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Abstract 

In a fully dynamic model of an open-access fishery, the level of fishing effort expands or contracts according as 
the perceived rent (i.e., the net economic revenue to the fishermen) is positive or negative. A model reflecting 
this dynamic interaction between the perceived rent and the effort in a fishery is called a dynamic reaction 
model. In this paper, we study a dynamic reaction model, in which the prey species is subjected to harvesting 
in the presence of predator and it is assumed that an external agency regulates the fishery by imposing a 
suitable tax per unit biomass of landed fish. The fishing effort is taken as a dynamic variable depending on 
the capital invested in the fishery. The steady states and their stability are studied. The problem of the 
optimal tax policy is solved by Pontryagin’s maximum principle keeping the ecological balance. 
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1 Introduction 

Bioeconomic modeling of biological resources, such as fisheries and forestry, has gained significant importance 
in recent years due to concerns over their overexploitation to meet rising global demands. Colin Clark in his 
books [1, 2] has extensively discussed the techniques and challenges involved in the bioeconomic exploitation 
of these resources. Marine fisheries are inherently multi-species systems, and the exploitation of mixed-
species fisheries has increasingly drawn the attention of researchers. While numerous models have been 
developed for single-species fisheries, studies on multi- species fisheries remain comparatively limited. 
 
Mathematical modeling of problems concerning harvesting of multi-species fisheries has recently gained 
significant attention from researchers. Colin Clark [1, 3] Colin Clark has thoroughly explored the techniques 
and challenges associated with the bioeconomic exploitation of these resources. Constructing a realistic model 
of a multi- species community is inherently challenging, and even when successfully formulated, such models 
are often analytically intractable. Determining an optimal harvesting policy for mixed-species fisheries involves 
both theoretical and practical difficulties. Despite these challenges, efforts to study multi-species models with 
multiple state or control variables have been undertaken periodically [6, 12], [4], [5] [9]. 
 
Managing renewable resources is closely linked to addressing law enforcement challenges. With resource 
stocks declining and environmental conditions deteriorating, regulating the exploitation of biological resources 
has become has become increasingly critical. Marine fisheries, in particular, encounter substantial law 
enforcement hurdles in achieving sustainable management. Sutinen and Andersen [15] explored the 
economics of law enforcement in marine fisheries. Taxation, license fees, lease of property rights, seasonal 
harvesting etc. are usually considered as possible governing instruments in fishery regulation. Various issues 
associated with the choice of an optimal governing instrument and its enforcement in fishery were discussed by 
Anderson and Lee [8]. Optimal timing of harvest was adopted as a regulatory device by Kellogg et al. [12] in 
their study of the North Carolina Bay Scallop Fishery. Implementing a tax on each unit of biomass of landed fish 
is a potential regulatory tool for managing fisheries. Economists generally view taxation as a superior control 
policy due to its flexibility. However, political constraints often hinder its practical implementation. Despite 
this, theoreticians continue to study the implications of taxation as a regulatory measure. Harvesting problems 
with tax have been studied by [1, 2] , [3], [11], [13], [9] and many more. 

This study explores a dynamic reaction model within a stage structured prey- predator fishery system in which 
the prey species is subjected to harvesting in the presence of predator species and taxation as the control 
instrument. The growth of the fish population obeys the logistic law [14]. A dynamic variable E which is a 
function of time is considered as harvesting effort and it is assumed to be proportional to the instantaneous 
amount of capital invested. Exploitation of the fishery is regulated by an agency by imposing a tax per unit 
biomass of landed fish. The gross rate at which capital is invested at any time is assumed to be proportional to 
perceived rent [1] at that time. This imposition of tax acts as a deterrent to the fishermen and helps to 
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control harvesting of prey species and in turn, it helps the predator to grow. Capital theoretic approach is 
adopted to formulate the dynamic fishery model. The main aim of this paper is to find the proper taxation 
policy which would give the best possible benefit through harvesting to the society while preventing extinction 
of the predator. The existence of the possible steady states along with their local stability is discussed. The 
global stability of the interior equilibrium is also discussed. The various conditions are arising in the analysis 
give different ranges in which the tax must lie to get the desired results. Using the maximum principle 
optimal tax policy is discussed. Finally, it is illustrated that how the system works by taking numerical 
examples. 
 

 

2 The problem formulation 

The ecological set up of the formulation is as follows. There is a prey-predator system with predators having 
two stages namely juveniles and adults and their densities are denoted by N2 and N3 respectively. It is also 
assumed that only adult predators are capable of preying on the prey species and the juvenile predators live on 
their parents. The prey, whose density is denoted by N1, is modeled by a logistic equation in the absence of the 
predator. One key feature of our model is intra specific competition in the consumer growth dynamics. This 
term describes either a self limitation of consumer or the influence of predation. This self limitation can occur if 
there is some other factor (besides food) which becomes limiting at high population densities. 
Keeping these assumptions in view, the dynamics of the system may be governed by the following system of 
differential equation. 

dN1 = r N (1 − 
N1 ) − αN N , 

dt 
1  1 

K 
1  3 

dN2 = βN − r N . dt 3 2 2 
(2.1) 

dN3 
= −r N + mαN N + γN − δN 2. 

dt 3  3 1  3 2 3 

 
Here r1 is the intrinsic growth rate of the prey, K is the carrying capacity of the prey, α is the predation 
parameter, m is the conversion factor, r3 is the death rate of mature predator species, γ is the proportionality 
constant transformation of immature to mature predators, r2 is the death rate of immature populations. 
Defining N1 = Kr2x1 , N2 = βx2 , N3 = r2x3 and t = τ We can rewrite (2.1) as 
r1 mα mα r2 

dx1 = ax − x2 − bx x , 

dτ 1 1 1 3 

dx2 
= x 

dτ 3 
— x2, (2.2) 

dx3 = −cx dτ 3 + dx1x3 + ex2 — fx2, 

where a = r1 , b =  1 , c = r3 , d = mdK , e = γβ and f =  δ . 
r2 m r2 r1 2 mα 

Harvesting has a strong impact on the dynamic evaluation of a population subjected 
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to it. Depending on the nature of applied harvesting strategy, the long run stationary density of population 
may be significantly smaller than the long-run stationary density of a population in the absence of 
harvesting. Harvesting can lead to the incorporation of a positive probability of extinction within a finite time 
frame. Thus studying population dynamics with harvesting is both interesting and crucial subject for 
understanding population behavior. In order to study the effect of harvesting on the system (2.2), we consider 
the following system: 
 

dx1 = ax − x2 − bx x 
dτ 

1 1 1 3 — h(t), 

dx2 
= x 

dτ 3 
— x2, (2.3) 

dx3 
= −cx dτ 3 + dx1x3 + ex2 — fx2, 

where h = qEx1 is the harvesting rate at any time t, which is based on the catch- per-unit-effort 
hypothesis (Clark, 1990), q is the catchability coefficient, E is the harvesting effort. 

The harvesting agency does not adjust the effort due to the presence of the predator. Since the predator is 
unable to evolve a strategy for its survival, the regulating agency comes to rescue of the predator through a 
suitable tax policy. The regulating agency levies a tax τ (> 0) per unit biomass of the landed prey fish 
to control the exploitation. Any subsidy to the fisherman may be interpreted as a negative value of τ . 
The net economic revenue to the fisherman (perceived rent) is [q(p − τ )x1 − c1]E, where p is the fixed 
price per unit of the prey species (p > τ ). c1 is the fixed cost of harvesting per unit effort. The 
regulatory agency and fisherman are actually two different components of the society at a large. Hence the 
revenues earned by them are the revenues accrued to the society through the fishery. 

 
The Net economic revenue to the society is 

[pqEx1 − c1E] = [q(p − τ )x1 − c1]E + τqx1E 

which equals to the net economic revenue to the fisherman (perceived rent) plus the economic revenue to 
the regulatory agency. We now consider a dynamic reaction model by assuming that the level of effort in 
harvesting expands or contracts according to whether the perceived rent is positive or negative. The 
harvesting effort E is therefore, a dynamic variable governed by the differential equation: 

dE 
= λ[q(p − τ )x1 − c1] (2.4) 
dt 

where λ is a stiffness parameter measuring the intensity of reaction between the effort and the perceived rent. 

Thus using (2.4), the system (2.3) becomes: 

http://www.ijsrem.com/
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q(p−τ ) q 

q(p−τ ) 

bd+f 

dx1 = ax − x2 − bx x − qx E, 

dt 
1 1 1  3 1 

dx2 
= x 

dt 3 
dx3 — x2, 

(2.5) 
= −cx3 + dx1x3 + ex2 − fx2, 

dt 
dE 

dt 
= λ[q(p − τ )x1 − c1]E, 

with initial condition x1(0) ≥ 0, x2(0) ≥ 0, x3(0) ≥ 0, E(0) ≥ 0. 

 

 

3 Dynamical behavior of the system 

3.1 The steady states: 

A steady state of dynamical system (2.5) is an equilibrium point (x1, x2, x3, E) at 
which x˙1 = 0, x˙2 = 0, x˙3 = 0 and E˙ = 0. Now we have analyzed the existence of 
the steady states and their nature. Particularly from biological point of view we only concentrate on the interior 
or positive equilibrium of the model where all species co-exist. The possible steady states of this system 
are 
(i) The system has the trivial steady state P1(0, 0, 0, 0). 
(ii) The boundary steady state P2(a, 0, 0, 0). 
(iii) The prey free steady state without harvesting effort P3(0, e−c , e−c , 0) which is 

feasible provided e > c. 
f f 

a−   c1  

(iv) Predator free equilibrium P4(x¯1, 0, 0, Ē ) ,  where x¯1 =  c1   , Ē =  q(p−τ ) . It is 

feasible if a >   c1  > 0. 

(v) The harvesting effort free equilibrium P5(xˆ1, xˆ2, xˆ3, 0), where 
xˆ2 = e−c+ad , xˆ3 = e−c+ad . It is feasible if ad + e > c > be−af . 

 

xˆ1 = bc−be+af , 

bd+f bd+f b 
(vi) Lastly the interior steady state P6(x∗, x∗, x∗, E∗) where 

e−c+  c1  1 2 3 e−c+  c1  
x∗ =   c1   , x∗ = x∗ =  q(p−τ ) and E∗ = 1 [a −   c1  − b(  q(p−τ ) )].  This 
1 q(p−τ ) 2 3 f q q(p−τ ) f 
interior steady state exists when p −  c1d  < τ < p −  c1(f +bd)  . 
q(c−e) q(af +bc−be) 

 
3.2 Local Stability 

The variational matrix of the system (2.5) is 

a − 2x1 − bx3 − qE 0 −bx1 −qx1  

V (x1, x2, x3, E) =  
0 −1 1 0 
dx3 e −c + dx1 − 2fx3 0 

λq(p − τ )E 0 0 λ[q(p − τ )x1 − c1] 

 .
 

 
Theorem  3.2.1  The  system  (2.5)  is  unstable  around  the trivial  equilibrium 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 08 Issue: 12 | Dec - 2024                           SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM39518                        |        Page 6  

 

 

f 

f 

f 

1 

f f d(e−c) e c − 2e 
 

P1. 
 

Proof. Now the variational matrix at P1(0, 0, 0, 0) is 

a 0 0 0 
0 −1 1 0 
V (0, 0, 0, 0) = 

0 e −c 0
 

0 0 0 −λc1 

 

 

 .
 

 
And since one of the eigen value of the variational matrix is a which is > o, so 
P1(0, 0, 0, 0) is unstable. 
 
Theorem  3.2.2 The system (2.5) is locally asymptotically stable around the equilibrium point P2. 
 

Proof. The Variational matrix at P2(a, 0, 0, 0) is 

 

V (a, 0, 0, 0) =  

 

−aq 
0 
0 

−λ[aq(p − τ ) − e] 

 

 

 .
 

 
The characteristic equation is (−a − µ)(−µ + λ(aq(p − τ ) − c1))(c − ad − e + (1 + c − ad)µ + µ2).  So P2(a, 0, 
0, 0) is locally asymptotically stable if λaq(p − τ ) − c1 < 0, 1 + c > ad and c − e − ad > 0. 

Theorem 3.2.3 The system (2.5) is locally asymptotically stable around the equilibrium point P3 if a − 
b(e−c) < 0 and e > c. 

Proof. The Variational matrix at P3(0, e−c , e−c , 0) is 
f f 

a − b(e−c) 0 0 0   

e − c e − c 
V (0, , , 0) = 

0 −1 1 0 
 

 

0 0 0 −λc1 

 
From this Variational matrix we find that P3(0, e−c , e−c , 0) is locally asymptoti- 

f f 

cally stable if a − b(e−c) < 0 and e > c. 

Theorem 3.2.4 The system (2.5) is locally asymptotically stable around the predator free equilibrium P4 if 
m1 > 0, m1m2 − m3 > 0 and m3(m1m2 − m3) − m4m2 > 0. 

Proof. The Variational matrix at P4(x¯1, 0, 0, Ē )  is 

f 
 . 
 0 

−a 0 −ab 
0 −1 1 
0 e −c + ad 
0 0 0 
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1 

1 

1 

b 

b 

1 

λq(p − τ )E 0 0 λ[q(p − τ )x¯1 − c1] 

 

a − 2x̄ 1 − qĒ 0 −bx¯1 −qx¯1  

V (x¯1, 0, 0, Ē )  =  0 −1 1 0 . 
 0 

¯
 e −c + dx¯1 0  

 

Putting Ē 
a−x¯1 q 

in the above variational matrix V (x¯1, 0, 0, Ē )  we get the 

characteristic equation at P4(x¯1, 0, 0, Ē )  which is µ4 + m1µ3 + m2µ2 + m3µ + m4 = 0 where m1 = 1 + c + (1 
− d)x¯1, 

m2 = c − e + x¯1(1 + c − d + aqλ(p − τ )) − x¯1
2(d + qλ(p − τ )), 

m3 = x¯1(c − e) − dx2 + λqx¯1(p − τ )(a − x¯1)(1 + c − dx¯1), m4 = λqx¯1(p − τ )(a − x¯1)(c − e − dx¯1). 

By Routh-Hurwith criteria if m1 > 0, m1m2  − m3 > 0 and 
m3(m1m2 − m3) − m4m2  >  0 we can conclude that the system is asymptoti- 
cally stable at P4(x¯1, 0, 0, Ē ) .  

 
Theorem 3.2.5 The system (2.5) is locally asymptotically stable around the equilibrium P5 if A1 > 
0, A1A2 − A3 > 0 and A3(A1A2 − A3) − A4A2 > 0. 
 

Proof. Putting the value of x2 = x3 = a−x1
 and E = 0 in V (x1, x2, x3, E) we get, the 

characteristic equation at P5(xˆ1, xˆ2, xˆ3, 0) is µ4 + A1µ3 + A2µ2 + A3µ + A4 = 0 where A1 = 1 (a11x1 + a12), 
A2 = 1 (b11x2 + b12x1 + b13), 
b 1 
A3 = 1 (c11x3 + c12x2 + c13x1 + c14), 
b 1 1 
A4 = 1 (d11x3 + d12x2 + d13x1 + d14), 
b 1 1 

a11 = −2f − b(−1 + d + qλ(p − τ )), 
a12 = b(1 + c + Eq + λc1) + 2af , 

b11 = 2f (−1 + qλ(p − τ )) + b(d(−2 + qλ(p − τ )) + qλ(−p + τ )), 
b12 = −2f (1 + Eq + a(−1 + qλ(p − τ ))) + b(1 + d(−1 + a − Eq) + qλ(−p + τ ) + c(1 + 
qλ(−p − τ ))) + (b − bd − 2f )λc1, 
b13 = 2af (1 + Eq) + b(c − e + (1 + e)Eq) + 2afλc1 + b(1 + c + qE)λc1, c11 = 2(bd + f )qλ(p − τ ), 

c12 = −2f (1 + (−1 + a)qλ(p − τ )) − b(d(2 + (−1 + a)qλ(p − τ )) + (1 + c)qλ(p − τ )) − 
2(bd + f )λc1, 
c13 = 2f (a − Eq − aqλ(p − τ )) + b(c + ad − e − dEq − cqλ(p − τ ) + (c − e)qλτ ) + 2f (−1 + a − Eq)λc1 + 
b(1 + c + d(−1 + a − Eq))λc1, 

c14 = Eq[b(c − e) + 2af ] + λc1(2af (1 + Eq) + b(c − e + (1 + c)Eq)), 
d11 = c11, 

d12 = λ[(ad − bc + be − 2af )q(p − τ ) − 2(bd + f )c1], 
d13 = λ[2f (a − Eq)c1 + b(c + ad − e − dEq)c1], d14 = Eqλc1[b(e − e) + 2af ] 

By Routh-Hurwith criteria if A1 > 0, A1A2−A3 > 0 and A3(A1A2−A3)−A4A2 > 0 

we can conclude that the system is asymptotically stable at P5(xˆ1, xˆ2, xˆ3, 0). 
 
Theorem  3.2.6  The  system  (2.5)  is  locally  asymptotically  stable  around  the 

= 
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1 

1 

1 

1 

dτ 

1 3 1 1 

3 1 3 

 

| = | 

equilibrium P6 if a1 > 0, a1a2 − a3 > 0 and a3(a1a2 − a3) − a4a2 > 0. 

Proof. The Variational matrix at P6(x∗, x∗, x∗, E∗) is 
1 2 3 

a − 2x∗ − bx∗ − qE 0 −bx∗ qx∗  

V (x1, x2, x3, E) =  0 −1 1 0 . 
 dx∗ e −c + dx∗ − 2fx∗ 0  

 

 

The characteristic equation is µ4 + a1µ3 + a2µ2 + a3µ + a4 = 0 where a1 = 1 − c + 2e + (1 + d)x∗ 
a2 = dx∗2 + bdx∗x∗ + λq(p − τ )x∗E∗ + x∗(1 − c + d + 2e) + e − c 
1 1 3 1 1 
a3 = dx∗2 + x∗(−c + e) + bdx∗x∗ + λq(p − τ )x∗E∗(1 − c + 2e + dx∗) 
1 1 1 3 1 1 
a4 = λq(p − τ )x∗E∗(−c + e + dx∗) 
1 1 

By Routh-Hurwith criteria if a1 > 0, a1a2 − a3 > 0 and a3(a1a2 − a3) − a4a2 > 0 we 
can conclude that the system is asymptotically stable at P6(x∗, x∗, x∗, E∗). 

1 2 3 

4 Hopf bifurcation at P6(x∗, x∗, x∗, E∗) 
1 2 3 

We know that characteristic equation is 
 

µ4 + a1µ3 + a2µ2 + a3µ + a4 = 0 (4.1) 

where a1, a2, a3, a4 are interpreted above. Let us assume that µ = iω is a root of the equation (4.1), then we 
get, 

(ω4 − a2ω2 + a4) + i(a3ω − a1ω3) = 0 (4.2) 

Separating real and imaginary parts, 

ω4 − a2ω2 + a4 = 0 (4.3) 

a3ω − a1ω3 = 0 (4.4) 

Solving (4.3) and (4.4) we get,  

 

a3(a1a2 − a3) − a2a4 = 0 (4.5) 

which is a quadratic equation of τ = τH. 
Now differentiating the characteristic equation (4.1) w.r.t., τ we get, 
dµ 
dτ µ=iω 

a˙1µ3+a˙2µ2+a˙3µ 

4µ3+3a1µ2+2a2µ+a3  µ=iω 

−ω2a˙2+i(ωa˙3−ω3a˙1) (a3−3a1ω2)+i(2a2ω−4ω3) 
 

= 4a˙1ω6+(3a1a˙2−2a˙1a2−4a˙3)ω4+(2a2a˙3−a˙2a3)ω2 +i (3a1a˙1−4a˙2)ω5−3a1a˙3ω4+(2a2a˙2−a˙1a3)ω3+a3a˙3ω 
(a3−3a1ω2)2+(2a2ω−4ω3)2 (a3−3a1ω2)2+(2a2ω−4ω3)2 

Now monotonicity condition of the real part of the complex root one can easily 

establish the hopf bifurcation occur at τ = τH if d (Re(µ(τ )))|τ=τ ̸= 0. 

= 

λq(p − τ )E∗ 0 0 λ[q(p − τ )x1∗ − c1] 

H 

http://www.ijsrem.com/
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dτ 

dτ 

a 

b 

x 

x 2 3 

1 x2x∗ 2 x3x∗ 3 

q 
−

 
x x8 

b 

2 3 

dt 

1 2 3 i=0 i i i ∗ 
i 

4 E∗ 

dt 1 1 3 3 x2x∗ 2 x3x∗ 3 

∗ 

Now d (Re(µ(τ )))|τ=τ 

= d (Re(µ(τ )))|µ=iω 
 
4a˙1ω6+(3a1a˙2−2a˙1a2−4a˙3)ω4+(2a2a˙3−a˙2a3)ω2 (a3−3a1ωa2)2+(2a2ω−4ω3)2 

 

So hopf bifurcation occurs at τ = τH if 

4a˙1ω6 + (3a1a˙2 − 2a˙1a2 − 4a˙3)ω4 + (2a2a˙3 − a˙2a3)ω2 ̸= 0 i.e., if  1 [a2a2a˙2 + (a1a2a3 − a2)(a1a˙3 − a3a˙1)] ̸= 0 
3 1 3 3 
1 

5 Global Stability 

Theorem 5.1 The system (2.5) is globally asymptotically stable around the interior 

equilibrium P6 if β1 = β3d = β4λ(p − τ ) and β2 = 
β3ex∗ 

∗ 
2 . 

3 

Proof. In this section we have discussed about global stability of this system (2.5). To prove the global 
stability, we have defined a Lyapunov function 

V (x∗, x∗, x∗, E∗) = 
Σ3

 

 
β (x — x∗ − x∗log( xi )) + β (E − E∗ − log( E )) 

where βi, i = 1, 2, 3, 4 are suitable constants to be determined in the subsequent step. 
Now differentiating V (x∗, x∗, x∗, E∗) w.r.t., t, we get, 

1 2 3 
 

β4 E
 ̇
(E ) 

= −β1(x1 − x∗)2 − β3f (x3 − x∗)2 + (β3d − β1b)(x1 − x∗)(x3 − x∗) + (β4λq(p − 
1 3 1 3 
τ )−β q)(x −x∗)(E −E∗)+( β2 + β3e )(x −x∗)(x −x∗)− β2x3 (x −x∗)2− β3ex2 (x −x∗)2 
1 1 1 ∗ ∗ 2 

2 3 
2 3 3 x2x∗ 2 2 x3x∗ 3 3 

= −β1(x1 − x∗)2 − β3f (x3 − x∗)2 + (β3d − β1b)(x1 − x∗)(x3 − x∗) + (β4λq(p − τ ) − 
1 

β1q)(x1 − x∗)(E − E∗) − ( 

3 
 

β2x3 (x2
 

2 
— x∗) − β3ex2 (x3

 
3 

1 3   

— x∗))2 + ( β2
 

2 

 
 

β3e )2(x2 − 
3 

x∗)(x3 − x∗) 
2 3 

 

If we choose βi, i = 1, 2, 3, 4 such that β1 = 

 
β3d = β4λ(p − τ ) and β2 = 

 
β3ex∗ 
∗ 

2 , then 
3 

we get, 

dV = −β (x — x∗)2 − β f (x — x∗)2 − (
q 

β2x3 (x — x∗) − 
q 

β3ex2 (x — x∗))2 
 

Which implies that, dV ≤ 0. 

Hence the system is globally asymptotically stable at P6(x∗, x∗, x∗, E∗). 
1 2 3 

= 

x 

x 

x 

i 

1 3 2 3 

H 

q q q 

dV = β1 x˙1 (x1 — x∗) + β2 x˙2 (x2 — x∗) + β3 x˙3 (x3 — x∗) +  — E∗ 
dt x1 1 x2 2 x3 3 E  
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∞ 

1 

3 

q 

 ̇

 ̇

 ̇

6 Optimal tax policy 

In this section, we apply Pontryagin’s Maximum Principle to derive an optimal harvesting policy so that the 
regulatory agency is assured to achieve its goal of maximizing the total discounted net revenue generated by 
the fishery. Formally, this objective involves maximizing the present value J of a continuous stream of 
revenues over time, represented as 

J = 

∫ 

e−δt(pqx1 − c1)Edt (6.1) 

0 

where δ is the instantaneous rate of annual discount. Our objective is to determine a tax policy τ = τ (t) that 

maximize J subject to the state equations of the system (2.5) and to the control constraints τmin ≤ τ (t) ≤ 

τmax. 

For this we have formed Hamiltonian for the control problem is given by 

H = e−δt(pqx1 − c1)E + λ1(ax1 − x2 − bx1x3 − qx1E) + λ2(x3 − x2) + λ3(−cx3 + 

dx1x3 + ex2 − fx2) + λ4(λ[q(p − τ )x1 − c1]) 

where λ1, λ2, λ3, λ4 are adjoint variables. Since H is linear in control variable τ (t), so the optimal control 
will be the combination of bang-bang control and singular control. The optimal control τ (t) that maximizes H 

must satisfy Hτ = 0 such that τmin ≤ τ (t) ≤ τmax. Which implies that λ4 = 0. 

Now solving the adjoint equations 
 

∂H λ  = − = −[e−δtpqE + λ (a − 2x  − bx  − qE) + λ dx ], (6.2) 
 

 

1 ∂x1 
1 1 3 3 3 

λ˙2 
∂H 
= − 
∂x2 

= −[−λ2 + eλ3]. (6.3) 

∂H λ  = − = −[−λ bx + λ + λ (−c + dx − 2fx ], (6.4) 
 

 

3 ∂x3 
1 1 2 3 1 3 

∂H λ  = − = −[e−δt(pqx — c ) − λ qx ] = 0. (6.5) 
 

 

4 ∂E 
From (6.5) we get, 

1 1 1 1 

λ = e−δt(p − 
c1  ). (6.6) 

1 qx1 

Putting the value of λ1 in (6.4) and solving (6.3) and (6.4) we get, 

 
λ = µ e−α1t + µ e−α2t + Re−δt  

, 
3 1 2 

 
 

δ2+Aδ+B 

where µ1 and µ2 are arbitrary constants, 

α1 and α2 are the roots of the auxiliary equation m2 − Am + B = 0, 
R = − 1 [b(1 + δ)(pqx1 − c1)], 
A = 1 + c − dx1 + 2fx3, 

B = c − e − dx1 + 2fx3. 
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qx 

q 

q 

f 

Since the shadow price λ1(t)eδt is bounded at t → ∞ if µ1 = µ2 = 0. The transver- sality condition at t → ∞ 
requires that the shadow price λi(t)eδt, (i = 1, 2, 3) remain bounded. So we get, 
 

Re−δt 

λ3 = 
δ2 + Aδ + B 

(6.7) 

Now using (6.6) and (6.7) in (6.2) we get, 

 
δe−δt(pqx1−c1) qx1 

e−δtpqE + 
e−δt(pqx1−c1) 

(a − 2x 
1 

— bx3 
e−δtbd(1+δ)(pqx1−c1)x3 q[δ2+(1+c−dx1+2fx3)δ+(c−e−dx1+2fx3)] 

Now for the equilibrium solution we have, 

x∗ = 
 c1  

= 
c1  

, (6.8) 
1 q(p − τ ) qT 

 
x∗ = x∗ = 

 c1d  q(p−τ ) 
 

 e − c + c1d
 

= qT , (6.9) 
 

2 2 f f 

 
E∗ = 

1 
(a −  

c1  
− b( 

e − c +  c1d 
 

q(p−τ ) 
)) =

 
 

1 c1 
(a − 

 

— b( 
e − c + c1d

 
qT )) (6.10) 

q q(p − τ ) f q qT f 

where T = p − τ . 

Now using (6.8), (6.9) and (6.10) we get the following equation for T : 
 
H0T 3 + H1T 2 + H2T + H3 = 0 (6.11) 

where 
H0 = A3A6, 
H1 = A4A6 + A3A7 − A0, H2 = A4A7 − A3A5 − A1, H3 = −A2 − A4A5, 

A0 = c1bd(1 + δ)(c − e), 
A1 = 1 (bc2d2p(1 + δ)), 
q 1 

A2 = c1bd(1 + δ)(p(e − c) + c1d ), A3 = δ2 + δ(1 − c + 2e) − c + e, A4 = 1 c1d(1 + δ), 

A5 = pc1f (2 + bd ), 
A6 = fqδ, 

A7 = c1f + (b(c − e) + af )pq, 

Let T ∗ = (p − τ ∗) be a solution (if it exists) of (6.11). Using this value of T ∗ in (6.8), (6.9) and (6.10) we 
obtain the optimal equilibrium solution (x1δ, x2δ, x3δ, Eδ). We have established the existence of an optimal 
equilibrium solution that satisfies the necessary conditions of the Pontryagin’s maximum principle. It is 
extremely difficult to find an optimal approach path consisting of a combination bang-bang control (i.e., τ 
= τmin or τ = τmax) and non-equilibrium singular controls (i.e., τmin < τ (t) < τmax). This difficulty was 
faced by Clark [3] even in the study of a 

= 
— qE) − 

e − c + 

1 
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simple model of two ecologically independent fish populations. The present model is much more complicated 
than the said model of Clark [3]. Due to these difficulties, we have considered an optimal equilibrium solution 
only. 
 

 

7 Numerical Simulation 

Let us assume the ecological parameters as p = 15, c1 = 10, c = 0.08, d = 0.05, e = 0.05, q = 0.05, f = 
0.06, a = 43, b = 0.07, λ = 1, δ = 0.01. Then in order to ensure existence of the interior steady states (x∗, 
x∗, x∗, E∗), we have to select tax τ , 
1 2 3 
such that 3.11189 < τ < 14.6663. Again using these parameter values the roots of the 
cubic equation (6.11) found to be −86240.1, 9.23819 and 396.586. Therefore from the relation τ = p − T we 
get three values of τ as −86225.1, 5.76811, and 381.586. Along these three optimal values of τ , only 5.76811 
lies in the interval (3.11189, 14.6663). Hence in this case the optimal value of the tax τδ = 5.76811 and the 
corresponding stable equilibrium is P ∗(21.664, 17.5534, 17.5534, 402.145). 
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Fig. 1. Solution curves corresponding to the optimal tax τ = 5.76811. 
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Fig. 2. Phase Space trajectories corresponding to the optimal tax τ = 5.76811 beginning with different levels 
of x1, x2 and x3. 
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Fig. 3.Phase Space trajectories corresponding to the optimal tax τ = 5.76811 beginning with different levels of 
x2, x3 and E. 

E
 

x 
3 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 08 Issue: 12 | Dec - 2024                           SJIF Rating: 8.448                                     ISSN: 2582-3930                                                                                                                                               

 

© 2024, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM39518                        |        Page 14  

=5.76811 

=4 

=6 

Im
m

a
tu

re
 P

re
d
a
to

r 

 
 
 
 
 
 
 
 

 
500 

 
400 

 
300 

 
200 

 
100 

 
0 

17 

18 
10 
19 
15 

20 
20

 

21 25 

22 30 

23 35 

x 
24  40 x 
3 

 
Fig. 4. Phase Space trajectories corresponding to the optimal tax τ = 5.76811 beginning with different levels 
of x1, x3 and E. 
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Fig. 5. Population curve against different values of τ . 
 

 

8 Conclusion 

In this paper, we derive and analyze the optimal tax policy within a stage-structured dynamic reaction 
population model, where prey is harvested in the presence of a predator. The model assumes that an 
external agency regulates the fishery by imposing a suitable tax per unit biomass of landed fish.  The 
model also includes a fully dynamic interaction between fishing effort and perceived economic rent. Optimal 
equilibrium solution of the system is the equilibrium solution for which the present value of all future revenues 
from the fishing maximized which is discussed and illustrated by numerical simulation. In the Fig. 1, the 
solution curves are shown at optimal tax τ ∗ = 5.76811. From the Fig. 2-4, we can conclude that the system 
(2.5) is globally asymptotically stable. The Fig. 5 shows that how population changes with 
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respect to different values of tax. The existence of its steady states and their stability are then studied using 
eigen value analysis. With the tax rate as the regulatory instrument, it is essential to determine the optimal tax 
trajectories that maximize the net payoff from the fishery. We have done this with the help of Pontryagin’s 
Maximum Principle. The numerical computations are carried out to justify the analytical result. 
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