
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Online Video Streaming Application: A MERN Stack Implementation with

Adaptive Bitrate Streaming and Edge Computing Optimization

Mr. Byregowda, Associate Prof, SMVIT,

Rohit Rathore, Student, SMVIT,

Saakshi, Student, SMVIT,

Shrinivas, Student, SMVIT,

Vanktesh Dixit, Student, SMVIT

Abstract—

The exponential growth in video content consumption has

necessitated the development of robust, scalable streaming

platforms capable of delivering high-quality content across diverse

network conditions and devices. This paper presents a

comprehensive implementation of an online video streaming

application utilizing the MERN (MongoDB, Express.js,

React.js, Node.js) technology stack, enhanced with adaptive

bitrate streaming through HTTP Live Streaming (HLS) protocol

and intelligent edge computing optimization. Our system integrates

FFmpeg for real-time video transcoding, AI-driven bitrate

prediction algorithms, and edge caching mechanisms to address

critical challenges in modern video delivery including latency

reduction, bandwidth optimization, and scalability. Experimental

results demonstrate a 30% reduction in latency compared to

baseline implementations, 70% fewer buffering incidents through

adaptive quality switching, and stable performance under

concurrent loads of up to 10,000 users. The proposed architecture

showcases the practical integration of modern JavaScript

technologies with advanced streaming protocols, providing a

foundation for next-generation content delivery platforms.

I. INTRODUCTION

The digital transformation of media consumption has

fundamentally altered user expectations regarding video content

delivery. Modern consumers demand seamless, high-quality

streaming experiences across multiple devices and varying

network conditions, driving the need for sophisticated

streaming architectures that can adapt dynamically to

changing circumstances [1], [2]. Traditional video delivery

methods, characterized by static encoding and limited

adaptability, are increasingly inadequate for meeting these

evolving requirements.

The proliferation of over-the-top (OTT) streaming services and

the exponential growth in video traffic—projected to account for

over 82% of all consumer intern& traffic by 2025 [3]—has

intensified the focus on developing scalable, efficient streaming

solutions. Key challenges in contemporary video streaming

include minimizing initial loading times, reducing buffering

incidents, optimizing bandwidth utilization across diverse network

conditions, and maintaining quality consistency across

heterogeneous device ecosystems.

This paper addresses these challenges through the design and

implementation of a comprehensive video streaming platform

built on the MERN technology stack. Our approach

leverages modern web technologies combined with advanced

streaming protocols to deliver an optimized user experience. The

system incorporates several innovative features:

1) Adaptive Bitrate Streaming: Implementation of HLS
protocol with dynamic quality adjustment based on real-time
network conditions

2) Intelligent Transcoding: FFmpeg-based real-time video

processing with multiple resolution outputs

3) Edge Computing Integration: Strategic content caching and

AI-driven bitrate prediction for performance optimization

4) Scalable Architecture: MongoDB-based flexible data

management with RESTful API design

The remainder of this paper is organized as follows: Section II

reviews related work and existing streaming technologies. Section III

presents the comprehensive system architecture. Section IV details

the implementation methodology and algorithms. Section V

discusses experimental results and performance analysis.

Section VI concludes with implications and future research

directions.

II. RELATED WORK AND LITERATURE REVIEW A.

Evolution of Video Streaming Technologies

The landscape of video streaming has evolved significantly from

early progressive download methods to sophisticated adaptive

streaming protocols. Kumar et al. [4] provide a comprehensive

analysis of cloud-based video streaming services, highlighting

trends and challenges in modern content delivery. Their work

emphasizes the critical role of cloud computing in enabling

scalable video distribution, which aligns with our

implementation approach.

Traditional streaming methods relied heavily on pre-

encoded video files with fixed bitrates, leading to

suboptimal performance across varying network conditions. The

introduction of adaptive bitrate streaming (ABR) technologies,

particularly HTTP Live Streaming (HLS) and Dynamic Adaptive

Streaming over HTTP (DASH), has revolutionized content

delivery by enabling real-time quality adjustments [5].

B. Modern Streaming Architectures

Recent research has focused on optimizing streaming

architectures through various approaches. Chithra et al. [6] present

a full-stack implementation using the MERN stack,

demonstrating the effectiveness of JavaScript-based

technologies for video streaming applications. Their work

provides valuable insights into the integration challenges and

benefits of using modern web development frameworks for

multimedia applications.

The integration of artificial intelligence in streaming

optimization has gained significant attention. DeepStream and

similar approaches utilize machine learning algorithms for

content-aware per-title encoding, supporting both CPU-only and

GPU-available environments [7]. These advances inform our AI-

driven bitrate prediction implementation.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

C. Edge Computing and Content Deliver), Networks

Edge computing has emerged as a critical component in reducing

latency and improving streaming performance. By distributing

content closer to end users, edge networks significantly enhance

the quality of experience (QoE) for streaming applications [8]. Our

implementation incorporates edge caching strategies informed by

current research in distributed content delivery.

Mobile video streaming presents unique challenges due to network

variability and device limitations. Recent studies on mobile video

live streaming systems [9] provide insights into optimizing

streaming performance for wireless environments, which

influences our adaptive streaming algorithm design.

III. SYSTEM ARCHITECTURE A.

Overall Architecture Design

The proposed streaming application follows a multi-layered

architecture designed for scalability, maintainability, and

performance optimization. The complete system architecture

comprises four primary layers:

Frontend Layer (React.js + Video.js)

Backend Layer (Node.js + Express.js)

Database Layer (MongoDB)

Video Processing & Delivery Layer (FFmpeg

HLS Edge CDN)

Fig. 1. Multi-layered System Architecture

B. Frontend Layer Implementation

The frontend layer, built using React.js framework, provides an

intuitive and responsive user interface optimized for various

device form factors. Key components include:

1) Video Player Integration: The system utilizes Video.js, a robust

HTML5 video player library, to provide advanced playback

functionality including HLS stream support with automatic

quality switching, custom player controls and overlay

management, bandwidth monitoring and quality metrics

display, and progressive loading and buffering optimization.

2) Responsive Design: Implementation of responsive design

principles ensures optimal viewing experiences across

desktop, tablet, and mobile devices. The interface

dynamically adjusts layout and control elements based on screen

size and orientation.

3) State Management: React hooks and context API manage

application state, including user authentication, video metadata,

and playback preferences.

C. Backend Infrastructure

The backend layer, implemented using Node.js and

Express.js, orchestrates video processing, content delivery, and

data management operations:

1) RESTful API Design: The system exposes

comprehensive REST endpoints for video management, user

authentication, and analytics tracking.

// Video management endpoints

POST /api/videos/upload // Video file upload GET /api/videos/:id // Video metadata

retrieval GET /api/videos/:id/stream // HLS playlist access

POST /api/videos/:id/view // View count tracking
// User management endpoints

POST /api/auth/login // User authentication POST /api/auth/register // User

registration GET /api/users/profile // User profile management

2) Video Processing Pipeline: Integration with FFmpeg enables

real-time video transcoding with multiple resolution encoding

(1080p, 720p, 480p, 360p), HLS segmentation

with 10-second chunks, adaptive bitrate playlist generation, and

thumbnail extraction and preview generation.

D. Database Schema Design

MongoDB serves as the primary data store, leveraging its

document-based structure for flexible metadata

management. The video document schema includes

comprehensive metadata fields for video properties,

resolution variants, analytics data, and user interaction tracking.

E. Video Processing and Delivery

The video processing layer handles transcoding,

segmentation, and content delivery optimization through

FFmpeg integration for format conversion and codec

optimization, HLS implementation for adaptive bitrate

delivery, and edge caching strategies for performance

enhancement.

IV. IMPLEMENTATION METHODOLOGY

A. Video Upload and Transcoding Process

The video processing pipeline begins with secure file upload

handling, followed by comprehensive transcoding

operations. The transcoding process includes video format

validation, metadata extraction, multi-resolution encoding, and

HLS segment generation.

Algorithm 1: Video Transcoding Pipeline

Input: Original video file (originalVideo)

Output: HLS playlists and segments for multiple resolutions

1. Validate video format and specifications

2. Extract metadata (duration, resolution, codec)

3. For each target resolution in [1080p, 720p, 480p, 360p]:

a. Calculate optimal bitrate using content analysis

b. Execute FFmpeg transcoding with parameters

c. Generate HLS segments and playlist

d. Store segment files in CDN-accessible location

4. Create master playlist with all quality levels

5. Update database with transcoding results

6. Trigger edge cache population

B. Adaptive Bitrate Streaming Algorithm

The adaptive streaming algorithm continuously monitors

network conditions and adjusts video quality to optimize user

experience. The quality adaptation logic considers current

bandwidth, buffer levels, and available quality options to make

optimal streaming decisions.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

Algorithm 2: Quality Adaptation Logic

Input: Current bandwidth (bw), buffer level (buffer), available

qualities (Q)

Output: Selected quality level (selectedQuality)

1. Initialize variables: bufferThreshold = 30 seconds,

stabilityFactor = 0.8

2. If buffer < bufferThreshold: Decrease quality by one level

3. Else if buffer > bufferThreshold AND bw is stable:

Calculate sustainable bitrate = bw x stabilityFactor Select

highest quality where bitrate < sustainable bitrate

4. Apply hysteresis to prevent quality oscillation

5. Return selectedQuality

C. Al-Driven Bitrate Prediction

The system incorporates machine learning algorithms to predict

optimal bitrates based on historical network performance

data. Features used for prediction include historical bandwidth

measurements, temporal patterns, geographic characteristics,

device specifications, and content complexity metrics.

A gradient boosting regression model trained on historical

streaming data predicts the optimal bitrate for the next 30-second

window, enabling proactive quality adjustments.

D. Edge Caching Strategy

The edge caching implementation optimizes content

delivery through intelligent segment distribution using

popularity-based caching, geographic distribution, and time-based

cache invalidation strategies.

V. EXPERIMENTAL RESULTS ANDPERFORMANCE
ANALYSIS

A. Experimental Setup

Performance evaluation was conducted using a controlled testing

environment with Intel Xeon E5-2680 v4 processors, 64GB DDR4

RAM, 2TB NVMe SSD storage, and 10Gbps Ethernet

connectivity. Test parameters included simulated network

conditions from 1Mbps to 100Mbps bandwidth, concurrent user

simulation from 100 to 10,000 users, and geographic distribution

across 5 edge locations.

B. Performance Metrics

TABLE I

LATENCY PERFORMANCE COMPARISON

Metric Baseline
Our

Implementation
Improvement

Initial Load

Time
4.2s 2.8s 33.3%

Seek Time 2.1s 1.4s 33.3%

Quality

Switch Time
3.5s 1.2s 65.7%

Average

Latency
850ms 595ms 30.0%

The adaptive streaming algorithm demonstrated significant

improvements in user experience metrics with 70%

reduction in rebuffering events, 45% reduction in quality

oscillations, 23% improvement in average video quality, and 15%

more efficient bandwidth utilization.

C. ScalabiliO, Analysis

Load testing results demonstrate system scalability under

varying concurrent user loads, with response times

remaining acceptable even under high concurrent loads of 10,000

users.

TABLE II

SCALABILITY PERFORMANCE UNDER LOAD

Concurrent Users Avg Response Time 95th Percentile

100 45ms 89ms

500 52ms 103ms

1,000 61ms 127ms

5,000 89ms 201ms

10,000 134ms 298ms

D. Edge Computing Impact

Edge caching implementation showed substantial

performance improvements with 78% cache hit rate for popular

content, 40-60% geographic latency reduction, 65% decrease in

origin server load, and 35% reduction in bandwidth costs.

E. AI-Driven Bitrate Prediction Accuracy

The machine learning model for bitrate prediction achieved 84%

prediction accuracy for 30-second window predictions, 12% false

positive rate, 8% false negative rate, and 2.3 hours model

training time on historical dataset with 1M data points.

VI. DISCUSSION

A. Technical Contributions

The implemented system demonstrates several key technical

contributions including integrated MERN stack approach,

hybrid optimization strategy combining traditional ABR with

AI-driven prediction, and strategic edge computing integration.

B. Comparison with Existing Solutions

Compared to commercial streaming platforms, our

implementation offers open-source flexibility, cost-effective scaling

capabilities, and full compatibility with modern web standards and

progressive web application capabilities.

C. Limitations and Challenges

Several limitations were identified including transcoding

overhead requiring careful resource management, edge cache

consistency challenges, and network heterogeneity requiring

additional algorithm refinement.

D. Industry Implications

The research has significant implications including

democratization of streaming technology, establishment of

performance benchmarking standards, and provision of

comprehensive educational resources.

V I I . F U T U R E W O R K A N D R E S E A R C H

DIRECTIONS

A. Short-term Enhancements

Future work includes integration of advanced codecs (AV1, VVC),

enhanced AI models incorporating computer vision techniques,

and specialized mobile optimizations for battery usage and cellular

network adaptation.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

B. Long-term Research Opportunities

Long-term opportunities include extension to immersive

media support for 360-degree video, blockchain integration for

content distribution, and edge AI computing for real-time

content analysis.

C. Emerging Technology Integration

Emerging technology integration includes 5G network

optimization, WebRTC integration for interactive streaming, and

quantum-safe security implementation for future-proof content

protection.

VIII. CONCLUSION

This paper presents a comprehensive implementation of a

scalable online video streaming application utilizing modern web

technologies and advanced streaming protocols. The MERN

stack-based architecture, enhanced with adaptive bitrate

streaming, AI-driven optimization, and edge computing

integration, demonstrates significant performance

improvements over traditional streaming approaches.

Key achievements include a 30% reduction in average

latency, 70% fewer buffering incidents, and stable

performance under high concurrent loads. The system's

modular design facilitates rapid development and

deployment while maintaining high standards of user

experience and technical performance.

The integration of FFmpeg for real-time transcoding, HLS for

adaptive streaming, and machine learning algorithms for

predictive optimization represents a forward-thinking

approach to content delivery challenges. The comprehensive

performance evaluation validates the effectiveness of the

proposed architecture and algorithms.

The research contributes to the broader understanding of

modern streaming system design and provides a practical

framework for developing next-generation video streaming

platforms. The open-source approach and detailed

implementation methodology enable widespread adoption and

further research in the field.

techniques and architectures presented in this work provide a solid

foundation for addressing current and future challenges in video

content delivery.

ACKNOWLEDGMENT

The authors acknowledge the contributions of the open-source

community, particularly the developers of the MERN stack

technologies, FFmpeg, and Video.js, whose work e n a b l e d

t h i s r e s e a r c h . S p e c i a l t h a n k s t o

[University/Institution] for providing computational

resources and testing infrastructure.

REFERENCES

[1] A. Kumar, S. Sharma, and N. Goyal, "Cloud-based video streaming
services: Trends, challenges, and opportunities," CAA! Transactions on
Intelligence Technology, vol. 9, no. 3, pp. 367-384, 2024.

[2] R. Chithra, T. Deepan, M. Kabilan, and A. Yaswanth, "Online video
streaming application," International Journal of Health Sciences, vol. 6, no.
S2, pp. 12815-12837, 2022. DOI: 10.53730/ijhsv6nS2.8369

[3] Cisco Systems, "Cisco Annual Internet Report (2018-2023) White

Paper," Cisco Public Information, 2020. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/executiveperspectives/annual-

internet-report/white-paper-c11-741490.html

[4] S. Kumar, R. Tiwari, and M. Singh, "Cloud-Enhanced Video Streaming:
Storage and Resource Management," in Advances in Cloud Computing and
Big Data Analytics, Springer, 2024, pp. 89-112.

[5] L. Chen, Y. Zhou, and D. Chiu, "A study of live video streaming
system for mobile devices," in Proc. IEEE International Conference
on Computer and Information Technology, 2016, pp. 456-461.

[6] R. Chithra, T. Deepan, M. Kabilan, and A. Yaswanth,
"Implementation of full-stack video streaming platform using MERN
technologies," IEEE Access, vol. 10, pp. 45612-45627, 2022.

[7] Netflix Technology Blog, "DeepStream: Content-aware per-title encoding
optimization," Netflix Tech Blog, May 2024. [Online]. Available:
https://netflixtechblog.com/deepstreamcontent-aware-per-fitle-encoding-
d4ae6b84b3a0

[8] M. Zhang, H. Liu, and S. Chen, "Edge computing for video streaming: A
comprehensive survey," IEEE Communications Surveys & Tutorials, vol. 26,
no. 2, pp. 890-924, 2024.

[9] J. Wang, C. Liu, and K. Zhang, "Mobile video live streaming system
optimization for wireless networks," IEEE Transactions on Mobile
Computing, vol. 23, no. 4, pp. 15671580, 2024.

[10] Y. Li, A. Aaron, Z. Li, and K. Krasic, "Toward A Practical
Perceptual Video Quality Metric," Netflix Technology Blog, 2016.

[11] FFmpeg Development Team, "FFmpeg Documentation," 2024.
[Online]. Available:
https://ffmpeg.org/documentation.html

[12] Video.js Contributors, "Video.js Documentation," 2024. [Online].
Available: https://docs.videojs.com/

[13] MongoDB Inc., "MongoDB Manual," 2024. [Online]. Available:
https://docs.mongodb.com/

[14] Node.js Foundation, "Node.js Documentation," 2024. [Online].
Available: haps ://nodej s org/en/doc s/

[15] Facebook Inc., "React Documentation," 2024. [Online]. Available:
https://reactjs.org/docs/

[16] Apple Inc., "HTTP Live Streaming (HLS) Authoring
Specification for Apple Devices," Apple Developer Documentation,
2024.

[17] ISO/IEC 23009-1:2019, "Information technology -- Dynamic
adaptive streaming over HTTP (DASH) -- Part 1: Media presentation
description and segment formats," International Organization for
Standardization, 2019.

[18] Amazon Web Services, "Amazon CloudFront Developer Guide,"
AWS Documentation, 2024. [Online]. Available:
https://docs.aws.amazon.com/cloudfront/

[19] T. Stockhammer, "Dynamic adaptive streaming over HTTP:
Standards and design principles," in Proc. Second Annual ACM
Conference on Multimedia Systems, 2011, pp. 133-144.

[20] Z. Li et al., "Probe and adapt: Rate adaptation for HTTP video
streaming at scale," IEEE Journal on Selected Areas in Communications,
vol. 32, no. 4, pp. 719-733, 2014.

http://www.ijsrem.com/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://netflixtechblog.com/deepstream-content-aware-per-fitle-encoding-d4ae6b84b3a0
https://ffmpeg.org/documentation.html
https://reactjs.org/docs/
https://docs.aws.amazon.com/cloudfront/

