotheses are
same as the out-comes got in the previous classes.
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Introduction and definition
let A denote the class of functions of the form

f@) = ‘
(@ =2+) ad ®

and k =1,2,3,... which are analytic in the open unit disk. Let S denote the subclass of A which areunivalent in D.
The Hadamard product or convolution of two functions f(z) =z+Y* aw*and g(z)=7+>" bz

k=2
denoted by, f *g is defined by
(fxg) @) =z +¥~ kB
forz e D. In 1983, Salagean [10] introduced a differential and integral operator
D"f(z)=z+ ) nkanz" (2)
n=2 Z "
It is easy to see that the series D" f(z) is convergent in the unit disc for each k e N.Further , we have the

following differential operator.

. (.
Df(2)=2f(2). D1f(z)= “de =z+y=
0 ¢
_n 1 (n-1)
D@5 PR 4@
In recent years several authors obtained many interesting results for various subclasses of analyticfunctions defined
by using the Salagean derivative operator.
Given two functions f and F which are analytic in unit disk D, we say that the function f issubordinated to F

and write f <F or f(z) < F(2), if there exist a function « analytic in D such that
|o(z)| <1 and w(0) =0, with f(z) = F(z) in D.
In particular, if F is univalent in D, then f(z) < F(2) if and only if f(0)=F(0)and f(D) < F(D).

_q*lanzn

Let P denote the class of all functions of the form P(z) = 1+~ n=1 PnZ" that are analytic in D and
for which Re (P(z) >0) in D.
For arbitrary fixed numbers A and B with —1 -B<A 1, Janowski introduced the class P (AB),

defined by the subordination principle as follows
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P(AB)= P P@) 3" P@Q=1+P1z+P12%+ .. }

Also, if we take A =1 and B = 1, we obtain the well known class P of functions with positive realpart.
In 2006, Polatoglu [8] introduced the class P (A,B,0) of the generalization of Janowski functions as follows:

1+Az

P(ABd)= P :P(2)<(1-0) +0, P@=1+PuztPi’+ . 3)

for arbitrary fixed numbers A and B with A1 B<A <1,0< <1z ¢D.

Let S*and C be the subclasses of S of all starlike functions and convex functions of order a andthe classes of
convex function of order a, where 0 ca<l, respectively.

In particular, we note that S* := S* (0)and C* = C~*(0). N
In [9] Reade introduced the class C S * of close-to-star function as follows

. —p . @ '
CS* =R, feA : @ >0

for all ze D. Also, we denote by CS* (B) the class of close-to-star functions of order g where
0 < f <1. (See Goodman [3]).
In [6], Kaplan introduced the class C C of close-to-convex functions as follows:

3 - ’
CC=R. feA: 2 >0
9(2)

forall z ¢ D.Also, we denote by CC (5) the class of close-to-convex functions of order S where
0 < f <1. (See Goodman [2]).
Clearly, we note that CS* : =CS* (0)and CC :=CC(0).
f €A is an A-spirallike function, S P*, if and only if
h N
) 2f(2)
Re € P
for some |A| < %,z €D. The class of 1-spirallike functions was introduced by Spacek in [11].
Also, f € SP* if and only if there exists a function p € P such that

0 f(z) = zexp cosi e I PO=1 gt
We note that the extremal function for the class of S P*
f(2) = — %, wheres = e cosi
(1-2)

the 4-spiral koebe function.

f € A is an /1 -Robertson function, R, if and only if
h i
Re ¢4 1+3@ >
'(2)
forsome |A| < £ ,z€D. 2
Lemma 1.1. f € R* if and only if there exist p € P such that

7 o Japycosa —eit 7
f(2) = —ia 4z p(t)cos et
( ) 0 tcosi
forsome |A| < 7 ,z€D. 3
Proof. Suppose that f € R*. Since it is 4-Robertson function, there exist a function p € P such that

et 1+7f (Z)Tﬁ p(z)cosA

e —
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From this equality we can easily obtain the result 4.
Conversely, suppose that suppose result holds, then if we take logarithmic derivative then f c R*. Sothat,
the proof is completed.
We note that f €RR* if and only if zf' € SP%.
f € {A is an A-close-to-spirallike function, {CS{P*, if there exist a function g € S P* such that

h i
1@
{R 9(29
T forsome |A| < ,zeD.
We note that the extremal function for the class C S P*
2 .
f(2) = ” _  wheres = e cosA.

(172)25+1
the A -close-to-spirallike koebe function.
f €A is an 1-close to Robertson function, C R?, if there exist a function g € R* such that

R 1@ h i
9@ >
for some |A| < 7 ,z€D. 5
We have introduced the class g € S P*(b) of A-spirallike functions of complex order b as follows
il L] i n ! y s
SP*(b)= feA:R 1+ bceols(f MM 1< (1-6) M
for some b c{C- 0z ¢D.
On the same way we have defined the class R*follows (b) of A- Robertson function of complex order b as

’ ’ i) Z D" )" ’ . ’

R*() = feA: {R 1+ b(?os nry 1 < (175)1Alz+_é_25

Now, respectively, we introduce the classes of 1 -close-to-spirallike functions of complex order b and
/4 -close-to-Robertson function of complex order b, denoted by C S P*(b) and C R*(b), as follows:
CSP'(b)= feA :{R 1+1 P"F -1 < (1-9)1*24+5 geSP
b Dng - — 1+Bz
and 1 1 ’ 1 1
CR(b)= feA:{R1+* ®N 1 < (@1-5)42 45 geR
b (Dng)’ - 1+Bz
for some |A| < £ ,z€D.
Definition 1.2. The class of generalized Janowski functions which are defined by Salagean derivativeoperator in z € D,
denoted by D*#(a,8, J, A, B),is defined as
1 N h i b
D" (a,f, 9, A, B) = fEA 1 1+ e WD&%%(z)—l < (1-5) Leees5  geSP?
for some for some |1| < * z€D,0< 0 <1,-1<B<A<Ll
Nothing that the class D*# (a5, &, A, 1'%)’ includes several subclasses which have important role inthe analytic and
geometric function theory.
By specializing the parameters ao,f, J, A, B we obtained the following subclasses studied earlier:
(1) CS; (6,A B):=D?0,0,4, A B)is the clasg of the generalized Janowski type close-to-star
functions of complex order b,

2 CS; (A B):= DO(OGO,O, A, B) is the class of the generalized Janowski type close-to-star functions
f | d . . .
(3) §§9T&eé)o:r=ef)qto,0,0, A, B) is the class of the generalized Janowski type close-to-star
1
functions
(4) CS* (o, A, B):= D%0, 0, 0, 1 — 27, —1) is the class of the close-to-star functions of order
b 1

7]1
(5) CS~* (s, A, B):= D0, 0,0, 1, —1) is the class of the close-to-star functions

e —
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(6) CC (4, A B):= DO(JG, 0, 4, A, B) is the class of the generalized Janowski type close-to-convexfunctions
of complex order b,
@) CC (6, A, B):= DO(Jﬁ, 0, 0, A, B) is the class of the generalized Janowski type close-to-convexfunctions

of complex order b,
(8) CC (A, B):= D1, 0, 0, A, B) is the class of the generalized Janowski type close-to-convex

functions, . .
9) 66:) &CSC: Eg?;o, 0,0, 1 — 2y, —1) is the class of the close-to-star functions of order #,
0

Lemma 1.3. [1] if the function p(z@bﬂh@fgrﬁ —1) is the class of the close-to-convex functions
P(z) = 1+yP«z"
is analytic in D and

1+Az
P(Z) . 1+Bz

then |pi|< A- B, forkeN-1<B<A<1
Theorem 1.4. [3] f €SP*, then

< - kes
S k

wheres = e cosi,|i| < £ ,z€ D. )

Subordination result and their Consequences
Theorem 2.1. f(z) € D" (a,B, 6, A, B)if and only if

Dy f(2)—1 < (1-0) (A — B)pe ™ cos4 z 4)
%ﬁ 0(z) +Bz

Proof. Suppose that f(z) € S *va’lfia,ﬂ, J, A, B).Using Subordination principle, we write
!

e D* £(2) 11 5 ltAo(@ ¢ (5)
+ R _ =(-) +
bcosips %) 1+Bw(z)
After simple calculations, we get
eit D*  1(2) 1 — (1=0) (A-Blao(2)
R '

] . ] _bcosl)?Dﬂ 9(2) 1+Bz
Thus, this equality completes the proof. Similarly, the other side is proved.
In this Theorem, if we choice special values «, 8, §, 4, b and A, B we get following corollaries.

Corollary 2.2. f € CSP*(b) if and only if

1(2) 2be~* cos ) z
9@) —1l<— 1-2

and this result is as sharp as the function

2be ™ cos 7 z
(1 72)Zs+l
Proof. We leta = =6 =0and A=1, B=-1 in the Theorem 2.1.
Corollary 2.3. f(z) e CS* (A, B) if and only if

, where s =e cosi

1@ A Bz
9@z) 1 ¥Bz 1-
and this result is as sharp as the function
1+Az z
1+ Bz(l -2)

o —
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Proof. WeletA =a =4 =J =0and b=1in Theorem 2.1. Corollary 2.4. f(z)€CS~ if and only if

@ g%
9@) 1-12

and the result is as sharp as the function
Az
1-z

Proof. Weleti =a = =0 =0and A=1,B=-1in Theorem 2.1.
Corollary 2.5. f(z) € R* (b) if and only if

21z o 2be ™ cos/ z
@ 1< e

Proof. Weleta =1, =6 =0and A=1,B=-1in Theorem 2.1.
Corollary 2.6. f(z) e CC (A, B) if and only if

2'(2) (A B)z
g(2) 1+ Bz 1-

Proof. WeletA = =0 =0and a =1, b =1in Theorem 2.1.
Corollary 2.7. f(z) e CC if and only if

@) 1 <21
9(2) 1-z

and this result is as sharp as the function

Proof. WeletA = =0 =0anda =1,b=1A=1,B=-1.

Coefficient estimates and their Consequences
Lemma 3.1. If the function ¢ (z) of the form

(0(2) =1 e k=(£kzk
is analytic in D and

0(2) < (L—dpEE +5

then
o < (A-B)(1-09) (6)
for0< 0 <1-1<B<A<l,z€e D. 1447 o K
Proof. Suppose that ¢ (z) < (@ _0) g, tofor ¢(z) = 1+, oz . Using subordinationprinciple,
we write
1+4w(z)
p()= (1-6) +0 )

1+ Bw(z)
From (3.2.), we get

— 0@ =61tAn()
K(2) = * )10l
By using Lemma 1.3. for the above x(z), we get

THT< A - B

e —
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This inequality is equivalent to required result.
Theorem 3.2. If the function f € A be in the cl%ss D" (a8, J, A, B), then 4

. K- 1k 1 " llk+2s—1] s o1 kn—(m+1) k+2s—1| ’

.dn S —X + _ _

ann b lojn () g K ( )¢ ) mZ‘ln ) Q )
®)

where s = e cosi, JA| £ £,beC -0,q f >-1,0< 5 <land -1<B<A<L
Proof. Since f(z) € % ‘D4 (aRB, 6, A, B) thereagre anglytic functions g, ¢ : D — D such that

0

9@) = 2+ Y, bz ESP4,p(2) = 1+, oz and w(z) is a schawarz function as in Lemma3.1
such that
1
; f(z
L g O PER bl sy ®)
= — ) -

+ +
_ o bco_s,I_D/; 9%2) 1+Bw(z)
Now, As in subordination principle for ¢ (z)

(1_5) HAw@) 4§ = (0(2)

1+Bw(z)
So,
14 ¢ D¢ Lf@ —1 = ¢(2)
bcole/i 9
& D
f(2)D? g(z) —1 =be ™ cosi(p(z)—1)ass = e cosi, So we can write
R f(2)
R D* _ _
- . —1 = sh(p(2)-1)
“f(2) = {1 +sb(p(2)-1)}Dg 9(2) Dg /

Now for Salagean operator, we can write

2+ Yo ad = {1 +sb(p(@)-1)}z+ X° | pfb
24 i, M = 2 + 35,00 +sb Y, (p(2)nbreb z ¥
2+ Y ponazk = 7 + Y7, Nk +sb Yr, Yro, omz™fby T 2"

equating the co-efficient for the power of z,we get
n*(a)az = n?(B)bz + sbe:

nd(a)as = n3(B)bs + sb pibn?(B)+ 2

Similarly
n"(a)an = n"(B)on+ sb N"B).bra1pr + N"2(B).br2p2 + ... +Pn1
by using Lemma 3.1. and Theorem 1.4 we get h i
an - < X IR IR (A - B)(L — 0) TR T

This completes the proof.

Corollary 3.3. Let f € A be in the class CS P*, then
h i
—1 |k+2s—
[l ;b—‘l bt e— 2 SR erste—

where s = e cosA, |.] < = ,beC — 0. Prgof. Weleta = g =6 =0and A=1B=-1in
Theorem 3.2.

Corollary 3.4. [7] Let f €A be inthe class CS* (A, B), then

e —
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(A -B)(n - 1)n
<
lag] < n+ )

where -1 <B <A <1. Proof. Weleta = f =6 =4 =0and b=1in Theorem 3.2. Corollary 3.5.
[7]1 Let f €A beinthe class CS *, then
lan| < n2.
ProofWeleta = f =6 =1 =0andb=1in Theorem 3.2.
Corollary 3.6. Let f €A be in the class R*, then

h [
1 n—1 |k+2s-1| B . -
|an| 'I<'b|_n bl TT k=1 —+2 3" r%:ﬂn ms) ferzs=1

where s = e cosi, |A| < 2 ,beC — 0.

Proof. We leta =1, = 6 =0and A=1,B=-1in Theorem 3.2.
Corollary 3.7. Let f €A be in the class C C (A,B),then

las) < 1+ A B0 - Y where -1<B<A<1. 2

Proof. Weleta =1,8= 6 =0and b=1in Theorem 3.2.

Corollary 3.8. Let f €A be in the class C C ,then
lan] < n.
Proof. We let o =1, = 6 =0andA =1,B =-1,b=1inTheorem3.2.

—_—  — ———————————
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