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---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - Networks deliver essential services to society 

(e.g., electricity grid, telecommunications, water supply, 

transportation) yet are susceptible to interruption. Motivated 

by this, we examine a sequential choice problem whereby an 

initial network is enhanced over time (e.g., through the 

addition or augmentation of edge dependability), and 

incentives are accrued over time based on the network's all-

terminal reliability. Actions within each time frame are 

constrained by the availability of resources, including time, 

financial capital, and labour. We employed a Deep 

Reinforcement Learning (DRL) methodology executed in 

OpenAI-Gym utilising Stable Baselines to address this issue. 

A Proximal Policy Optimisation (PPO) algorithm was 

employed to determine the edge requiring enhancement or a 

new edge to be included, contingent upon the network's 

present condition and the allocated budget. A reliability 

polynomial was utilised to compute the all-terminal 

dependability of the network. To comprehend the model's 

behaviour throughout diverse settings, we examined many 

network configurations with varying beginning link reliability, 

additional link reliability, node quantities, and budget 

frameworks. We finish with a review of the insights acquired 

from our series of constructed experiments. 

 
 

Key Words:  Deep reinforcement learning, proximal policy 

optimisation. 

 

 

1.INTRODUCTION 

 
We use networks in every part of our lives. Making sure 

networks work right is important so that everyone can go about 

their daily lives. For example, people use a network of roads to 

drive, a network of phones to talk to each other, and a network 

of power outlets to power items in their homes. These are just 

a few of the big networks that everyone relies on. An awful lot 

of people will be hurt if they can't be trusted. 

 

In the past, there have been many infrastructure breakdowns 

that caused problems for many people. The 2003 blackout in 

the Northeast is a well-known case. As per History.com [13], 

this blackout was caused by a problem with the software and 

impacted fifty million people in the US and Canada. The 

disaster at Three Mile Island in Pennsylvania and the failure of 

the levees in Louisiana during Hurricane Katrina are two other 

examples of infrastructure networks going wrong. There was a 

problem with one part of the plant that led to the Three Mile 

Island accident. This problem shut down the whole system. 

The US Nuclear Regulatory Commission [44] says that this 

failed part led to a partial nuclear meltdown that affected tens 

of thousands of people in the area around the plant. Pruitt [34] 

says that Louisiana's levees were not ready for the amount of 

water from Hurricane Katrina. As a result, they broke because 

of the pressure, flooding a lot of New Orleans. These are only 

a few examples of why the United States' infrastructure often 

breaks down. People who are touched by infrastructure failures 

are in a lot of pain because they can sometimes lead to major 

injuries or death. These examples make it clear how important 

it is to keep key networks safe. 

 

In its most basic state, a network is just a group of nodes that 

are linked together by edges. A lot of the things we use every 

day are linked together in a network. Table 1 shows the 

different types of networks that Newman [32] talks about. 

 

 
 

 
 

 

A significant challenge in assessing network dependability is 

the extensive scale of the networks. As network size increases, 

efficient analysis becomes increasingly challenging. 

Current methodologies lack the capacity to assess network 

reliability efficiently. Prior studies have also investigated the 

challenges of constructing dependable networks. 

This issue is more intricate as it need continual assessment of 

network dependability. 
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2. Network Reliability 

 

There are several ways to categorise networks, which helps us 

determine which ones to investigate further. The many 

degrees of complexity in network reliability models are 

covered by Ball [4]. The degree of intricacy is highly 

dependent on how well the network is linked. A network 

dependability problem can be either 2-terminal, k-terminal, or 

all-terminal. An exception to the k-terminal issue exists in the 

two-terminal and all-terminal scenarios. For the k-terminal 

reliability issue, there is one root node (s) and k terminal 

nodes. The likelihood that each of the k-terminal system's 

nodes are linked to the root node is, in general, the system's 

dependability. Reliability in a 2-terminal reliability model is 

defined as the likelihood that the two nodes in the system are 

linked. In this model, there are only two nodes. A network 

that is all-terminal simply has all of its nodes linked to all of 

its other nodes. Reliability is the likelihood of a completely 

linked system. The computational difficulty of calculating the 

system's dependability increases as the number of nodes and 

links in the network increases, with all-terminal reliability 

problems being the most difficult. 

 

The computational difficulty of calculating the dependability 

of an all-terminal network increases exponentially with the 

number of nodes and links connected, as discovered by 

Provan & Ball [33] to be a #P-complete issue. A plethora of 

approaches for determining network reliability have been 

employed to aid in the analysis of this issue. You can get a 

precise number or a rough idea of the dependability using 

these techniques. Artificial neural networks are one example 

of such a technique, computation of boundaries, optimisation, 

time exponential and polynomial techniques, and enumeration 

of states; and Monte Carlo simulation. This section delves into 

the inner workings of these methodologies and examines their 

prior studies in order to define their strengths and weaknesses. 

 

Ball et al. [5] summarises exact methods for calculating 

network reliability, including algorithms that run on 

polynomial time for restricted classes of networks and 

algorithms that run on exponential time for general networks. 

They also cover other methods, such as bounds on network 

reliability and Monte Carlo simulation. In addition to 

describing and discussing the limits of various network 

dependability approaches, Gaur et al. [15] provided extensive 

descriptions of several methods, such as neural networks, state 

enumeration, and minimal cut enumeration. 

A minimal cut set is defined as a collection of system 

components that, when failing, cause the system to fail (Su et 

al., [42]). To avoid system failure, minimum cut sets do not 

include any additional subsets of cuts. To determine the 

network's reliability, minimal cut enumeration techniques first 

count the reliability of each minimum cut set and then use 

these totals to get the network's dependability. One precise 

way to determine a network's dependability is by cut 

enumeration. While it works well for smaller networks, its 

limits become apparent fairly fast. For issues with 

dependability between two terminals, cut enumeration is the 

method of choice, as stated by Gaur et al. [15]. There is an 

exponential increase in the number of cut sets as the network 

expands. Because of this, it is tedious to calculate all potential 

combinations for two-, k-, and all-terminal dependability. In 

order to determine the network's dependability, which is 

defined as the percentage of states in which the network is 

operating correctly, Monte Carlo simulation (MCS) methods 

select a random sample of states to investigate.  

To mimic edge failures, Karger [25] used MCS to determine if 

Due to the randomly chosen edge, the network failed. One of 

the problems with the MCS method, in his opinion, is how 

sluggish it is when the likelihood of failure is minimal. For 

their study on structural dependability, Cardoso et al. [8] used 

neural networks in combination with Monte Carlo simulation. 

It can take a long time to compute dependability using MCS 

since it only permits one network structure to be calculated at 

a time. In order to address this, they integrated neural 

networks with MCS, which reduced calculation time and 

yielded more accurate dependability assessments. 

Similar to how the human brain uses neural networks, 

artificial neural networks (ANNs) mimic these structures. In 

order to learn from experiences, the parts of ANNs collaborate 

in series and parallel, much like the brain. In order for this 

learning to take place, a training set containing inputs and 

known, desired outputs is utilised. The primary applications of 

artificial neural networks (ANNs) are control, pattern 

recognition, optimisation, associative memory, and prediction 

(Jain & Mao, 2021). In order to assess the dependability of the 

network, Srivaree-ratana et al. [41] employed an artificial 

neural network. Their research involved training the ANN 

using a variety of topologies and connection reliabilities. The 

best network topology was then determined by using the ANN 

to predict the network's reliability in relation to the topology 

and the link reliabilities. In the end, they determined the 

precise dependability for each topology by using it. Through 

comparisons to an accurate technique and an upper bound 

determined from a polynomial time algorithm, they show that 

their estimation works well empirically while being 

computationally costly. 

Setting limits on the network's dependability provides an 

alternate method to both exact and approximate reliability 

estimations. The limit-finding approach has the benefit of 

being less computationally costly than the other methods; 

nevertheless, it lacks accuracy as it simply gives bounds and 

not a specific dependability. An algorithm was developed to 

identify by Sebastio et al. [37]. limits on the dependability of a 

two-terminal network. The algorithm allows the user to 

choose the time it should take to execute. Their method takes 

mincuts and minpaths into account. A minimum route is a set 

of interconnected nodes in a network that would remain linked 

even if a single connection were to be severed.  

In order to decrease the dependability between the upper and 

lower bounds, their method searches the network for the most 

critical minimal paths and cuts. Bounds have another use, 

which Satitsatian and Kapur [36] addressed. In order to 

calculate the precise reliability and reliability boundaries, they 

discovered a lower limit for the dependability of the network. 

In order to get the lower reliability, bound with minimal 

computing work, they developed a method to identify a subset 

of lower boundary points. When it comes to all-terminal 

network reliability allocation issues (RAP), Ramirez-Marquez 

& Rocco [35] introduced a novel approach. Their objective in 

solving this challenge was to find the optimal network cost 

while keeping dependability in mind.  

The three-stage process they developed consists of the 

following: first, producing network configurations; second, 

determining each network's dependability using MCS; third, 

penalising networks that fail to satisfy the reliability 

http://www.ijsrem.com/
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requirement; and last, ranking the networks from best to 

worst. Their algorithm uncovered solutions were, at most, 

21% less expensive and, at worst, 7% cheaper than those 

identified in the literature before. Another group that 

suggested a way to use Monte Carlo Simulation for resource 

allocation was Yeh et al. [46]. Movable cluster swarm 

optimisation (MCS-PSO) was their suggested strategy. 

Meeting the dependability limits while keeping component 

costs low was their goal. Their approach outperformed MCS 

on its own when it came to efficiency and reliability 

approximation. Other people have offered other ways to put 

together trustworthy networks.  

For generic systems, Mettas [30] investigated the component-

level reliability allocation problem. Based on his research, we 

may infer the minimal system dependability requirements for 

various components reliability. Methods to examine network 

topology were employed by both Jan et al. [22] and 

AboElFotoh & Al-Sumait [1]. Finding the best topological 

architecture of links that minimised cost while meeting the 

minimal need for network stability was their goal. A branch-

and-bound decomposition approach was used by Jan et al. 

[22]. Their approach breaks the network down into smaller 

issues that their branch and bound algorithm can handle, 

according to the number of links. Using an ANN, AboElFotoh 

& Al-Sumait [1] were able to resolve the identical issue. 

 

2.1 Training with Positive Reward 

 

The many methods of machine learning are categorised 

according to the algorithm's learning process. Reinforcement 

learning is one such method. In order to train a computer to 

respond appropriately to new situations, reinforcement 

learning relies on a training data set that contains both positive 

and negative reinforcement, as described by Zhang [47]. As a 

result of this input, the machine is able to do the job better 

next time. The value of an action is determined by the 

reinforcement learning algorithm, which randomly picks an 

action. An immediate reward and the value of reaching a new 

state both contribute to the value of the acts. The goal of 

reinforcement learning is to maximise total reward by learning 

the value of optimum state/action combinations through 

repeated application of this procedure. 

 

A wide variety of fields can benefit from reinforcement 

learning (RL). The gaming industry was an early adopter of 

RL. The player often takes control of a character and decides 

what to do in a video game. The choices they make are seen 

by RL as the actions. Researchers were able to train the 

system to choose the optimal action in every given condition 

by using RL to test out a wide variety of scenarios. Flappy 

Bird and Breakout were the two video games that Lin et al. 

[27] tackled. Together, a neural network and reinforcement Q-

learning were used to train both games. neural network and 

one that does not. Using a neural network significantly 

reduced the time it took to train the model compared to not 

using one. 

 

The use of networks is not the only one where reinforcement 

learning is useful. In order to investigate methods for 

distributing computer network resources, Yang et al. [45] 

developed a deep reinforcement learning model. Ensuring the 

system's dependability from start to finish was their primary 

objective. In order to keep the system's channels from falling 

short of their quality criteria, they used a Q-learning algorithm 

to assist the system in allocating resources. After around 100 

attempts of training, the Q-learning method was determined to 

be successful in their study. Research on RL and other forms 

of AI in healthcare systems was conducted by Gottesman et 

al. [17]. The health of patients depends on decisions made 

about when to do specific jobs at a healthcare facility. 

Following training, RL can assist healthcare providers in 

determining the best course of therapy for a patient based on 

their baseline condition by studying the outcomes of previous 

decisions. The application of RL in healthcare has allowed for 

the optimisation of patients' treatment sequences. 

 

2.2. Progress in Reliability 

 

The goal of reliability growth is to increase a system's 

dependability all through its lifecycle, from design to 

development to operation. The fundamental idea is to put a 

system through its paces, find its weak spots, and then fix its 

design such that those weak spots are less likely to recur, 

making the system more reliable overall. One way to make 

design modifications that will have a positive impact on a 

system's dependability is to employ reliability growth 

modelling. Among the first to examine the development of 

dependability was Duane [12]. When comparing mechanical 

and electromechanical systems, he discovered that both 

improved dependability at about the same pace during 

development. His research centred on determining how long it 

takes for systems to learn to reliably anticipate future events. 

The link between the logarithm of cumulative failure rate and 

cumulative operating hours was nearly linear, according to his 

findings. Reliability in relation to system age was further 

investigated by Crow [10].  

The AMSSAA model, which stands for Army Material 

Systems Analysis Activity, was one of his suggestions. He 

suggested a nonhomogeneous Poisson process model with a 

Weibull intensity function to investigate age-dependent 

reliability, as stated in "The AMSAA Reliability Growth 

Guide," which "summarised the benefits of reliability growth 

management in finding unforeseen deficiencies, designing 

improvements, reducing risk, and increasing the probability of 

meeting objectives" (Kurtz et al., [26]). 

There are three applications of reliability growth models for a 

generic system, as stated by Cahoon et al. [7]. Planned 

improvements to the system's reliability, monitored progress 

towards those goals, and maintaining project momentum are 

all part of this. The testing of systems by the Department of 

Defence (DoD) is another real-world use of reliability growth 

modelling. There are two varieties of reliability growth 

models utilised by the Department of Defence. One kind is 

system-level, which employs nonhomogeneous Poisson 

processes (NHPPs). The other is competitive risk, which 

examines several failure modes in series. The number of 

failures and the time between failures may be monitored with 

the use of NHPP models. All of the competing risk models 

look at the system from the perspective of its individual parts 

working in tandem. So, for the system to function, every part 

has to be operational. 

 

3. General Model Formulation 

 
Our challenge involves an initial network including n nodes 

and a specified set of n(n-1) edges. We examine a sequential 
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decision problem including 𝑚 time periods, where in each 

period 𝑡=1,2,…,𝑚, we can execute restricted investments to 

include possible edges from the collection 

𝐸={{𝑖,𝑗}:𝑖=1,2,…,𝑛−1;𝑗=𝑖+1,2,…,𝑛} into the network and/or 

enhance the dependability of current edges. An edge {𝑖, 𝑗} ∈𝐸 

that has been included into the network and enhanced 𝑧ij 

times is presumed to possess dependability 𝑘i+𝑧ij𝑙𝑖j, where kij 

and 𝑙ij are parameters. 

 

Our objective is to optimise the total discounted reward 

accrued throughout the time intervals 𝑡=0, 1…, 𝑚−1, where 

the reward at time interval 𝑡 is contingent upon the network's 

all-terminal dependability immediately after that interval. A 

predetermined budget 𝐵𝐵𝑡𝑡 is allocated at the commencement 

of each time period 𝑡=0, 1…, 𝑚−1 and may be utilised for 

immediate activities or deferred for future usage. Parameters 

𝑐𝑐𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑖𝑖𝑖𝑖 delineate the expense associated with adding 

an edge {𝑖, 𝑗}∈𝐸 and enhancing an existing edge {𝑖,𝑗}∈𝐸, 

respectively. 

 

The network state s before to any time period is characterised 

by the tuple  

 

𝑠=(𝑡,𝑅,𝛽), 

 

where 𝑡∈ {0, 1,𝑚−1} denotes the number of completed time 

periods, 𝑅 is a |𝐸|-vector indicating the reliability of each edge 

in the network, and 𝛽 represents the remaining budget. Denote 

the components of 𝑅 as 𝑟ij, {𝑖, 𝑗} ∈𝐸, where 𝑟ij=0 if the edge 

{𝑖, 𝑗} has not been included into the network. 

 

In state 𝑠= (𝑡, 𝑅, 𝛽), an action is described as 𝑎= (𝑋, 𝑌) where 

𝑋 and 𝑌 are |𝐸|-dimensional vectors. The vector 𝑋 comprises 

of elements 𝑥𝑖𝑗, where {𝑖, 𝑗} ∈ 𝐸, with 𝑥𝑖𝑗 = 1 if the edge {𝑖, 
𝑗} is included into the network; 0 otherwise. The vector 𝑌𝑌 

comprises elements 𝑦ij, {𝑖,𝑗}∈𝐸, where 𝑦ij=1 indicates that 

the edge {𝑖,𝑗} has been enhanced; 0 otherwise. The operation 

with 𝑥ij=𝑦ij=0 for every {𝑖, 𝑗} ∈𝐸 signifies the decision to 

progress to the subsequent time period without augmenting or 

enhancing any supplementary edges. The viable actions in 

state 𝑠= (𝑡, 𝑅, 𝛽) are delineated by the equations: 

 

 
 

Equation (1) says that we can only do one or zero actions 

during a given time period. Equation (2) says that the actions 

we do must be less than or equal to the amount we have left 

for the period. Keep in mind that any spending that wasn't 

used in time period 𝑏𝑏 can be carried over and used in later 

time periods. For this reason, it might be best to move on to 

the next period even if there are enough resources to do one of 

the other tasks. For action 𝑥ij=1 to be possible, equation (3) 

says that 𝑟ij=0. This means that an edge {𝑖, j} ∈𝐸 can't be 

added if it's already in the network. For action 𝑦ij=1 to be 

possible, equation (4) says that 𝑟ij > 0. This means that an 

edge {𝑖, 𝑗} in the network can only be made better if it was 

already there.  

One of the three actions that are possible is to improve an 

edge (i.e., 𝑦ij=1 for some 19 {𝑖, 𝑗} ∈𝐸), add an edge (i.e., 

𝑥ij=1 for some {𝑖, 𝑗} ∈𝐸), or choose to move on to the next 

time (i.e., 𝑥ij=0 ∀ {𝑖i, 𝑗𝑓). If you do something with 𝑥ij=1 or 

𝑦ij=1 for some {𝑖, j} ∈𝐸, it doesn't mean we'll be in a new 

time period; it just means that the state variables 𝑅 and 𝛽 have 

changed. The fifth equation makes sure that an edge can't be 

given a reliability number higher than 1. 

 

The state transition function is now defined as (𝑡′, R′, 𝛽′) =g 

(𝑠, 𝑎) for an action 𝑎= (𝑋, Y) done in state 𝑠=(𝑡,R,𝛽). The new 

state is set by if 𝑥ij=𝑦ij=0 ∀ {𝑖, j} ∈𝐸 
 

 
 
 
Equation (6) indicates that the time period, 𝑡′, following a 

state transition is one period subsequent to the preceding time 

period, 𝑡. Equation (7) asserts that the network's dependability 

remains constant throughout a state shift. Equation (8) 

indicates that the budget in the new state post-transition is 

determined by the residual budget from the prior state in 

conjunction with the fixed budget allocated for the new 

period. 

 

4. First Model Experiments and Analysis 
 

The RL problem from [6] was used to train our model. It was 

written in Python using the OpenAI stable baselines and 

followed a standard approach. There are a number of reliable 

versions of reinforcement learning methods in the OpenAI 

package. There is a pre-trained RL agent in each application. 

This agent learns from what it sees, does, and is rewarded. 

We used Python version 3.8.15 for our study. We used stable 

OpenMPI baselines to make sure that all methods could work. 

For stable baselines, we had to say how many training 

episodes our models should have. We used 5000 episodes for 

all of them. 

 

A Maskable Proximal Policy Optimisation (M-PPO) method 

[18] was used for our tests. Based on the problem constraints, 

this method narrows down the action space to only actions 

that are possible. This means that for our problem, the only 

things that can be done are to add edges that aren't already in 

the network, make edges that are already in the network 

better, and make sure that all of these actions don't go over 

budget. A mask, which is a vector that keeps track of 

acceptable acts, is also used by the algorithm. This will 

restrict the activities that can be done with the 𝑋𝑋 and 𝑌𝑌 

vectors. 

 

We used an iterative method to build and study our network. 

To start, we made a simple model that only let one choice be 

made at a time. At first, this model only let you do one thing, 

which was to improve the reliability of current network edges 

by sending resources to them. This first model was made to 

make sure that the model and RL code were working right. 

http://www.ijsrem.com/
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Then, we made the model more complicated so that we could 

make more than one choice in each time and take more than 

one type of action (like adding new lines or improving 

existing ones). 

 

The first model was mostly about making one of the network's 

edges better. This model looks at the benefits that are 

randomly given to each edge at the start and figures out the 

next best change to make. These benefits are shown as higher 

dependability that comes from upgrading to the chosen edge. 

With this update, the benefits for this edge will be worth less 

in the future. 

 

5. Results and discussion: 

 
We also analyzed the different reward ratios to see if they had 

an effect on the decisions the model made. During our 

analysis, we found that when the ratio was more favorable for 

immediate rewards, the model chose to improve more links, 

but when the ratio was more favorable for long-term rewards, 

the model chose to add more links. Figure 6 shows the trend 

in regard to the rewards ratio. The model also found many 

times when it could find better answers for networks with 

smaller budgets or shorter time frames. These results might 

have been because of how the model was trained. It's possible 

that the model could have done a better job with the bigger 

networks if it had more training sessions. In the five-node 

network with initial and new link reliabilities of 0.9/0.9, the 

problem instance with five periods, a 1:2 rewards ratio, and a 

3000 per period budget had a final all-terminal reliability of 

1.0. On the other hand, the problem instance with seven 

periods, a 1:2 rewards ratio, and a 3000 per period budget had 

a final all-terminal reliability of 0.9995. 

 

 
 

 
 

The optimal 7-node network has an all-terminal reliability of 

0.9999. The problem instance that led to this dependability 

had initial and new link reliability of 0.9/0.9, seven periods, a 

1:2 rewards ratio, and a per period budget of 7000. The model 

opted to incorporate nine linkages and enhance six. 

 

6. Conclusion 
 

Our research concentrated on constructing 5-, 7-, and 10-node 

networks utilising same prices for connection enhancement 

and addition. To further investigate the model's conclusions 

about the addition or enhancement of linkages, various 

combinations of addition and improvement costs should be 

investigated. Our research concentrated solely on three 

network sizes, which became increasingly computationally 

intensive as the networks expanded; hence, further 

investigation is necessary to develop a model capable of 

making judgements more rapidly. While other sources of 

complexity may have influenced extended run-times, one 

potential enhancement is to substitute the existing 

dependability-polynomial method for assessing network 

reliability with a more scalable option for bigger instances. 

We also made a lot of assumptions about the original link 

reliability, the new link reliability, the amount to improve, the 

cost to add and improve, the benefits, and so on. The results of 

our experiments were restricted by these assumptions, so more 

models with less rigid assumptions should be made in the 

future. 
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