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Abstract :   The development of deeply-learned features is the

foundation for  the success  of  contemporary  face  recognition

systems. These embeddings are designed to encode a person's

identity  so  that  they  can  be  used  for  identification.  Recent

studies,  however,  have  demonstrated  that  these  embeddings

also store information on demographics, image qualities, and

social  traits  in addition to the user's  identity. This brings up

issues  with  prejudice  and  privacy  in  facial  recognition.  We

examine  the  predictive  power  of  73  various  soft-biometric

features  on  three  well-liked  face  embeddings  with  various

learning philosophies. The tests were run on two databases that

were accessible to the general  public.  We developed a huge

attribute classifier that can accurately express the confidence in

its predictions as part of the evaluation process. As a result, we

are able to construct more complex statements concerning the

property  predictability.  The  findings  show  that  most  of  the

attributes under investigation are encoded in face embeddings.

For  instance,  a  robust  encoding  for  accessories,  accessories,

and  accessories  was  discovered.  We  discovered  that  these

characteristics  are  particularly  easy  to  anticipate  from  face

embeddings, despite the fact that face recognition embeddings

are taught to be resilient against non-permanent elements. Our

research  is intended to inform future efforts  to create  better

bias-reducing  and  privacy-preserving  face  recognition

technology.

IndexTerms - Face recognition, bias, fairness, soft-biometrics,

analysis, privacy, biometrics

I.INTRODUCTION

Current face recognition systems show strong recognition

capabilities enabled by the advances in learning deep neural

feature embeddings [13]. This leads to a worldwide spreading

of these systems and also increasingly affect everyone’s daily

life [8]. Although face recognition models are trained with the

aim  of  extracting  deeply-learned  features.  This  work  was

partially funded by the National Research Centre for Applied

Cybersecurity  (ATHENE),  the  Hessen  State  Ministry  for

Higher  Education,  Research,  and  the  Arts  (HMWK),  the

German Federal Ministry of Education and Research (BMBF),

and the German Federal Ministry of Education and Research

(BMBF)  through  the  Software  Campus  Project.  After

considering the feedback from the reviewers, Associate Editor

J.  Phillips  suggested  that  this  article  be  published.  (Philipp

Terhörst is the corresponding author.)
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10.1109/TBIOM.2021.3093920. Recent research revealed that

the  information  included  in  these  embeddings  goes  beyond

identification  recognition.  These  studies  shown  that  various

face embeddings hold data on social qualities [38], head pose

[37],  demographics  [9],  viewpoint  [19],  lighting  [35],  and

picture attributes  (such as  quality [4],  [18],  and illumination

[19]).  But  this  raises  moral  questions  about  privacy  and

fairness  in  face  recognition.  For  starters,  many programmes

only allow users to access information relevant to recognition

[32],  and  extracting  further  information  without  a  person's

agreement is deemed a violation of their privacy [24]. This is

referred  to  as  soft-biometric  privacy  [32],  and  solutions  are

either  image-[30],  [31],  or  embedding-level  [5,  42,  45,  51].

Second,  the qualities  recorded  in biometric face embeddings

may  suggest  biassed  performances  associated  with  these

attributes,  which  may  result  in  unfair  performance

discrepancies.

This  is  referred  to  as  facial  recognition  bias,  and

solutions  to  this  problem  have  primarily  focused  on

demographic-bias [12], [28], [48], [52], and [55]. Knowledge

of  encoded  properties  in  face  embeddings  is  essential  to

construct  more  advanced  bias-mitigating  systems  [43].  We

extend the work of [43] by performing a prediction analysis on

73  different  soft-biometric  variables  derived  from  face

embeddings.  In  [43],  an  attribute  predictability  statement  is

created by taking into account an attribute classifier's attribute

prediction  performance  at  two  difficulty  levels.  These

difficulty  levels  reflect  how  well  this  classifier  predicts  an

attribute  and  hence  simulates,  for  example,  various  capture

scenarios. This work, in contrast to [43].

1) Analyses  an  attribute's  predictability  throughout  a

continuous  range  of  difficulty  levels.  This  enables

more  fine-grained  predictability  claims  regarding

specific attributes to be derived.

2) Analyses  the  predictability  of  numerous  attributes

(attribute  categories)  at  the  same  time  to  produce

precise, concise, and simply understandable results.

3) Analyses  the  predictability  of  numerous  attributes

(attribute  categories)  at  the  same  time  to  produce

precise, concise, and simply understandable results.

4) The studies are expanded to include three alternative

facial recognition models. This enables researchers to

investigate the impact of embedding dimensionalities

and underlying training losses on the qualities stored

in face embeddings.

5) Furthermore,  it  analyses  the  implications  of  our

findings for future works.
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The  inquiry  methodology  is  built  on  a  massive  attribute

classifier (MAC) that is trained on numerous attributes at the

same time in  order  to  take  advantage  of  a  common feature

space.  The  MAC  is  designed  in  such  a  way  that  it  can

accurately state its prediction confidence [47]. This enables us

to make more specific  claims regarding the predictability of

attributes in face embeddings. The trials were carried out using

two public datasets,  CelebA [29] and LFW [20],  as  well  as

three popular  face embeddings,  FaceNet  [40],  CosFace [53],

and ArcFace [10]. We classified each attribute into one of three

predictability classes in order to provide intelligible comments

regarding  the recorded  attribute information:  easy-to-predict,

predictable,  and  difficult-to-predict.  The  findings  show  that

many qualities are encoded in face embeddings. 39 of the 113

qualities examined are classified as easily  predictable,  while

the remaining 74 are predictable. We discovered disparities in

attribute  predictability  based  on  the  underlying  training

principles  of  face  recognition  networks.  Age,  hairstyles,

haircolors,  beards,  and  accessories,  on  the  other  hand,  are

substantially  encoded  in  all  embedding  types,  including

FaceNet, CosFace, and ArcFace. Despite the notion that face

embeddings  are  learnt  to  be  resistant  to  non-permanent

elements, the results show that these features, in particular, are

easily foreseeable.

II. RELATED WORK:

The development of deep neural network representations helps

face recognition [13]. However, because these representations

are developed from black-box models, there is a need to better

understand what kind of information is stored in them. Parde et

al.  [37]  proved  in  2017  that  the  examined  representations

contain precise information about the head position (i.e., the

yaw and pitch of a face) and the image source (i.e., whether the

input-face originates from a still image or a video frame). They

speculated  that  information  about  image  quality  might  be

available  in  these  facial  renderings  as  well.  This  has  been

demonstrated to be valid because the quality of a facial picture

has been effectively predicted using face embeddings [4], [18],

and [49]. Parde et al. investigated how effectively information

regarding social qualities is maintained in face representations

in  [38].  In  their  experiments,  they  used  linear  classifiers  to

predict human-assigned social trait profiles. They proved that

11 social qualities such as talkativeness, assertiveness, shyness,

quietness,  warmth,  artisticity,  efficiency,  carelessness,

impulsiveness, anxiety, and laziness can be inferred to a high

degree from face embeddings.  The attributes that  were most

accurately predicted were impulsive, warm, and nervous. Hill

et  al.  [19] investigated caricature  face  representations.  Their

research involved categorising viewpoint (0, 20, 30, 45, 60),

illumination (ambient vs spotlight), gender (male vs female),

and identity in embedding space.

Their  findings  show  that  information  regarding  face

identification  and  imaging  properties  coexist  in  a  highly

organised  and  hierarchical  structure  established  by  the  face

recognition algorithm used. O'Toole et al. provide an overview

of their findings as well as a review of known aspects of the

face  space  in  the  context  of  previous-generation  face

recognition  algorithms.  [35].  Zhong  et  al.  conducted  facial

attribute  estimate  experiments  utilising  various  mid-level

representations from face recognition networks in [56], [57].

They got highly accurate facial attribute estimation findings by

employing a variety of mid-level representations. This suggests

that  high-level  representations,  such  as  face  recognition

templates,  may  also  contain  a  substantial  amount  of  facial

attribute information.

The ability to derive  demographic variables  such as  gender,

age, and race from face templates is proven in [6, 9], [36], and

[47].

Previous research has shown that face templates can

be  used  to  derive  information  about  demographic  attributes

(e.g.,  gender,  age,  race),  social  traits  (e.g.,  impulsive,  warm,

and anxious), as well as head pose and image characteristics

(e.g.,  quality,  source  of  the  image,  viewpoint,  illumination).

These publications concentrated on the examination of distinct

characteristics. Terhörst et al. [43] conducted a more in-depth

examination into the predictability of over 100 features in face

templates.  They  classified  each  attribute  into  one  of  three

predictability groups based on prediction performance at two

different  dependability  levels.  Their  findings  show that  face

templates can reliably predict up to 74 variables.  We extend

the analysis  of [43]  in  this  paper by doing a more in-depth

investigation of attribute predictabilities.

While  the  study  in  [43]  is  based  on  two  difficulty

levels,  we extend the studies  to three  alternative embedding

types and present experiments on a continuous difficulty range.

This enables more precise predictability declarations for each

attribute. We extend the analysis and discussion to higher-level

attribute categories in order to get more precise but also more

concise  and  accessible  findings.  Furthermore,  we  especially

examine the significance of our findings for future works.

III. INVESTIGATION METHODOLOGY

The purpose of this research is to determine what attributes are

stored in biometric face embeddings. This analysis is carried

out by jointly training a classifier to accurately predict these

features.  If  the classifier predicts an attribute correctly given

the  face  embeddings,  we  can  conclude  that  the  attribute  is

encoded  within  the  embedding.  This  inquiry  methodology,

however, only permits detecting which qualities are stored in

embeddings. It does not allow us to deduce what traits are not

encoded  because  a  logical  reverse  conclusion  is  not  always

possible. If an estimator is unable to learn an attribute's pattern,

this  does  not  indicate  that  the  pattern  does  not  exist.  The

estimator  may  just  be  unable  of  dealing  with  the  attribute

pattern's complexity or the diversity and representation of the

data may be low.

The three subsections that follow outline the various

steps of our investigation approach.

1) We describe our classifier's training technique.

Training the classifier in a multi-task manner enables

the utilisation of shared embedding space, resulting in

overall performance improvements.

2) We describe the methods utilised, which enables the

trained  classifier  to  accurately  state  its  prediction

confidence (reliability).

3) This idea of prediction reliability is used to introduce

predictability classes. These make it easier to analyse

the observations.

3.1 Massive Attribute Classifier (MAC)
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A  classification  model  is  at  the  heart  of  our  attribute

predictability study of face embeddings. If this model predicts

an attribute properly given face embeddings, we can conclude

that the attribute is encoded in the embeddings. On the basis of

face embeddings, we built a neural network model to jointly

predict several features that could be kept within. Because of

the  enormous  number  of  attributes  that  are  simultaneously

learned,  we  call  this  model  a  massive  attribute  classifier

(MAC). Multiple random network architectures with 1-3 initial

layers  and 1-3 branch layers connecting the last initial layer

with the softmax layers of each attribute were evaluated. Sizes

of 128, 256, and 512 were considered for each layer. During

this evaluation, we found that  the expected  performance per

characteristic varied by only 1-2%. As a result, we chose the

most straightforward network structure.

The  chosen  MAC-architecture  is  comprised  of  two

initial layers: an input layer of size nin (representing the size of

the employed face  embedding) and a second dense layer  of

size 512. The architecture employs a common layer to boost

the efficacy of associated factors such as age, gender, and race

[14], [17]. While the multi-task MAC technique is well-suited

for linked characteristics, training single classifiers to predict

each  of  them  separately  may  result  in  superior  attribute

prediction  performances  in  some  circumstances,  as

demonstrated in [29]. Beginning with the second layer,  each

attribute a gets its own branch composed of two further layers

of  size  512  and  n(a)  out,  where  n(a)  out  is  the  number  of

classes  per  attribute.  A  ReLU  activation  was  employed  for

each layer. Only the output-layers that use softmax activations

are  exempt.  Additionally,  Batch-Normalization  [21]  and

dropout [41] are applied to each layer. Using a dropout method

allows for more generalised performance and, more crucially,

allows  us  to  generate  confidence  assertions  about  the

prediction  (discussed  in  Section  III-B).  A  dependability

statement's quality is resistant to varying degrees of dropout.

As a result, we used the default dropout probability of pdrop =

0.5  [41].  The  MAC-training  was  performed  in  a  multi-task

learning way, with a categorical cross-entropy loss applied to

each attribute branch and an equal weighting between each of

these attribute-related losses. The training was performed using

an Adam optimizer [25] over e = 200 epochs with an initial

learning rate of = 103 and a learning-rate decay of = /e.

These  parameters  were  chosen  based  on  the

experiment  setup  of  [47].  The  batch  size  b  was  determined

based on the amount of data available for training as b = 1024

for CelebA and b = 16 for LFW.

3.2 Prediction Reliability

To  produce  reliable  predictions  regarding  attribute

predictability  in  face  embeddings,  we  employ  prediction

reliabilities  to  simulate  classifier  situations  of  varying

difficulty. We train the MAC with dropout using the methods

described in [46, 47]. This allows us to express  the forecast

confidence (reliability) of the MAC. In addition to an attribute

prediction, we perform m = 100 stochastic forward passes to

produce a reliability statement. Each forward pass employs a

separate  dropout-pattern,  resulting  in  m  distinct  softmax

outputs v(a) i for each attribute a. The dependability metric is

given as x(a) = v(a) i,c given the outputs of the m stochastic

forward passes of the anticipated class c.

With  =  0.5,  as  per  the  recommendation  in  [47].  The  first

portion of the equation is a centrality measure that employs the

probability  interpretation  of  the  softmax  output.  A  greater

score indicates a high likelihood that the forecast is right. The

second  portion  of  the  equation  is  a  dispersion  measure  that

quantifies  the  agreement  of  the  stochastic  outputs  x.  [47]

shown that this is an accurate dependability metric. with = 0.5,

as  per  the  recommendation  in  [47].  The first  portion of  the

equation is a centrality measure that employs the probability

interpretation of the softmax output. A greater score indicates a

high likelihood that the forecast is right. The second portion of

the  equation  is  a  dispersion  measure  that  quantifies  the

agreement of the stochastic outputs x. [47] shown that this is

an accurate dependability metric.

Lower RCP-levels will reject more low-confidence predictions

that  may  contain  variance  elements  (such  as  blur  and  non-

frontal  head  positions)  that  contribute  to  unstable,  and  thus

erroneous, attribute assessments. As a result, a low RCP-level

relates to the MAC prediction performance under more ideal

classifier  conditions.  Please  keep  in  mind  that  alternative

predictability  metrics  can  also  be  utilised  for  the  suggested

research.  Alain  and  Bengio  employed  linear  separability  to

assess the predictability of a categorical  attribute in [1].  If  a

binary  attribute  is  perfectly  encoded  in  the  face  space,  the

amount  of  information  about  that  attribute  remains  constant

regardless of whether the decision boundary in the embedding

space is linear or curved. Dahr et al. measured predictability

using mutual information estimation in [11]. While this method

does  not  rely  on  linear  separability,  it  does  necessitate  the

training of extra networks to evaluate predictability. For these

reasons,  we  chose  to  quantify  predictability  in  our  studies

using correct prediction reliabilities [47].

3.3 Predictability Classes

We categorise  each  attribute into one of  three  predictability

classes  to  extract  more  intelligible  assertions  about  which

attribute information is stored in a face embedding. These are

based on prediction performance at 50% and 100% RCP.

 Easily-predictable  (++):  a  property  is  considered

easily-predictable if and only if its balanced accuracy

at 100% RCP is greater  than 90%. This means that

highly accurate predictions are attainable even in less-

than-ideal conditions such as poor lighting and non-

frontal head postures.
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 Predictable  (+): an  attribute  is  classified  as

predictable  if  and  only  if  its  balanced  accuracy  at

100% RCP is less than 90% but its balanced accuracy

at  50% RCP is  more  than  90%.  Because  it  simply

takes into account 50% of the most confident MAC

forecasts, this shows that highly accurate predictions

are attainable under near-optimal conditions.

 Hardly-predictable (0): an attribute is classified as

hardly-predictable if its balanced accuracy is less than

90% at both 100% and 50% RCP. Even under near-

optimal  conditions,  the  MAC  cannot  achieve  high

accuracies.cAs a result, the attribute patterns may be

too complex for the MAC to manage, or there may

not be a valid pattern for this attribute.

Because  attribute  categories  are  easily  predictable  and

predictable, confident statements about the amount of attribute

information stored in face embeddings may be made. This does

not apply to the unpredictability. If an attribute is classified as

hardly-predictable,  the  MAC  is  unable  to  learn  the  pattern

accurately.  This could be for a variety of reasons.  First  and

foremost, the pattern does not exist. Second, while the pattern

exists, it is too complex for the model to learn. Or, third, the

pattern exists, but the amount of data and its representation are

insufficient for the classifier to learn. As a result, we cannot

identify whether a similar attribute pattern exists for qualities

classified as hardly-predictable.

IV. EXPERIMENTAL SETUP

4.1 Databases

The Labelled Faces in the Wild (LFW) [20] and CelebFaces

Attributes (CelebA) [29] datasets contain a significant number

of attribute annotations and are thus well suited for our face

space  predictability  study.  An in-depth analysis  of  which of

these features are encoded in face embeddings is undertaken

using a variety of soft-biometric labels. Figure 1 depicts photos

from both datasets.  The CelebA dataset  [29] has  over 200k

photos from over 10k different celebrities. Each image has 40

binary  attributes  added  to  it.  There  are  also  numerous

variations in stance and surroundings. The LFW [20] dataset

contains 13k photos from nearly 5k different individuals. Each

image  includes  annotations  for  73  binary  attributes.

Furthermore, the photographs vary greatly in terms of position,

lighting, focus, resolution, facial expression, age, gender, race,

accessories,  make-up,  occlusions,  background,  and

photographic  quality.  The  attribute  labels  of  both  databases

[20],  [29] contain a wide variety of features  (for example,  a

person's  demographics,  complexion,  hair,  beard,  facial

geometry,  periocular  area,  mouth,  nose,  accessories,  and

environment).

4.2 Cleaning Attribute Annotations of LFW

CelebA  attribute  annotations  are  binary  in  nature  [29].  In

contrast to CelebA, the LFW dataset's attribute annotations are

continuous and measure the degree of the attribute present in

the image [20], [26], [27]. A strong positive label score for the

attribute  beard,  for  example,  should  imply  a  notable  beard,

whereas a negative annotation value indicates that no beard is

displayed.  As  a  result,  binary  labels  can  be  obtained  by

assigning true labels to positive label qualities and false labels

to negative label attributes. A number around zero, on the other

hand,  implies  that  the  presence  of  the  property  cannot  be

reliably confirmed.

We  manually  transformed  the  continuous  attribute

labels to binary labels to guarantee that the MAC performed

well  when  trained  on  LFW.  We  awarded  true  labels  to

photographs with scores above the upper threshold and false

labels to images with scores below the lower threshold, using

an  upper  and  lower  score  threshold  for  each  attribute.

Undefined attributes  have scores  that  fall  between the upper

and  lower  score  threshold  limitations.  The upper  and  lower

criteria  for  a  specific  property  are  set  manually  by  pushing

potential  thresholds  away  from  zero.  Ten  photos  with  the

closest attribute scores are investigated at each candidate level.

By  doing  so,  the  photos'  original  LFW  annotations  are

manually  checked  for  accuracy.  If  just  eight  or  fewer

photographs  show  the  presence  of  a  specific  attribute,  the

potential  threshold is pushed away from the beginning point

until  a  sufficient  score  threshold  is  found.  If  a  prospective

threshold produces 9 or more correctly identified photos, that

threshold  is  used  for  that  attribute.  The  lower  and  upper

thresholds for each of the qualities are established by repeating

this approach. The scores are then binarized using the upper

and lower thresholds to ensure that the MAC's data is error-

free. Training and testing can then be performed on meaningful

and correctly tagged data.

Because  LFW  labels  are  often  of  low  quality,  our  label-

cleaning method reduces the quantity of used labels by 51,7%.

This  could lead to  a prejudice  in our evaluation.  We assess

another binary labelled database to avoid biassed findings that

may result from this procedure.

TABLE 1

SAMPLE DISTRIBUTION ON LFW FOR Selected Attributes

FOUND INSUFFICIENT FOR MEANINGFUL ATTRIBUTE

ANALYSIS AFTER LABEL CLEANING. THE NUMBER 

OF POSITIVELY AND NEGATIVELY LABELLED 

SAMPLES FOR THE TRAIN AND TEST SET IS 

REFERRED TO BY POS AND NEG. DUE TO A LOW 

NUMBER OF SAMPLES IN EITHER THE POSITIVE OR 

NEGATIVE CLASS, THE LISTED 15 ATTRIBUTES WERE

FOUND TO BE INSIGNIFICANT FOR THE ANALYSIS.
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4.3 Evaluation Matrix

Our face space predictability analysis is based on the MAC's

prediction  performance.  The  accuracy  metric  is  commonly

used to calculate the prediction performance of facial features.

However, because this metric is defined by the ratio of correct

predictions to total  number  of predictions [33],  it  is  heavily

influenced  by  unbalanced  label  distribution.  As  a  result,  in

order to be robust to attribute imbalances, we report prediction

performance  in  terms  of  balanced  accuracy.  The  standard

accuracy with class-balanced sample weights is referred to as

balanced accuracy [23].

The datasets  are  subject-exclusively partitioned  into

train and test data in a 70%/30% split.1 We decided against

using  a  cross-database  evaluation  technique  because  both

databases have more than 30 non-overlapping properties. The

loss of this crucial characteristic information would arise from

training  on  one  database  and  evaluating  on  the  other.  The

prediction  performance  of  a  facial  attribute  estimator  is

examined  under  a  variety  of  demanding  conditions.  This  is

accomplished,  as  mentioned  in  Section  III-B,  by  testing

prediction  performance  at  various  RCP-levels.  While  high

RCP-levels  model  more  realistic  scenarios,  low  RCP-levels

focus on reliable predictions and so simulate more idealistic

conditions.  This  is  used  to  provide  finer-grained  comments

concerning attribute predictability.

4.4 Face Template Extraction

For the studies, we employ three widely used face recognition

models based on the losses of FaceNet [40], CosFace [53], and

ArcFace [10]. FaceNet, CosFace,3 and ArcFace are pre-trained

models that we use in this work.4 FaceNet and ArcFace are

based on a ResNet100 model that was trained on the MS1M

database [16]. CosFace is made up of a ResNet50 model that

was trained on CASIA-WebFace [54].  The facial  photos are

preprocessed (aligned, resized, and cropped) before being used

as input for the models. [22] describes the preprocessing for

FaceNet, [53] describes the preparation for CosFace, and [15]

describes  the  preprocessing  for  ArcFace.  Face  recognition

models  are  used  to  extract  the  embeddings  from  the

preprocessed facial photos.  

4.5 Investigations

The goal of this research is to determine what information is

preserved in biometric face embeddings. To accomplish this,

we give an in-depth investigation organised into the following

sections.

1) We  investigate  the  relationships  between  attribute

annotations. The results of an attribute may be highly

predictable, which is due to associated annotations in

the testing database rather than attribute information

stored within an embedding.

2) We  study  which  attributes  are  stored  in  face

embeddings  in  two  steps  by  analysing  attribute

prediction performances.

1Please  note  that  attributes  affected  by  imbalanced  data  training  will  be

associated with a poorer prediction performance due to the use of balanced

accuracies.  Consequently,  the  imbalanced  data  training  might  lead  to

underestimating the amount of information stored in face embeddings for some

attributes.

To begin,  we  examine the  prediction  performance  of

each attribute on two distinct confidence levels of the

MAC to gain an understanding of the situation. Second,

we  study  the  prediction  performance  of  each

characteristic throughout a wide and continuous range

of confidence levels in order to conduct a more in-depth

investigation of the stored data.

3)     We compromise the extensive investigations in order to

gain  a  clear  picture  of  what  kind  of  information  is

encoded in face embeddings. First, based on two-level

prediction performance, we classify each attribute into

one of three predictability classes. Second, we visualise

the predictability of each group of attributes to give the

reader  a  visual  representation  of  which  qualities  are

stored in face embeddings and how easily these may be

anticipated.

V. RESULT

This  section  works  on  the  defined  investigation  points  in

accordance with the investigation strategy from Section IV-E.

Section  V-A examines  the  attribute  correlations  of  the  used

face datasets, Section V-B investigates attribute predictability

in  depth,  and  Section  V-C  summarises  the  findings

qualitatively  and  quantitatively.  Section  V-D  concludes  by

discussing the implications of our findings for future work.
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(a) CelebA

(b) LFW
Fig.  2.  Correlation  of  the  attribute-annotations  for  CelebA  and  LFW.  The

attributes  are  chosen  to  show  the  15  most  positive  and  negative  pairwise

correlations.The  attribute-correlation  for  LFW  is  shown  after  the  label-

cleaning  process.  Green  indicate  positive  correlations,  while  red  indicate  a

negative correlation. The correlation is based on the Pearson coefficient

5.1 Attribute-Correlation Analysis

To  prevent  making  inaccurate  statements  about  which

attributes are stored in face embeddings, we first examine the

attribute  annotation  correlation.  This  seeks  to  determine

general  label  quality  while  avoiding  any  biases  in  attribute

annotations. Figure 2 depicts some attribute-label correlations

for  CelebA  and  LFW.  The  traits  have  been  chosen  to

demonstrate  the  15  most  positive  and  negative  pairwise

correlations.  Figure 2(a)  depicts the attribute correlations for

CelebA annotations.  It  is  clear  that  masculine  faces  do  not

correlate well with wearing lipstick, earrings, or heavy make-

up.  These  characteristics  are  nearly  entirely  associated  with

female  faces.  Furthermore,  a  high  proportion  of  male  faces

have a beard, whereas women do not.

Attractive faces are generally young and female faces

sporting  accessories  and  heavy  make-up.  Furthermore,  the

figure endorses the quality of several labels. For example, the

trait  No Beard  has  a  negative  link  with all  sorts  of  beards,

including  goatees,  moustaches,  and  sideburns.  Figure  2(b)

depicts  the  pairwise  correlations  of  LFW  attribute  labels.

Heavy  Makeup,  Wearing  Lipsticks,  Wearing  Earrings,  and

Wearing Necklace are traits that go well with Youth, Attractive

Woman, Smiling, and High Cheekbones. These characteristics,

on  the  other  hand,  are  unrelated  to  Receding  Hairline  and

Male.  The correlation matrix in Figure 2(b),  like the one in

Figure  2(a),  can  be  utilised  to  validate  the  label  quality  of

specific  antagonistic  qualities.  For  example,  No  Eyewear

correlates  poorly with Eyeglasses,  and Curly Hair  correlates

negatively  with  Straight  Hair.  Because  these  attribute

correlations  can  influence  the  predictability  investigation  in

Section V-B, we examined the annotation correlation and the

relevant  attribute  prediction  performance  as  well.  Table  II

displays the results of an analysis of the ten highest-correlating

attribute pairings for CelebA and LFW. Given the properties a

and b,  ρ(a,  b)  is  the  Pearson  correlation  coefficient  a  →  b

refers  to  the  balanced  accuracy  while  utilising  attribute  a's

label  as  the  prediction  for  attribute  b  and  vice  versa.  The

accessories  Wearing  Lipstick,  Wearing  Earrings,  and  Heavy

Makeup  have  the  highest  associations.  These  characteristics

also  have the  best  prediction  accuracy.  If  an  attribute  an  is

highly predictable from face embeddings and has an accurate

correlation to attribute b (a b > 90%), it  cannot be properly

discriminated whether both or only one of them is encoded in

the face embedding. As a result,  these relationships must be

taken into account in the subsequent assessment.

5.2 Attribute-Analysis of the Face Space

The attribute prediction performance of the MAC is used to

determine which attributes  are  encoded in face  embeddings.

This  is  accomplished  in  two levels  of  detail.  To  begin,  the

prediction performance of the qualities is  determined at  two

difficulty levels to provide context. 100% RCP (hard) refers to

using all samples under the stated conditions. The term 50%

RCP (easy) refers to the 50% of predictions about which the

classifier is most confident. Second, the performance of each

attribute in terms of prediction is examined throughout a large

and continuous range of confidence levels. Table III displays

the two-level prediction performance of CelebA, including the

assigned predictability classes.

Figures 3, 4, and 5 illustrate the prediction performance of all

analysed facial embeddings, FaceNet (FN), CosFace (CF), and

ArcFace (AF), for the continuous RCP range of [0.5, 1].

Two observations can be made in general.

First,  lower  RCP-level  prediction  performance  is

generally better than higher RCP-level prediction performance.

TABLE II

ANNOTATION CORRELATION AND 

CORRESPONDING ATTRIBUTE PREDICTION 

PERFORMANCE ANALYSIS: a → b REFERS TO THE 

BALANCED ACCURACY WHEN USING ATTRIBUTE a'S 

LABEL AS THE PREDICTION FOR ATTRIBUTE b AND 

VICE VERSA.

THE PEARSON COEFFICIENT PROVIDES THE 

CORRELATION. ON BOTH DATABASES, CELEBA AND 

LFW, THE 10 HIGHEST CORRELATED ATTRIBUTES 

ARE INVESTIGATED. ONLY A FEW ATTRIBUTE 

CORRELATIONS HAVE STRONG EFFECTS ON 

PREDICTION PERFORMANCE.
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This  proves that  the MAC learned  to  anticipate  the  CelebA

dataset  reliably.  Second,  the  prediction  performance  of

FaceNet  and CosFace  is  always  slightly higher  than  that  of

ArcFace. The reason for this could be ArcFace's big angular

margin  approach,  which  distorts  the  feature  space  more

incoherently and thus makes it more difficult for estimators to

learn existing patterns. The embedding size, on the other hand,

appears to have less of an effect on predictability, as the lowest

and  largest  embeddings  (FaceNet-128,  CosFace-1024)  both

yield  higher  predictabilities  than  ArcFace  (512).  To

summarise, numerous CelebA features obtain good prediction

accuracy on all three face recognition models.  This contains

demographics, haircuts, haircolors, and beard kinds.

Furthermore,  the  person's  accessories  are  encoded  in  great

detail in the deeply-learned features. Table IV shows the two-

level prediction performance of LFW, including the assigned

predictability  classes. The grey  highlights  denote  results  that

have  limited  validity.  Because  the  label-cleaning  operation

removed  several  samplesusing  low-quality  attribute

annotations. The small number of the lack of prediction may be

explained by the use of training and testing samples.

Baby, Sunglasses, and other qualities work well. Mouth. The

prediction performance is depicted in Figures 3, 4, and 5. @

the  [0.5,  1]  continuous  RCP  range  for  all  three

embedding types.  A  lower  RCP-level  indicates  greater

confidence in the classifier and, as a result, greater balanced

accuracy of the projected attribute.

TABLE III

CELEBA PREDICTION PERFORMANCE IS BASED ON 

FACENET (FN), COSFACE (CN), AND ARCFACE (AF) 

EMBEDDINGS AND IS REPORTED IN TERMS OF 

BALANCED ACCURACIES AT TWO DIFFICULTY 

SCENARIOS: 100% RCP (HARD) AND 50% RCP (EASY). 

THE ASSIGNED PREDICTABILITY CLASS IS DEFINED 

BY ++,+, AND 0

A counteracting behaviour for low RCP-level is noticed for a

few traits, such as Sideburns. These could be explained by the

ground truth's low annotation quality [44]. When the results of

LFW are  compared to the results of CelebA, it  is  clear  that

similar  prediction  performances  are  obtained  on  attributes

found in both datasets. As a result, our label-cleaning approach

removed  low-quality  attribute  labels  while  causing  no

substantial bias in the data.
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Fig.  3.  Accuracy-Reliability  plots  for  the  CelebA  database  on  FaceNet

embeddings. The balanced accuracy of the MAC is shown for a continuous

RCP range of [0.5, 1]. The MAC performance of the 40 attributes is divided

into 6 categories represented by subfigures (a)-(f) to allow a simple category-

base analysis.

Fig. 4. Accuracy-Reliability plots for the CelebA database on CosFace 

embeddings. The balanced accuracy of the MAC is shown for a continuous 

RCP range of [0.5, 1]. The MAC performance of the 40 attributes is ivided into

6 categories represented by subfigures (a)-(f) to allow a simple category-based 

analysis.

Bold, Bangs, and Goatee are simple to master and so produce

high results. This suggests that a single classifier with greater

capacity trained on these attributes could outperform the MAC

technique  in  terms  of  prediction  performance.  In  general,

FaceNet  and  CosFace  outperform  ArcFace  in  prediction

performance.

ArcFace embeddings have more complex attribute patterns due

to the big angle margin principle. Less data was available for

training in  the LFW experiments  since  we required  to  filter

low-quality labels to ensure high validity of the results. As a

result, it is reasonable to predict that performance on ArcFace

will  improve  if  more  training  data  is  available.  Many  soft-

biometric  properties  are  strongly  encoded  in  CosFace

embeddings,  as  they  are  in  FaceNet.  Furthermore,  the

predictability  of  attributes  in  the  categories  Mouth  and

Environment  is  substantially  higher  for  CosFace  than  for

FaceNet.  On  ArcFace  embeddings,  only  a  few  attribute

categories,  such  as  Haircolor,  Hairstyle,  Accessories,  and

Beard,  exhibit  a  high  predictability.  Both  CosFace  and

ArcFace are margin-based losses. However, only the additive

angle margin loss is considered.

Nonetheless, only the Loss of additive angular margin

ArcFace has lower predictability results than triplet-loss and

CosFace.  This  shows  how  the  training  loss  affects  the

characteristic.  Predictability. Furthermore, the training deficit

may have an impact.  Be greater  than the potential  effect  of

embedding  size  since  the  lowest-  and  highest-dimensional

attribute  predictability  both  embeddings  (FaceNet  128,

CosFace  1024)  performed  admirably  in  predicting  soft-

biometric  features,  whereas  prediction  performance  on  512-

dimensional  ArcFace  embeddings  is  more  compact.

Nonetheless,  many  features  can  be  predicted  with  high

accuracy from the embeddings. This is true for demographics,

haircuts, haircolors, beard kinds, and accessories. However, as

shown in Section V-A, there is a considerable link between the

accessories Wearing Lipstick and Heavy Makeup, which has a

significant impact on the MAC's prediction performance. As a

result,  it  is  impossible  to  tell  if  both of  these  attributes  are

encoded  in  the  face  embedding  or  only  one  of  these.  Face

geometry factors such as face shape, the presence of a double

chin, and forehead visibility can also be determined. The MAC
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could not predict attributes that did not directly belong to the

user, such as lighting circumstances or image blurriness. 

5.3 Category-Wise Analysis of the Face Space

We addressed the results on the level of single qualities in the

preceding section. We discovered that 39 of the 113 studied

qualities belong to the class easily-predictable, 35 to the class

predictable,  and  39  to  the  class  hardly-predictable.  In  this

section, we discuss the findings from coarse to fine and, on a

more abstract level, attribute categories. Table V summarises

the attribute categories in these three predictability classes in

order  to  provide  a  more  broad  overview  of  the  encoded

information  in  the  face  embeddings.  This  table  also

incorporates observations from similar investigations, such as

discoveries about head posture [37] and image quality [4], to

provide a more full picture of the situation. Despite the fact

that  facial  recognition  models  are  trained  for  recognition,

features such as facial Geometry, Periocular Area, Nose, and

Mouth are not easily foreseeable.  Non-permanent factors,  on

the  other  hand,  which  modern  face  recognition  algorithms

strive to be robust at, turn out to be easily foreseeable.  This

covers, for example, hairstyles, haircolors, beards, accessories,

head poses, and social traits.

TABLE VI

THE PERFORMANCE CENTRES ON FACENET (FN),

COSFACE (CF), AND ARCFACE (AF) EMBEDDINGS

AND IS REPORTED IN TERMS OF COMPLETE

ACCURACIES AT TWO DIFFICULTY SCENARIOS: 100%

RCP (HARD) AND 50% RCP (EASY). THE ASSIGNED

PREDICTABILITY CLASS IS DEFINED BY ++,+, AND 0.

GREY HIGHLIGHTING REFERS TO REDUCED

EXPRESSIVENESS AFTER THE LABEL-CLEANING

PROCESS DUE TO LIMITED DATA.

TABLE V

A CATEGORISED SUMMARY OF THE

PREDICTABILITY CLASSES, INCLUDING RELATED

WORKS' FINDINGS

Figure 6 depicts a more comprehensive predictability overview

of the attribute categories. The investigation is separated into

two face embeddings. The forecast performance of two RCP-

levels is depicted on the axis. Each graphic is broken into three

sections that reflect the three predictability classes. The grey

area indicates the unpredictability class (0), the light green area

the predictability class (+), and the dark green area the readily

predictability  class  (++).  Furthermore,  each  point  represents

the  average  performance  of  the  attributes  in  the  attribute-

category.  The (standard) deviation of individual performance

of the associated qualities is  indicated by the ellipse shaded

region around each point. The darkened area's  x-axis reflects
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the standard deviation of performance under 100% RCP (more

realistic circumstances), while the y-axis shows the deviation

of performance at 50% RCP (more idealistic circumstances).

Figure  6  shows  a  visual  representation  of  the  categorised  property

predictability. The axes depict balanced forecast accuracy at two RCP levels.

The  figures  are  arranged  into  three  sections  that  correspond  to  the  three

predictability  classes.  The  dark  green  area  represents  the  easily-predictable

class (++), the light green area represents the predictable class (+), and the grey

area  represents  the  hardly-predictable  class  (0).  Each  point  represents  an

attribute category's average performance. The grey area surrounding each point

shows  the  (standard)  deviation  of  the  category's  distinct  attribute-

performances. In the face embeddings, several attributes are highly encoded.

The predictable nature of the attribute categories for FaceNet is

demonstrated in Figures 6(a) and 6(b). Figures 6(c) and 6(d)

show the predictability of the attribute-categories for CosFace

and ArcFace, respectively. Figures 6(e) and 6(f) demonstrate

the  predictability  of  the  attribute-categories.  Many  attribute-

categories can be found to be richly embedded in the FaceNet

and  CosFace  embeddings.  This  contains  various  Haircolors,

Hairstyles, Beards, Accessories, and Demographics, as well as

features  of the Face Geometry,  Nose, and Periocular region.

For ArcFace, it is clear that more attribute-categories fall into

the grey (unpredictable) category.

Accuracy-reliability  charts  for  the  LFW databases  on  FaceNet  embeddings

(Fig.  7).  The MAC's balanced accuracy is illustrated for a continuous RCP

range of  [0.5,  1].  To facilitate  a simple  category-based analysis,  the  MAC

performance  of  the  73  qualities  is  separated  into  10  categories  shown  in

subfigures (a)-(j).

Face embeddings have more complex attribute patterns due to

ArcFace's big angular margin idea. Many attribute categories

may fall into the hardlypredictable category due to a lack of

training  data  mixed  with  ArcFace's  additive  angular  margin

loss. Both the reduced amount of training data as a result of the

label cleaning process and the more complex attribute pattern

as a result of the ArcFace loss may make it more difficult for

the MAC to accurately forecast attributes. However, the broad

elliptic hues in the grey areas suggest that these groups also

have some very predictable characteristics.

In  an  effort  to  simplify  the  relationships,  the  high-level

overview on the attribute-categories  results in some valuable

information loss. 

Our analysis approach only allows us to indicate what

information  is  contained  in  biometric  face  embeddings  and

does not allow us to state which attributes are not encoded. As

a  result,  we can only be  certain  of  four  attribute-categories.

ArcFace  embeddings  firmly  encode  the  characteristics

Haircolor, Hairstyle, Beard, and Accessories.

The link between facial recognition networks and their users'

identities  may  explain  why  they  keep  soft-biometric

information.  Recent  studies  [2,  39,  44]  demonstrated  that

softbiometric features of a face provide adequate information

to be used successfully in verification and recognition tasks.

As  a  result,  here  is  a  strong  connection  between  these

characteristics,  a  person's  appearance,  and  its  identity.  This
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relationship could explain why deep neural  networks trained

for recognition retain these characteristics.

5.4 Implications of Our Findings

The findings of this study could have far-reaching implications

for  future  research  in  privacy-preserving  and  bias-reducing

face recognition.

1) Face  Recognition  Privacy:  The  trials  revealed

significant  privacy  risks  in  facial  recognition

technologies. Many applications require the user of a

face recognition system to give biometric data alone

for  recognition.  To  avoid  potential  exploitation

(function  creep)  of  this  private  data,  embeddings

extracted from face recognition systems should only

contain  identity-related  information.  However,  our

investigations  revealed  that  face  embeddings  also

contain information about privacy-sensitive features,

posing significant privacy issues. As a result,  future

works must address these privacy concerns,  such as

giving techniques to conceal attribute information in

face embeddings.

2) Bias in Face Recognition: As our investigations have

shown,  many  qualities  are  encoded  in  face

embeddings.  Despite  the  fact  that  face  recognition

embeddings  are  trained  to  be  resilient  against  non-

permanent  features,  the  results  show  that  certain

attributes, in particular, are reliably anticipated from

face  templates.  This  covers  information  regarding

ArcFace  Hairstyles,  Haircolors,  Beards,  and

Accessories,  as  well  as additional FaceNet  features.

The  presence  of  these  attribute-traits  in  face

embeddings  implies  that  existing  face  recognition

algorithms  are  still  vulnerable  to  these  non-

demographic  aspects,  as  demonstrated  in  recent

publications  [3,  7,  50].  As  a  result,  future  research

must suggest strategies to decrease non-demographic

bias in face recognition.

Fig.  8.  Accuracy-Reliability  plots  for  the  LFW  database  on  CosFace

embeddings. The balanced accuracy of the MAC is shown for continuous RCP

range of [0.5, 1]. The MAC performance of the 73 attributes is divided into 10

categories represented by subfigures (a)-(j) to allow a simple category-based

analysis.
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Fig.  9.  Accuracy-Reliability  plots  for  the  LFW  database  on  ArcFace

embeddings. The balanced accuracy of the MAC is shown for continuous RCP

range of [0.5, 1]. The MAC performance of the 73 attributes is divided into 10

categories represented by subfigures (a)-(j) to allow a simple category-based

analysis 

VI. CONCLUSION

Face  recognition  systems'  present  success  is  fueled  by

breakthroughs  in  deeply  learned  face  embeddings.  Recent

research  has  proven  that  these  embeddings  include  more

information  than  just  the  person's  identification.  These

embeddings,  for  example,  encode  demographics,  picture

features,  and  social  factors.  This  could  lead  to  biassed

judgements  in  facial  recognition  algorithms  and  generate

serious  privacy  concerns.  To  address  these  privacy  and

prejudice concerns, a thorough understanding of the encoded

information in face embeddings is required. As a result, in this

paper, we give a more in-depth examination of the information

preserved  in  biometric  face  embeddings.  We  assessed  the

predictability of 73 different softbiometric features from three

common face embeddings over a range of difficulty levels. We

also explored the predictability of numerous types of variables

to  improve  the  understandability  of  the  results.  This  was

accomplished  by  categorising  each  group  into  one  of  three

predictability  classes  and  assessing  predictability  in  a

continuous range. The findings show that several attributes are

stored in biometric face embeddings.

From  face  embeddings,  around  one-third  of  the  examined

qualities are easily predicted, another third are predictable, and

one-third  are  just  hardly  predictable.  We  were  able  to

demonstrate that haircolor, hairstyles, beards, and accessories

are strongly stored in face embeddings. Despite the fact that

face identification template are trained to be resilient against

non-permanent elements, we proved that these characteristics

are easily foreseeable from face embeddings. We expect that

future research will build on our work's knowledge to develop

accurate face recognition solutions that also address prejudice

and privacy concerns of diverse origins.
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