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Abstract 
Three-Dimensional Integrated Circuits (3D ICs) are a revolutionary 

advancement in semiconductor technology, allowing vertical 

stacking of multiple active device layers to overcome the scaling 

challenges faced by conventional Two-Dimensional Integrated 

Circuits (2D ICs). While 3D ICs harness incredible advantages in 

terms of increased integration density, shorter interconnect length, 

and increased performance, they also present daunting challenges—

primarily, the strong coupling between thermal and timing 

constraints. These challenges demand strong, multi-objective 

optimization techniques that can manage 3D ICs' highly non-convex 

and multi-modal design space. In this paper, we introduce a novel 

optimization framework based on the Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) integrated with a physics-based 

electro-thermal-timing simulation framework. By comparing CMA-

ES with Bayesian optimization, we prove that CMA-ES produces 

superior convergence, robustness, and solution quality, especially 

under noisy and high-dimensional objective conditions. Our results 

evidence spectacular improvements in key figures of merit such as 

peak temperature, thermal gradients, clock skew, and overall 

simulation efficiency. 

 

1. Introduction 

The desire to maintain Moore's Law, as well as the 

continuously growing demands for greater 

performance and integration density, have pushed 

conventional two-dimensional integrated circuits 

(2D ICs) to their physical and practical limits. Here, 

3D ICs have emerged as a possible solution with 

device layers stacked one on top of the other 

vertically to offer: 

 

 

- Increased functional density 

- Miniaturization of interconnects and signal 

latency reduction 

- Enhanced operating effectiveness and energy 

utilization efficiency. 

 

But vertical integration of active layers in 3D ICs 

increases several design challenges. Some of the 

most important of these are: 

 

- Thermal Management: Power densities rise with 

stacking, leading to hotspots and high operating 

temperatures that lower device reliability and 

performance. 

- Clock synchronization: Vertically sliced clock 

domains lead to large clock skew and thus break 

synchronous operation and timing closure. 

- Multi-Physics Coupling: Electrical, thermal, and 

mechanical coupling grows more prominent and 

needs to be co-optimized across multiple domains. 

 

For these problems, a co-optimization strategy on a 

global level, with both thermal and timing behavior 

taken into account together, is critical to the efficient 

utilization of 3D ICs. 

 

2. Context and Rationale 

 

2.1 3D IC Challenges 

The new 3D IC structure offers several challenges 

that are interdependent: 

- Thermal Bottlenecks: Stacking of the active layer 

slows down heat dissipation, resulting in hotspots 

and huge thermal gradients. Poor thermal 

management causes faster aging, higher leakage 

current, and even device failure. 

- Clock Skew: Layer-to-layer variations in 

temperature-sensitive propagation delays and path 

length cause high clock skew, which reduces timing 

dependability as well as system synchronization. 

- Multi-Physics Complexity: The very high 

interdependencies among electrical, thermal, and 

mechanical effects in 3D ICs give rise to a very 

highly complex design space so that improvement 

in one dimension actually ends up negatively 

impacting another one. 
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2.2 Optimization Needs 

Optimal 3D IC design requires traversing a very 

high-dimensional, non-convex, and very large 

search space. The most significant design 

parameters are: 

- Order and stacking layer placement 

- Power and heat distribution by apportionment. 

- Clock tree topology and buffer insertion 

- Material selection and geometric design 

- Traditional design methods find it difficult to 

address this region, and hence the application of 

advanced multi-objective optimization methods is 

needed. 

 

 

3. Limitations of Current Optimization 

Algorithms 

Classical optimization methods such as Bayesian 

Optimization and Gradient-Based Methods are 

beset by several issues when used in 3D integrated 

circuit design: 

- Scalability: These processes are computationally 

infeasible and less efficient with a larger number of 

design variables. 

- Noise Sensitivity: Physical simulations of 3D ICs 

are susceptible to generating stochastic noise, which 

can mislead probabilistic models and gradient-

based optimizers. 

- Local Minima Traps: Multi-modality and non-

convexity of the design space increase the 

likelihood that the process will prematurely 

converge to local optima. 

Hence, there is an urgent need for strong, scalable, 

and noise-resistant optimization algorithms that can 

handle the complexity of 3D IC design spaces. 

 

4. Proposed Methodology 

In order to tackle the issues discussed above, we 

introduce an effective, black-box optimization 

technique from the Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES). CMA-ES is very 

relevant to non-convex, high-dimensional, and 

noisy 3D IC design optimization problems. 

 

 

4.1 Simulation Engine 

The CMA-ES optimization tool is tightly coupled 

with a physics simulator tool that accurately 

evaluates the most significant performance metrics 

for candidate designs: 

 

 

- Temperature Distribution: Spatial temperature 

gradients, max, and average temperature are 

computed by finite element analysis in FEniCS. 

Timing simulations verify the clock skew and 

propagation delays between the various layers and 

modules. 

- Alternative Metrics: Other objectives such as 

energy use, reliability, and space utilization can be 

added as required. 

 

4.2 Optimization Loop 

CMA-ES optimization loop operates as follows: 

- Initialization: The algorithm starts with an initial 

population of potential solutions, which are sampled 

from a multivariate normal distribution. 

- Evaluation: All the candidates are assessed by the 

simulation engine to derive the objective function 

values (such as temperature, skew). 

- Selection and Update: The most promising 

candidates are chosen, and the mean and covariance 

matrix of the distribution are updated to concentrate 

search in promising areas. 

- Iteration: Steps 2 and 3 are iterated repeatedly until 

convergence criteria are satisfied (e.g., no or 

minimal improvement from generation to 

generation or a user-defined maximum number of 

iterations). 

This iterative strategy allows efficient searching and 

exploration of the design space to move toward 

good-quality solutions. 

 

5. CMA-ES: An Overview 

The Covariance Matrix Adaptation Evolution 

Strategy (CMA-ES) is a recent evolutionary 

optimiser designed for challenging, non-linear, and 

non-convex optimisation problems. Its primary 

features are: 
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- Population-Based Search: Maintains and improves 

a population of candidate solutions, promoting 

diversity and exploration. 

- Adaptive Sampling: Proposes new candidates 

from a multivariate normal distribution, whose 

covariance and mean are adaptively updated based 

on performance history. 

- Covariance Adaptation: Learns the direction and 

shape of the objective landscape, allowing efficient 

progress along valleys, plateaus, and ridges. 

- Noise Robustness: Is robust to noise in objective 

functions and therefore is appropriate for 

simulation-based optimization. 

The ability of CMA-ES to dynamically adjust its 

search distribution makes it possible for it to get out 

of local minima and efficiently find global optima, 

even in advanced design spaces. 

 

6. Comparison with Bayesian 

Optimization 

While Bayesian Optimization is a highly sought-

after black-box optimization algorithm, especially 

in low-dimensional optimization problems, it is 

plagued by numerous problems in 3D IC design: 

 

7. Findings  

Utilization of the CMA-ES-based optimization 

platform in 3D IC design brought revolutionary 

improvements in the most critical performance 

parameters:  

 

- Temperature Reduction: Reduced average and 

maximum temperatures, which did not allow 

hotspots to form and improved reliability.  

-Thermal Gradient Minimization: Minimization of 

thermal gradient in the stacked layers minimized 

thermal non-uniformity.  

- Clock Skew Improvement: Optimization of clock 

tree parameters led to reduced timing differences 

and synchronization enhancement.  

- Simulation Efficiency: CMA-ES produced high-

quality solutions at a faster rate compared to 

Bayesian Optimization, as can be seen from 

observation of cost vs. generation and time vs. cost 

plots.  

- Parameter Evolution: Visualization of parameter 

paths revealed efficient exploration and exploitation 

of the design space. These outcomes demonstrate 

the effectiveness of CMA-ES in alleviating the 

challenging thermal and timing issues of 3D 

integrated circuits.  

 

7.1 3D IC Structure 

The integrated circuit (IC) under study is a single-

layer 3D structure with lateral dimensions of 3.8 

mm × 3.8 mm and a die thickness of 5 µm. The IC 

operates under a nominal supply voltage of 1 V with 

an ambient temperature fixed at 300 K. Electrical 

resistivity and thermal conductivity parameters are 

set to reflect typical polysilicon and silicon material 

properties, with resistivity modeled as temperature-

dependent to capture electro-thermal coupling 

effects. The clock frequency is set to 1 GHz, and 

wire parasitics such as resistivity and capacitance 

are included for timing accuracy. The electro-

thermal-timing simulation incorporates detailed 

physical models to evaluate temperature 

distribution, thermal gradients, and clock skew, 

which serve as critical performance metrics for 

optimization. Additionally, the IC model includes 

strategically placed micro-scale heater elements 

with a power density of 1 MW/m³ to emulate 

localized thermal hotspots, enabling a more realistic 

thermal profile and challenging the optimization 

algorithms to manage thermal gradients effectively. 

 

7.2 Simulations 

The optimization of the IC design parameters was 

performed using two algorithms : Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES) 

and Bayesian Optimization (BO). CMA-ES 

converged to an optimal solution exhibiting a 

maximum temperature of approximately 320 K, a 

temperature gradient of 8,500 K/m, and a clock 

skew of 12 ps, achieving a composite cost function 

value of 35.4 within an average runtime of 8.5 

seconds.  

In contrast, the Bayesian Optimization approach 

yielded suboptimal performance with a maximum 

temperature near 400 K, a gradient exceeding 

15,000 K/m, and a clock skew of 28 ps, despite a 
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comparable runtime and lesser number of iterations 

per 

guess

 

 

ParaView Simulations of electric field and thermal distribution of the IC

 

 
 

ParaView Simulations of electric field, thermal distribution and voltage after the CMA-ES simulations

 
Convergence History showing that CMA-ES explored more and converged to lower cost values, even though more iterations were 

needed - but Bayesian Optimisation got stuck at one place 
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Taking a weighted score of power consumption 

(40%), Clock Delay (30%), Area (20%) and Yield 

Penalty (10%), we calculated the final composite 

score and compared both of the algorithms. 

 

CMA scored -156.97, while Bayesian Optimisation 

scored -133.65 - showing a total gain of 14.85% in 

predicting the IC parameters for a given run 

environment. 

 

8. Conclusion and Future Work  

We present an end-to-end co-optimization flow for 

thermal and timing behavior of 3D Integrated 

Circuits using CMA-ES. With a physics-aware 

simulation engine and efficient evolutionary 

optimization algorithm, we demonstrate spectacular 

improvement in critical design metrics.  

 

Directions of future work are:  

 

- Pareto Optimization: Extension of the approach to 

multi-objective Pareto optimization for concurrent 

trade-off analysis.  

- Layout-Aware Parameters: Utilization of detailed 

layout information to improve optimization 

granularity precision. 

- Reinforcement Learning Integration: Exploring 

hybrid approaches that combine evolutionary 

strategies with reinforcement learning for adaptive, 

online optimization
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