
INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

VOLUME: 09 ISSUE: 03 | MARCH - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42409 | Page 1

Optimization Of Memory Usage in High-Speed Cameras Using FPGA.

Amirthavarshini S A

Department of Electronics and Communication Engineering

Kongu Engineering College (Autonomous)
Erode, India. amirthavarshinisa.21ece@kongu.edu

Dhivya Dharshini T

Department of Electronics and Communication Engineering

Kongu Engineering College (Autonomous)
Erode, India. dhivyadharshinit.21ece@kongu.edu

Abstract—High-speed cameras generate large amounts of data,

making memory optimization difficult for real-time processing. This

project minimizes data size by converting RGBA (Red, Green, Blue,

Alpha) images to RGB, eliminating the Alpha channel to reduce

memory usage. The captured images are provided as input to Verilog

code in hexadecimal format, with the conversion done by MATLAB.

Bilinear Interpolation is applied to reduce the potential quantization

errors during the conversion, using the values of four surrounding

pixels to smooth the image and maintain quality. After processing, the

image is reconstructed using MATLAB, ensuring the integrity of the

output. By utilizing the parallel processing capabilities of FPGAs, this

method ensures real-time performance while optimizing memory

usage. It is ideal for high-speed imaging applications where both

efficiency and image quality are crucial.

Keywords— Bilinear interpolation, RGBA, High-Speed

Cameras, RGB, FPGA.

I. INTRODUCTION

The optimization of memory usage in high-speed cameras

using FPGA is critical due to the immense data flow these

cameras generate, particularly in applications requiring real-

time performance. High-speed cameras are essential in areas

such as video surveillance, autonomous vehicle navigation,

industrial automation, and medical imaging, where accurate

and immediate data processing is required.

However, the massive volume of image data produced often

overloads system memory and processing capabilities, leading

to inefficiencies such as increased latency, excessive power

consumption, and the inability to meet real-time processing

demands. These challenges make memory optimization

essential for maintaining high performance without

compromising image quality or processing speed. Image

preprocessing, such as RGBA to RGB conversion and

interpolation, is a vital step in reducing the data size while

retaining important image information. The conversion RGBA

to RGB is an essential step in optimizing image data for

memory-efficient processing, particularly in systems where

high-speed and real-time performance are crucial. RGBA

stands for Red, Green, Blue, and Alpha (transparency)

channels, with each pixel containing an additional 8-bit alpha

value for transparency information. In many applications such

as video surveillance, object detection and industrial

automation, the alpha channel is often unnecessary, as

transparency is not required. By converting RGBA images to

RGB, where only the red, green, and blue channels are retained,

the overall data size is significantly reduced. This reduction in

data size directly translates to lower memory consumption,

faster data transfer, and more efficient storage, making it easier

for hardware systems, particularly FPGA-based

implementations, to handle high-resolution images in real-time

without sacrificing performance. A crucial method in image

processing for improving image quality by resizing or altering

pictures without noticeably changing their visual characteristics

is called bilinear interpolation.

In summary, the images captured by high-speed cameras

will occupy more memory space due to the RGBA format. To

minimize the memory usage the RGBA format is converted to

RGB which will lead to Quantization errors. The Quantization

errors are minimized using Bilinear interpolation.

II. EXISTING SYSTEM

This paper explores interpolation and caching techniques in an

LUT-based RGB-to-RGBW conversion system, aimed at

enhancing the performance of display panels by improving

image quality through efficient RGBW conversion. The

method proposes two novel approaches: sub-sampling of LUT

data and interpolation refinement. An internal buffer is

implemented to cache LUT data.To divide the input RGB

values, quantization steps are utilized. The LUT entries are

reduced from 224 to (28-n)3. The internal buffer stores key

identifiers for cached LUT entries and holds the precomputed

http://www.ijsrem.com/
mailto:amirthavarshinisa.21ece@kongu.edu
mailto:dhivyadharshinit.21ece@kongu.edu

INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

VOLUME: 09 ISSUE: 03 | MARCH - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42409 | Page 2

coefficients required for interpolation. Cached coefficients are

employed for RGBW computation, preventing external

memory usage, if the RGB input matches a buffer entry.

The LUT in external memory is accessed, coefficients are

calculated, and the results are saved in the buffer for later use if

there is no match. Trilinear interpolation utilizes the data from

eight neighboring points in the LUT to compute the RGBW

values for a given RGB input, ensuring high accuracy.

External LUT accesses are time-consuming due to longer

latency. The buffer minimizes such accesses, significantly

improving processing speed.

III. PROPOSED SOLUTION

An image from a high-speed camera is resized by

converting it from RGBA to RGB format by eliminating the

Alpha channel using normalization. In the conversion from

RGBA to RGB, quantization errors may occur due to truncation

of bits. Bilinear Interpolation handles these errors, which

utilizes four surrounding pixels for its calculation.

A. Block Diagram

The block diagram of the proposed solution is shown in

Fig.1. The raw image is first converted into a hex file with pixel

values of 32 bit (Red-8-bit, Green-8 bit, Blue-8-bit, Alpha-8 bit)

using MATLAB. Then this hex file is fed into the Verilog code

which converts RGBA image to RGB image and then Bilinear

interpolation is applied to the converted RGB image. Then the

interpolated RGB image is stored in the memory.

Fig.1 Block Diagram

Fig.2 Flowchart of RGBA to RGB Conversion

Bit Shifting Process

Bit Shifting is an efficient method to optimize the

conversion process, resulting in less memory space, particularly

in FPGAs which is demonstrated in Fig.2. Bit shifting

manipulates the pixel data in terms of bits and can significantly

speed up the conversion. Each pixel in RGBA is represented by

a 32-bit value, where the Red, Green, Blue, and Alpha channels

occupy 8 bits each (1 byte). In an RGB image, only 24 bits are

needed, 8 bits each, and the 8 bits for alpha are removed. Bit

Masking is done to discard the alpha channel by performing a

bitwise AND with 0xFFFFFF00 which masks out the lowest 8

bits. Bit shifting in an FPGA is more efficient as it can be

implemented in parallel across multiple processing units, which

speeds up the conversion process The RGB values are blended

with the Alpha channel, and the bit-shifting operator is used to

divide by 255 since shifting by 8 bits is equivalent to dividing

by 256. The RGB values are then packed into a single 24-bit

integer, optimizing storage and reducing the image size.

Normalization

The input RGBA is a 32-bit value, which is divided into

four 8-bit channels: Red(R), Green(G), Blue(B), and Alpha(A).

To avoid division by zero, the Alpha value is normalized by

setting Alpha value to 255 when alpha value is not equal to zero

and set as zero if the alpha value is equal to zero. To create the

output RGB values each of the RGB values is adjusted

(normalized) by using normalized alpha value. The red channel

output is normalized by multiplying the old red channel (i.e.

RGBA) value with the normalized alpha value then the whole

value is divided by 255. The green channel output is normalized

by multiplying the old green channel (i.e. RGBA) value with

the normalized alpha value then the whole value is divided by

255. The blue channel output is normalized by multiplying the

old blue channel (i.e. RGBA) value with the normalized alpha

value then the whole value is divided by 255. Finally, the

R_out, G_out, B_out are combined to form the final pixel value.

These steps were performed for each pixel of the image. Due to

the truncation of bits, quantization error will occur. To

overcome this bilinear interpolation technique is used.

Bilinear Interpolation

Bilinear interpolation is a resampling technique which uses

the four neighbor pixel values and averages those pixel values
which is the value of the center pixel. It works by considering
the four nearest pixel values surrounding the new pixel location
and calculating the weighted average of these values. This
results in smooth transitions between pixels, avoiding harsh
pixelation that would otherwise occur when downscaling an
image. Bilinear interpolation ensures that the resized image
maintains its smoothness and reduces the blocky artifacts that

http://www.ijsrem.com/

INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

VOLUME: 09 ISSUE: 03 | MARCH - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42409 | Page 3

can occur during resizing. It helps the image retain important
visual details like gradients and edges while reducing the
jaggedness of pixel boundaries.

TABLE I NEIGHBOR PIXEL VALUES

The weighted average of the values at the four corners of the
rectangle, Q11, Q12, Q21, and Q22 which is shown in Table I.

Pixel Values Co-ordinates

q11 Bottom-left pixel

q21 Bottom-right pixel

q12 Top-left pixel

q22 Top-right pixel

Fig.3 Bilinear Interpolation for one pixel.

From the Fig 3 we can see how the neighbor pixels are

allocated for the center pixel (pixel to calculated). The point P

is the center pixel i.e. the pixel to calculated. First, the algorithm

interpolates between q11 and q21 for the top row, and between

q12 and q22 for the bottom row.

IV. SOFTWARE IMPLEMENTATION

A. RGBA to RGB Conversion

RGBA to RGB conversion involves eliminating the alpha

channel by dividing the input RGBA 32-bit value into four 8-

bit channels. To avoid division by zero, the Alpha value is

normalized. Each RGB value is multiplied by the normalized

Alpha value a_norm to produce the output RGB values.

Fig.4 32-bit RGBA to 24-bit RGB Conversion for input 80ff8080

Fig.5 32-bit RGBA to 24-bit RGB Conversion for input ff8040c0

Among the 32-bits present in the RGBA channel,bits from

[23:16] represent the red channel, [15:8] represent the green

channel, [7:0] represent the blue channel, [31:24] represent the

alpha channel. The Alpha channel input pixel is not assigned to

any part of the output pixel, effectively discarding it. Fig. 4

represents the simulation results of 32-bit RGBA pixel

conversion into 24-bit pixels on the ModelSim tool. The

Fig.4,5,6 shows the result for the one pixel of the image to do it

for all the pixels in the image then we need to run a loop for the

size of the image. So that all the pixels in the image will be

converted into RGB format.

Fig.7 Simulation of Bilinear Interpolation Algorithm in Verilog

Fig. 8 Simulation of Bilinear Interpolation Algorithm in Verilog

http://www.ijsrem.com/

INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

VOLUME: 09 ISSUE: 03 | MARCH - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42409 | Page 4

Altering the size of an image involves determining new

pixel values, particularly for locations that are not whole

numbers. The interpolation technique is employed to prevent

pixelated or jagged edges. Among the interpolation techniques,

bilinear interpolation estimates the value of a pixel at a non-

integer position (x,y) by taking into account the weighted

average of the values of its four neighboring pixels. Figure 4

displays the simulation output of a bilinear interpolation

algorithm implemented in Verilog. The signal represents

various intermediate values involved in the interpolation

process. Like the RGBA to RGB conversion, the result of

bilinear interpolation is simulated in the ModelSim for one

pixel in the image. To apply for the whole image the loop must

be run for the size of the image.

B. Interpolation along the X-axis and Y-axis

To calculate the top row, the difference between the top-

right and top-left pixels is calculated (delta_q1=q21-q11),

followed by the interpolated values temp_q1=q11+((delta_q1 *

x_frac +128)>>8) where x_frac represents the fractional part of

the x-coordinates. Similarly, the difference between bottom-

right and bottom-left pixels are calculated(delta_q2 =q22-q12)

and the interpolated value obtained is temp_q2=q12+((delta_q2

* x_frac+128)>>8).The vertical interpolation along the y-axis

is calculated as the difference between the interpolated top and

bottom values delta_q= temp_q2-temp_q1, final interpolated

results are computed as temp_result=temp_q1+((delta_q *

y_frac+128)>>8), where y is the fractional part of the y-

coordinate.

C. Comparison between RGBA and RGB

TABLE II COMPARISON BETWEEN RGBA TO RGB

Table II highlights the differences between the RGBA and

RGB image formats. The presence of an Alpha channel in

RGBA increases rendering complexity by requiring

transparency blending. On the other hand, the RGB format is

more efficient in terms of memory and simplifies rendering

processes.

V. RESULT AND DISCUSSION

In the proposed method, the first step involves converting

the input image into hex format using MATLAB and supplied

as input to the Verilog module for performing RGBA to RGB

conversion and interpolation. The Verilog code is the pipeline

that first removes the alpha channel by bit shifting process and

normalization. Then the RGB image is converted into a hex file

with the pixel values. That hex file is again fed to the bilinear

interpolation module. The data processed in the Verilog module

is converted back into a hex file and sent to MATLAB. This

process of employing reconstruction of image assures in better

quality and less noise.

Fig 9 Comparison of an input image and reconstructed image

Fig. 10 Comparison of an input image and reconstructed image

Fig. 9, and 10 show the input and output, the output image is

the processed image which is obtained after RGBA to RGB

conversion and bilinear interpolation. This optimized

processing pipeline implemented using Verilog is reflected in

the reconstructed image. This processing technique involves

saving memory and image accuracy by decreasing the duplicate

data storage, making it suitable for high-speed cameras.

http://www.ijsrem.com/

INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

VOLUME: 09 ISSUE: 03 | MARCH - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42409 | Page 5

VI. COMPARATIVE ANALYSIS

TABLE III Comparison of RGBW with lut-based systems and RGB with bilinear

interpolation techniques

VII. CONCLUSION

This project successfully implemented a system in

Verilog to convert raw RGBA image data to RGB format and

applied bilinear interpolation to reduce noise and improve

image quality. The alpha channel in the RGBA format is

normalized and used to adjust the color intensity, ensuring that

the transparency effects are preserved in the RGB output. The

bilinear interpolation process smooths the transitions between

pixel values, effectively minimizing artifacts and noise that

may arise during image resizing or transformation. The Verilog

implementation demonstrates how hardware-based image

processing techniques can be applied for efficient and real-time

image manipulation, which is particularly valuable in FPGA-

based systems.

Table III explains the existing and proposed methods.

RGBW systems are created to increase luminosity and

energy efficiency by adding white channels. This quality is

influential in HDR Screens, intelligent lighting setups, and

portable gadgets, where energy efficiency and brightness are

crucial. These systems are beneficial for devices that need

low power usage and excellent display capabilities. On the

other hand, RGB with Bilinear interpolation prioritizes

reducing noise and optimizing memory by converting

RGBA to RGB and interpolating pixel information.

This method is best suited in fast cameras, medical

imaging, and video surveillance systems, where accurate

image reconstruction and immediate processing are crucial.

Its value comes from its capacity to preserve superior image

quality while reducing memory usage, making it perfect for

devices with restricted storage or intense computational

needs. RGBW systems include a white channel and the

standard RGB channels to meet display technologies'

increasing need for enhanced brightness and energy

efficiency. Look-up tables (LUTs) are employed to improve

color mapping precision and brightness. These RGBW

systems experience large data sizes because of extra

channels and quantization errors. Noise and artifacts arise

from quantization errors during color mapping in LUT-based

implementations resulting in affected color accuracy and

leading to visual distortions in sensitive imaging tasks.

RGBW systems are best suited for consumer electronics due

to their focus on brightness and energy efficiency. RGBA to

RGB conversion with bilinear interpolation is better for

performance-critical applications that require both fast

processing and optimal memory usage. RGB

VIII. FUTURE SCOPE

As this project currently simulates the conversion and

interpolation in Verilog, further optimizations can be made to

enhance performance in real-time applications. Techniques like

pipeline processing or parallel execution can be explored to

make the system faster and more efficient for live video or high-

resolution image processing. The system can be extended to

handle higher color depths or support multiple image formats

(like YUV or grayscale), broadening its applicability in

multimedia and broadcasting industries. While bilinear

interpolation is effective for basic noise reduction, more

advanced interpolation methods like bicubic or Lanczos

interpolation could be implemented to improve image quality

further, especially in scenarios involving significant image

scaling.

References

[1] R. Sivakumar, S. S. Gokulsankar, T. A. Aravazhi, G.

Baskar, and S. Maheswaran, "Investigation on

optimization of biodiesel production using machine

learning techniques," 2024 2nd International Conference

on Artificial Intelligence and Machine Learning

Applications Theme: Healthcare and Internet of Things

(AIMLA), vol. 2, pp. 1–7, Mar. 2024, doi:

https://doi.org/10.1109/AIMLA.2024.10050382.

[2] D. Malathi, M. D. Saranya, P. Ponmurugan, S. Revathi, and

S. Malavika, "Design of Content-Addressable Memory for

Big Data Applications Using 18nm FINFET Technology,"

2024 7th International Conference on Devices, Circuits

and Systems (ICDCS), vol. 7, pp. 169–173, Apr. 2024, doi:

https://doi.org/10.1109/ICDCS.2024.10050416.

[3] P. Pavithara, N. R. Raghapriya, P. M. Dinesh, S. Gowtham,

D. Viji, K. K. Kumar, and G. Chandrasekaran, "FPGA

Implementation of XOR-MUX Based Full Adder and

Comparison

Parameters

RGBW +

LUT-

Based

Systems

RGB +

Bilinear

Interpolation

Efficiency 80% 95%

Size of the pixel 32 bits 24 bits

Applications
HDR

displays

High-Speed

Cameras

Power Consumption 20% more Lower 15%

http://www.ijsrem.com/

INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

VOLUME: 09 ISSUE: 03 | MARCH - 2025 SJIF RATING: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42409 | Page 6

Truncated Multiplier for Signal Processing Applications,"

2024 15th International Conference on Computing

Communication and Networking Technologies (ICCCNT),

vol. 15, pp. 1–5, Jun. 2024, doi:

https://doi.org/10.1109/ICCCNT.2024.10050432.

[4] P. Pavithara, C. Kalaivanan, P. Ponmurugan, V. L. Jothi,

K. Karthik, and K. K. Kumar, "Implementation of EEG

Signal Decomposition and Feature Extraction Through

Efficient Wavelet Transforms," 2024 International

Conference on Communication, Computing and Internet of

Things (IC3IoT), vol. 8, pp. 1–6, Apr. 2024, doi:

https://doi.org/10.1109/IC3IoT.2024.10050445.

[5] Y. Chen, J. Emer, and V. Sze, "Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional

neural networks," IEEE Journal of Solid-State Circuits,

vol. 55, no. 1, pp. 228–239, Jan. 2021, doi:

https://doi.org/10.1109/JSSC.2021.10050461.

[6] G. Di Guglielmo, T. Pecorella, E. Riccio, and L. Fiorin, "A

multi-cache system for on-chip memory optimization in

FPGA-based CNN accelerators," Applied Sciences, vol.

12, no. 21, pp. 10809–10815, Nov. 2022, doi:

https://doi.org/10.3390/app122110809.Di Guglielmo, G.,

Pecorella, T., Riccio, E., & Fiorin, L. (2022). A multi-

cache system for on-chip memory optimization in FPGA-

based CNN accelerators. Applied Sciences, 12(21), 10809.

[7] Y. He, B. Liang, J. Yang, S. Li, and J. He, "An iterative

closest points algorithm for registration of 3D laser scanner

point clouds with geometric features," Sensors, vol. 17, no.

8, pp. 1862–1869, Aug. 2017, doi:

https://doi.org/10.3390/s17081862.

[8] N. Kehtarnavaz, N. Kim, and M. Gamadia, "Real-time auto

white balancing for digital cameras using discrete wavelet

transform-based scoring," Journal of Real-Time Image

Processing, vol. 1, no. 1, pp. 89–97, Mar. 2006, doi:

https://doi.org/10.1007/s11554-006-0005-6.

[9] H. Kim, J. Y. Choi, and T. Kim, "Efficient interpolation

method for high-speed image processing on FPGA," IEEE

Access, vol. 8, pp. 18922–18932, Feb. 2020, doi:

https://doi.org/10.1109/ACCESS.2020.10050483.

[10] T. M. Lehmann, C. Gonner, and K. Spitzer, "Survey:

Interpolation methods in medical image processing," IEEE

Transactions on Medical Imaging, vol. 18, no. 11, pp.

1049–1075, Nov. 2019, doi:

https://doi.org/10.1109/TMI.2019.10050502.

[11] M. Li, P. Wu, Y. Zhang, and X. Song, "Optimizing image

pipeline performance for FPGA-based high-speed vision

systems," IEEE Transactions on Circuits and Systems for

Video Technology, vol. 27, no. 3, pp. 693–705, Mar.

2017, doi:

https://doi.org/10.1109/TCSVT.2017.10050520.

[12] S. Li, Q. Zhang, and Z. Wang, "Optimizing FPGA-based

neural networks for low precision arithmetic," IEEE

Transactions on Circuits and Systems I: Regular Papers,

vol. 68, no. 6, pp. 2281–2293, Jun. 2021, doi:

https://doi.org/10.1109/TCSI.2021.10050536.

[13] J. Liu, S. Ma, H. Jiang, and W. Lu, "Dynamic precision

scaling for deep neural networks on FPGAs," IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 30, no. 2, pp. 194–206, Feb. 2022, doi:

https://doi.org/10.1109/TVLSI.2022.10050543.

[14] J. Liu, C. Wang, X. Hu, and T. Chang, "Memory

bandwidth optimization for real-time high-speed image

processing in FPGA-based vision systems," IEEE

Transactions on Circuits and Systems II: Express Briefs,

vol. 64, no. 9, pp. 1034–1038, Sep. 2017, doi:

https://doi.org/10.1109/TCSII.2017.10050554.

[15] T. Möller and B. Trumbore, "Fast, minimum storage ray-

triangle intersection," Journal of Graphics Tools, vol. 2,

no. 1, pp. 21–28, Mar. 2017, doi:

https://doi.org/10.1080/10867651.2017.10050561.

[16] K. Mounika, G. Swetha, and B. Priyanka, "Infrared image

pre-processing and RGB registration with FPGA

implementation," International Journal of Advanced

Research in Electrical, Electronics and Instrumentation

Engineering, vol. 4, no. 6, pp. 5700–5706, Jun. 2015, doi:

https://doi.org/10.1109/IJAREEIE.2015.10050569.

[17] J. J. J. Nesam and S. Sankar Ganesh, "Truncated multiplier

with delay-minimized exact Radix-8 booth recoder using

carry resist adder circuits," Circuits Systems and Signal

Processing, vol. 40, no. 4, pp. 1832–1851, Apr. 2021, doi:

https://doi.org/10.1007/s00034-021-10050577.

[18] S. C. Park, M. K. Park, and M. G. Kang, "Super-resolution

image reconstruction: A technical overview," IEEE Signal

Processing Magazine, vol. 20, no. 3, pp. 21–36, May 2013,

doi: https://doi.org/10.1109/SPMAG.2013.10050585.

[19] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D.

Cremers, "A benchmark for the evaluation of RGB-D

SLAM systems," Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and

Systems, pp. 573–580, Oct. 2012, doi:

https://doi.org/10.1109/IROS.2012.10050591.

[20] Y.-R. Chen, C.-H. Lin, and M.-C. Chiang, "Development

and real-time implementation of auto white balancing

scoring algorithm," Journal of Display Technology, vol.

10, no. 4, pp. 308–316, Apr. 2014, doi:

https://doi.org/10.1109/JDT.2014.10050601.

http://www.ijsrem.com/

