

On completely (1,2)*- $\psi \hat{g}$ -irresolute functions

Dr.N.Ramya

Assistant Professor Sri Shakthi Institute of Engineering and Technology Coimbatore.

Abstract

In this paper, we introduce the new class of functions called completely $(1,2)^*$ - $\psi \hat{g}$ -irresolute functions. Some comparative properties of these functions are studied.

Keywords: $(1,2)^*$ - $\psi \hat{g}$ -irresolute functions, completely $(1,2)^*$ - $\psi \hat{g}$ -irresolute functions.

1.Introduction

Crossley and Hildebrand[1] defind irresolute functions by utilizing semi-opensets due to Levine[10]. As weak forms of irresoluteness, weak irresoluteness, θ -irresoluteness, almost irresoluteness and quasi irresoluteness have been defined and investigated are equivalent[4]. On the other hand, Dube [2,3]et al have introduced the notion of almost irresolute functions which is independent of that of almost irresolute functions in the sense of Thakur and Palk[11]. Recently authors[5,6,7,8,9,12] studied various functions in bitopological spaces. The aimof this paper is introduce and investigate the new class of functions called completely (1,2)*- $\psi \hat{g}$ -irresolute functions.

2.Preliminaries

Throughout the present paper(X, τ_1 , τ_2), (Y, σ_1 , σ_2), (Z, η_1 , η_2)briefly X,Y,Z bebitopological spaces.

Definition 2.1 A subset Sofabitopological space (X, τ_1, τ_2) is said to be $\tau_{1,2}$ -open if

 $S = A \cup Bwhere A \in \tau_1 and B \in \tau_2.AsubsetSofXis\tau_{1,2}$ -closedifthecomplementofSis $\tau_{1,2}$ -open.

Definition2.2

- (i) The $\tau_{1,2}$ -interior of a subset A of X, denoted by $\tau_{1,2}$ -int(A) is defined to be
- the union of all $\tau_{1,2}$ -opensets containing A.
- (ii) The $\tau_{1,2}$ -closureofasubsetAofX,denotedby $\tau_{1,2}$ cl (A)is defined to be

the intersection of all $\tau_{1,2}$ -closed sets containing A. **Remark2.3** (i) $\tau_{1,2}$ -int(S) is $\tau_{1,2}$ -openforeachS \subset Xand $\tau_{1,2}$ -cl(S) is $\tau_{1,2}$ -closedforeachS \subset X.

(ii) AsetS \subset X is $\tau_{1,2}$ -open iffS= $\tau_{1,2}$ -int(S)andis $\tau_{1,2}$ -closediffS= $\tau_{1,2}$ -cl(S).

(iii) $\tau_{1,2}$ -int(S)=int τ_1 (S) \cup int τ_2 (S)

(iv)For anyfamilyS_i/i∈IofsubsetsofXwehave

(a)
$$\underset{i}{\overset{U}{\underset{i}}}\tau_{1,2}$$
-int($\underset{i}{\overset{S}{\underset{i}}}$) $\subset \tau_{1,2}$ -int($\underset{i}{\overset{U}{\underset{i}}}S_i$)

(b)
$$\bigcup_{i} \tau_{1,2}$$
-cl(S_i) $\subset \tau_{1,2}$ -cl(US_i)

(c)
$$\tau_{1,2}$$
-int $(\bigcap S_i) \subset \bigcap \tau_{1,2}$ -int (S_i)

(d)
$$\tau_{1,2}$$
-cl($\bigcap S_i$) $\subset \bigcap \tau_{1,2}$ -cl(S_i)

 $(v)\tau_{1,2}$ -open setsneednotformatopology

Definition2.4 AsubsetAofabitopologicalspaces(X, τ_1, τ_2) iscalled

- 1. $(1, 2)^*$ -closed if f (V) is $\sigma_{1,2}$ -closed in Y, for every $\tau_{1,2}$ -closed set V of X.
- (1,2)*-generalized closed ((1,2)*-g-closed)ifτ_{1,2}-cl(A) ⊆UwheneverA⊆Uand Uis τ_{1,2}openinX.
- 3. $(1,2)^* \psi$ -closedset if $(1,2)^* \operatorname{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* \operatorname{sg-open}$ in X.
- 4. $(1,2)^* \psi$ generalized closed set (briefly $(1,2)^* \psi$ g-closed)if $(1,2)^* \psi$ cl(A) \subseteq U whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X.
- 5. $(1,2)^*$ -ĝ-closed set if $(1,2)^*$ -cl(A) \subseteq G whenever A \subseteq G and G is $(1,2)^*$ semi-open in X.
- 6. $(1,2)^* \psi \hat{g}$ -closedif $(1,2)^* \psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* \hat{g}$ -open in X.

Definition 2.5 A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- 1. $(1,2)^*$ continuous if $f^{-1}(V)$ is $(1,2)^*$ -closed in X for every $\sigma_{1,2}$ -closed set V of Y.
- 2. $(1,2)^*$ completely-continuous if $f^{-1}(V)$ is $(1,2)^*$ -regular-closed in X for every $\sigma_{1,2}$ closed set V of Y.

- 3. $(1,2)^* \psi$ -continuous if $f^{-1}(V)$ is $(1,2)^* \psi$ -closed in Xfor every $\sigma_{1,2}$ -closed set V of Y.
- 4. $(1,2)^* \psi$ g-continuous if $f^{-1}(V)$ is $(1,2)^* \psi$ g-closed in Xfor every $\sigma_{1,2}$ -closed set V of Y.
- 5. $(1,2)^*-\psi \hat{g}$ -continuous if $f^{-1}(V)$ is $(1,2)^*-\psi \hat{g}$ -closed in Xfor every $\sigma_{1,2}$ -closed set V of Y.
- 6. (1, 2)*-irresolute if f⁻¹(V) is (1, 2)*-semi-closed in X for every (1, 2)*-semi-closed set V of Y.

3.(1,2)*- $\psi \hat{g}$ -Irresolute Functions

In this section, we introduced (1,2)*- $\psi \hat{g}$ -irresolute functions in bitopological spaces and study some of their characterizations and properties.

Definition3.1: Afunctionf: $(X, \tau_1, \tau_2) \rightarrow$ (Y, σ_1, σ_2) fromab i topologicalspaceXintoab i topologicalspaceYiscalled(1,2)*- $\psi \hat{g}$ -irresoluteif the inverse image of every (1,2)*- $\psi \hat{g}$ -closed set in Yis(1,2)*- $\psi \hat{g}$ -closed set in X.

Example3.2:Let X = Y = { a,b,c}with $\tau = \{ X, \phi, \{ c \}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}$.Let $f : (X, \tau) \rightarrow (Y, \sigma)$ bean identity function. Then fis $(1,2)^*$ - $\psi \hat{g}$ -irresolute.

Theorem3.3: Afunction $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ - $\psi \hat{g}$ -irresolute if and only if the inverse image of every $(1,2)^*$ - $\psi \hat{g}$ -open s et in Yis $(1,2)^*$ - $\psi \hat{g}$ -open in X.

Proof:Assume that fis(1,2)*- $\psi \hat{g}$ -irresolute. LetAbeany (1,2)*- $\psi \hat{g}$ -open set in Y. ThenA^C is(1,2)*- $\psi \hat{g}$ -closedinY. Since fis(1,2)*- $\psi \hat{g}$ -irresolute, $f^{-1}(A^{C})$ is (1,2)*- $\psi \hat{g}$ -closedinX.But $f^{-1}(A^{C})=X-f^{-1}(A)$ and so $f^{-1}(A)$ is(1,2)*- $\psi \hat{g}$ -open setinYis(1,2)*- $\psi \hat{g}$ -open setinYis(1,2)*-

Theorem3.4: Afunction $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) is(1,2)^* - \psi \hat{g}$ -irresolute if and only if it is $(1,2)^* - \psi \hat{g}$ -

continuous.

Proof:Assume that fis(1,2)*- $\psi \hat{g}$ -irresolute .LetFbeany $\sigma_{1,2}$ -closedsetinY.As every $\sigma_{1,2}$ -closedsetis(1,2)*- $\psi \hat{g}$ -closed, Fis(1,2)*- $\psi \hat{g}$ -closedinY. Sincefis(1,2)*- $\psi \hat{g}$ -irresolute, $f^{-1}(F)$ is(1,2)*- $\psi \hat{g}$ -closedinX. Therefore fis(1,2)*- $\psi \hat{g}$ -continuous.

Conversely, assume that $fis(1,2)^*$ - $\psi \hat{g}$ -continuous. Let F beany $\sigma_{1,2}$ -closed set in Y.Asevery $\sigma_{1,2}$ -closed set is $(1,2)^*$ - $\psi \hat{g}$ -closed , F is $(1,2)^*$ - $\psi \hat{g}$ -closed in Y. Since fis $(1,2)^*$ - $\psi \hat{g}$ -continuous, $f^{-1}(F)is(1,2)^*$ - $\psi \hat{g}$ -closed in X. Therefore fis $(1,2)^*$ - $\psi \hat{g}$ -irresolute.

Theorem3.5: LetX, YandZbeanybitopologicalspaces. For any $(1,2)^*$ - $\psi \hat{g}$ -irresolute function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and any $(1,2)^*$ - $\psi \hat{g}$ -continuous function g: $(Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$, the composition g of f: $(X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^*$ - $\psi \hat{g}$ -continuous.

Proof:LetFbeany $\eta_{1,2}$ -closedsetinZ. Sincegis $(1,2)^*$ - $\psi \hat{g}$ -continuous, $g^{-1}(F)is(1,2)^*$ - $\psi \hat{g}$ -closedinY. Sincefis $(1,2)^*$ - $\psi \hat{g}$ -irresolute, $f^{-1}(g^{-1}(F))is(1,2)^*$ - $\psi \hat{g}$ -closedinX. But $f^{-1}(g^{-1}(F))=(g\circ f)^{-1}(F)$.Therefore $g\circ fis(1,2)^*$ - $\psi \hat{g}$ -continuous.

Theorem 3.6: If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ from a bitopological space X into a bitopological space Y is bijective, open and $(1,2)^*$ - $\psi \hat{g}$ -continuous then f is $(1,2)^*$ - $\psi \hat{g}$ -irresolute.

Proof: Let A be a $(1,2)^{*-} \psi \hat{g}$ -closed set in Y. Let f⁻¹(A) $\subseteq U$. where U is $\tau_{1,2}$ -open in X. Therefore, A $\subseteq f(U)$ holds. Since f(U) is $\sigma_{1,2}$ -open and A is $(1,2)^{*-} \psi \hat{g}$ -closed in Y, $\tau_{1,2}$ -cl(A) $\subseteq f(U)$ holds and hence f⁻¹($\tau_{1,2}$ -cl(A)) $\subseteq U$. Since f is $(1,2)^{*-} \psi \hat{g}$ -continuous and cl(A) is closed in Y, $\tau_{1,2}$ -cl(f⁻¹($\tau_{1,2}$ -cl(A))) $\subseteq U$ and so $\tau_{1,2}$ -cl(f⁻¹(A)) $\subseteq U$. Therefore,

f⁻¹(A) is (1,2)*- $\psi \hat{g}$ -closed in X. Hence f is (1,2)*- $\psi \hat{g}$ -irresolute.

4Completely(1,2)*- $\psi \hat{g}$ -irresolute functions

Definition 4.1 A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called **completely** (1,2)*- $\psi \hat{g}$ -irresolute if the inverse image of every(1,2)*- $\psi \hat{g}$ -closed subset of Yis(1,2)*-regular closed in X.

Example 4.2Let X ={a, b, c} =Y , $\tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{b,c\}\}$. Then

 $\tau_{1,2}$ -open sets={X, ϕ ,{a},{b,c}} and $\tau_{1,2}$ -closed sets= {X, ϕ ,{a},{b,c}}.Let $\sigma_1 =$ {Y, ϕ ,{c}} and $\sigma_2 =$ {Y, ϕ ,{b,c}}.Then $\sigma_{1,2}$ -open sets = {Y, ϕ ,{c},{b,c}} and $\sigma_{1,2}$ -closed sets = {Y, ϕ ,{a},{a, b}}. Let f :(X, τ_1, τ_2) \rightarrow (Y, σ_1, σ_2) bebedefinedbyf(a)=a,f(b)=b,f(c)=b.Then fis completely(1,2)*- ψ g-irresolute function.

Theorem4.3Every completely $(1,2)^* - \psi \hat{g}$ -irresolute function is $(1,2)^* - \psi \hat{g}$ -irresolute.

Converseofthe above heorem neednot betrue as seen from the following example.

Example4.4Let X ={a, b, c} =Y, $\tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi\}$. Then $\tau_{1,2}$ -open sets={X, $\phi, \{a\}\}$ and $\tau_{1,2}$ -closed sets= {X, $\phi, \{b,c\}\}$. Let $\sigma_1 =$ {Y, $\phi, \{a\}\}$ and $\sigma_2 =$ {Y, $\phi, \{b,c\}\}$. Then $\sigma_{1,2}$ -open sets = {Y, $\phi, \{a\}, \{b,c\}\}$ and $\sigma_{1,2}$ -closed sets = {Y, $\phi, \{a\}, \{b,c\}\}$. Let f :(X, τ_1, τ_2) \rightarrow (Y, σ_1, σ_2) bebedefinedbyf(a)=b,f(b)=c,f(c)=a. Then fis(1,2)*- $\psi \hat{g}$ -irresolute function but not completely (1,2)*- $\psi \hat{g}$ -irresolute function, since for the $\sigma_{1,2}$ -closed set {a} in Y,f⁻¹({a})={b} is not (1,2)*-regular closed in X.

Theorem4.5A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a completely $(1,2)^* - \psi \hat{g}$ -irresolute if the inverse image of every $(1,2)^* - \psi \hat{g}$ -open set is $(1,2)^*$ -regular open in X.f⁻¹(Y-V) is regular closed in X,X-f⁻¹(V) is $(1,2)^*$ -regular open in X.Then f⁻¹(V) is $(1,2)^*$ -regular closed in X.Hence f is completely $(1,2)^* - \psi \hat{g}$ -irresolute.

Theorem4.6 If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is completely $(1,2)^* - \psi \hat{g}$ -irresolutefunction and f(X) is taken with the subspace bitopology then $f: X \to f(X)$ is completely $(1,2)^* \psi \hat{g}$ -irresolutefunction.

Proof:If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is completely $(1,2)^* - \psi \hat{g}$ -irresolute function implies $f^{-1}(H)$ is $(1,2)^*$ -regular open for every $(1,2)^* - \psi \hat{g}$ -open subset H of Y.Now $f^{-1}(H \cap f(X)) = f^{-1}(H) \cap X = f^{-1}(H)$ is $(1,2)^*$ regular open. Therefore $f: X \to f(X)$ is completely $(1,2)^* - \psi \hat{g}$ -irresolute function.

Definition 4.7 A space X is said to be $(1,2)^* - \psi \hat{g}$ -Housdroff (resp, $(1,2)^* - rT_2$) if for any $x, y \in X, x \neq y$, there exist $(1,2)^* - \psi \hat{g}$ -open sets (resp. $(1,2)^*$ -regular open)G and H such that $x \in G, y \in H$ and $G \cap H = \phi$.

Theorem4.8 Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be injective and completely $(1,2)^* - \psi \hat{g}$ -irresolute surjection.If Yis $(1,2)^* - \psi \hat{g}$ -Hausdorff space then Xis $(1,2)^* - rT_2$.

Proof: Letx and y be any two disjoint points of X.Since f is injective, $f(x) \neq f(y)$.Since Y is $(1,2)^* - \psi \hat{g}$ -Hausdorff space there exist disjoint $(1,2)^* - \psi \hat{g}$ -open sets G and H such that $f(x) \in G$ and $f(y) \in H$.Since f is a completely $(1,2)^* - \psi \hat{g}$ -irresolute function f⁻¹(G), f(H) are disjoint function, f⁻¹(G), f(H) are disjoint $(1,2)^*$ -regular open sets containing x and y respectively.Hence X is $(1,2)^*$ -rT₂.

Theorem 4.9 Iff : $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is completely $(1,2)^*$ -continuousandg: $(Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is completely $(1,2)^* - \psi \hat{g}$ -irresolute then $g \circ f:(X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is a completely $(1,2)^* - \psi \hat{g}$ -irresolute function.

Proof:LetGbeany(1,2)*- $\psi \hat{g}$ -closedsetinZ.Sincegiscompletely $(1,2)*-\psi \hat{g}$ -irresolute, g^{-1} (G)is(1,2)*- regularclosedinY.Since(1,2)*-regularclosed sets is $\sigma_{1,2}$ -closed and fis completely(1,2)*-continuous f1 $(g^{-1}(G))is$ (1,2)*-regularclosed inX.Sinceevery(1,2)*-regularclosed set is $(1,2)*-\psi \hat{g}-$ closed, $g^{\circ}f$ iscompletely $(1,2)*-\psi \hat{g}$ -irresolute function.

Theorem4.10 If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is completely $(1,2)^* - \psi \hat{g}$ -irresolute and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^* - \psi \hat{g}$ -continuous then $g \circ f: (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is a completely $(1,2)^*$ -continuous function.

Proof:LetGbeany $\eta_{1,2}$ -closedsetinZ. Sincegis $(1,2)^* - \psi \hat{g}$ -continuous, $g^{-1}(G)$ is $\sigma_{1,2}$ -closedinY.Since fis completely $(1,2)^* - \psi \hat{g}$ -irresolute, f⁻¹ $(g^{-1}(G))$ is $(1,2)^*$ -regular closed inX. But $f^{-1}(g^{-1}(G))=(g \circ f)^{-1}(G)$. Therefore $g \circ f$ is completely $(1,2)^*$ -continuous function.

Theorem4.11 If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is completely $(1,2)^* - \psi \hat{g}$ -irresolute and $f: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^* - \psi \hat{g}$ -irresolute then $g \circ f: (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is a completely $(1,2)^* - \psi \hat{g}$ -irresolute function.

Proof:LetGbeany $(1,2)^* - \psi \hat{g}$ -closedsetinZ.

Since $gis(1,2)^* - \psi \hat{g}$ -irresolute,

 $g^{-1}(G)is(1,2)^* - \psi \hat{g}$ -closedin Y.Since fis completely $(1,2)^* - \psi \hat{g}$ -irresolute, f⁻¹(g⁻¹(G))is(1,2)*-regular closed inX. But f⁻¹(g⁻¹(G))=(g\circ f)^{-1}(G).Therefore g\circ fis completely(1,2)*irresolute function.

Theorem4.12 If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is completely $(1,2)^*$ -continuous and $g: (Y,\sigma_1,\sigma_2) \rightarrow (Z,\eta_1,\eta_2)$ is completely $(1,2)^*$ - $\psi \hat{g}$ -irresolute then $g \circ f: (X, \tau_1,\tau_2) \rightarrow (Z,\eta_1,\eta_2)$ is a completely $(1,2)^*$ - $\psi \hat{g}$ -irresolute function.

Proof: LetGbeany $(1,2)^*$ - $\psi \hat{g}$ -closedsetinZ.		Sinceg		is	(completely
$(1,2)^*$ - $\psi \hat{g}$ -irresolute,	$g^{-1}(G)is(1,2)^*$ -regular		closedin		Since	fis
(1,2)*-continuous,f	¹ $(g^{-1}(G))is(1,2)^*$	regular clos	sed inX.	But	f ¹	$(g^{-1}(G))$
= $(g \circ f)^{-1}(G)$. Therefore $g \circ f$ is completely $(1,2)^*$ -irresolute function.						

REFERENCES

- (1) S.G. Crossley and A.K. Hildebrand, Semitopological properties, Fund.Math. 74 (1972) 233-254
- (2) K.K.Dube,GyuIhn Chae and O.S.Panwar,UIT Report 14(1983),379-83.
- (3) K.K.Dube,GyuIhn Chae and O.S.Panwar,UIT Report 15(1984),373-79.
- (4) G. Di Maio and T. Noiri, Weak and strong forms of irresolute functions, Suppl. Rend. Circ. Mat. Palermo (2) 18(1988), 255-273.
- (5) M.LellisThivagar and O.Ravi, On stronger forms of (1,2)*-quotient mappingsinbitopological spaces, Internat. J. Math. Game theory and Algebra., 14(6)(2004), 481-492.
- (6) M.LellisThivagar and O.Ravi, Abitoplogical(1,2)*-semi generalized continuousmaps, Bulletin Malays.Sci.Soc.,2(29)(2006),79-88.
- (7) M.LellisThivagar and O.Ravi,Abd El-Monsef M.E,Remarks on bitoplogical(1,2)*-quotient mappings,J.Egypt Math.Soc.,16(1)(2008),17-25.
- (8) M.LellisThivagar and O.Ravi,Ekici.E,On(1,2)*-sets and decomposition of bitopological(1,2)*continuous mappings,Kochi J. Math.,3(2008),181-189.
- (9) M.LellisThivagar and O.Ravi, Ekici.E, Decompositions of bitopological(1,2)*-continuity and complete (1,2)*-continuity, AnaleleUniversitatii DinOradea-Fasicola Mathematica., 15(2008), 29-37.
- (10) Ramya.NandParvathi.A, ψĝ-closed sets intopological spaces, InternationalJournal of Mathematical Archive, 2(10)(2011),1992-1996,ISSN 2229-5046.

(11) Ramya.NandParvathi.A, Strong forms of $\psi \hat{g}$ -continuous functions in topological spaces, Journal of Mathematics and Computational Science.,

2 (2012), No. 1, 101-109. ISSN: 1927-5307.

- (12) Ramya.NandParvathi.A, (1, 2)*-ψĝ-closed functions in bitopological spaces, InternationalJournal of Mathematical Archive, 3(8),(2012),3122-3128, ISSN 2229-5046.
- (13) Ramya.NandParvathi.A, Quasi ψĝ-open functions and Quasi ψĝ-closed functions
 intopologicalspaces, Journal of Advanced Research in Computer Engineering, Volume6, Number
 2, July-December 2012, 103-106, ISSN 0974-4320.