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Abstract - Deep learning frameworks utilizing neural networks 

have emerged as powerful tools for various recognition tasks across 

contemporary digital platforms. Despite their effectiveness, the high 

computational demands of these networks call for energy-efficient 

solutions. It's been noted that not all inputs necessitate the full 

processing power of the network; many can be accurately recognized 

with minimal computation. This paper introduces a concept called 

Adaptive Deep Learning (ADL), which leverages the features of 

convolutional layers to gauge the complexity of input data and 

selectively engage subsequent network layers. This is accomplished 

by integrating a sequential linear neuron network at each 

convolutional stage, using its output to determine if the classification 

process can conclude at that juncture. This approach allows the 

network to tailor its computational load to the input's complexity, 

without compromising on accuracy. 

 

For datasets such as MNIST, CIFAR10, and Tiny ImageNet, the 

energy savings realized by employing cutting-edge deep learning 

structures are significant, with reductions of 1.84x, 2.83x, and 4.02x, 

respectively. Additionally, this conditional technique is applied to the 

foundational training of deep learning networks, incorporating direct 

feedback from extra output neurons positioned at the mid-level 

convolutional layers. The integrated ADL training method proposed 

here enhances the rate of gradient convergence, leading to a marked 

decrease in error rates for MNIST and CIFAR-10 and yielding 

superior classification performance compared to conventional 

baseline networks. 
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1.INTRODUCTION  
 

Traditional deep learning models typically process each input through 

the entire depth of the network to reach a classification decision. Yet, 

the complexity of inputs in real-world datasets varies significantly. 

For instance, distinguishing a person against a solid-colored 

background is far simpler than identifying them within a crowded 

scene. To enhance both speed and energy conservation, the 

computational resources expended by algorithms should align with 

the input complexity, as suggested by Venkataramani and colleagues 

in 2015. This study introduces a novel approach termed Adaptive 

Layer Engagement (ALE) for deep learning networks (DLNs), which 

employs a tiered system to selectively activate deeper layers based on 

the input's complexity, thereby achieving quicker and more energy-

efficient processing. 

 

This paper also highlights an interesting characteristic of 

convolutional neural networks (CNNs) within DLNs, which serve as 

visual processing layers. These CNNs develop a feature hierarchy that 

evolves from basic patterns (akin to Gabor filters and color blobs as 

noted by Zeiler et al. in 2010) to more intricate ones with increasing 

network depth (Yosinski et al., 2014). DLN models, especially those 

trained for classification tasks, have been repurposed as feature 

extractors by omitting the final output layer (Razavian et al., 2014; 

Szegedy et al., 2015; He et al., 2015b). Notably, features derived from 

a pre-trained DLN, such as OverFeat (Sermanet et al., 2013), have 

proven effective in computer vision applications like scene 

recognition and object detection. In this context, the paper leverages 

the broad-to-detailed feature progression in CNN layers to discern the 

varying difficulty levels of dataset inputs. The initial CNN layers' 

outputs are utilized to classify simpler instances without engaging the 

full network. Conversely, only the more challenging cases, which 

typically represent a minor portion of the dataset, activate the deeper 

layers for a more precise classification outcome. 

 

Deep Learning Networks (DLNs), akin to other methods of 

supervised learning, operate in two distinct modes: training and 

evaluation. During the training stage, the model learns to demarcate 

decision boundaries using the provided labels. In the evaluation 

stage, this trained model is then applied to classify unseen data. The 

core principle of Adaptive Computational Engagement (ACE) is to 

construct a sequence of decision-making models at each 

convolutional layer during training, diverging from the conventional 

singular complex model approach. When testing, the complexity of 

the input dictates the number of models or layers engaged for precise 

classification. 

 

 
 

Fig. 1. (a) Traditional approach where both layers are activated and 

all inputs are classified with a nonlinear 

boundary. (b) Proposed approach where easy instances are classified 

at hidden layer 1 with linear 

boundary and hard instances at layer 2 with a non-linear boundary 

[Venkataramani et al. 2015]. 

 

 

To illustrate, consider a two-layer neural network classifier. The 

conventional method, depicted in Figure 1(a), processes all inputs 

through the complex model X, which may necessitate multiple 

hidden layers for non-linear boundaries, thus increasing 

computational load. This model activates both hidden layers for 

high-accuracy classification, leading to unnecessary computation for 

simpler inputs. Our proposed ACE methodology, shown in Figure 
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1(b), introduces two decision models, Y and X. Model Y, activated 

by the first layer alone, classifies straightforward inputs by forming a 

hyperplane around the non-linear boundary. If the confidence of the 

output from the first layer falls below a certain threshold δ, the more 

intricate model X is engaged, activating the second hidden layer for 

complex inputs. This strategy significantly conserves energy, as not 

all instances require the elaborate non-linear model X. Furthermore, 

our experiments reveal that ACE not only conserves computational 

resources but also enhances accuracy compared to the baseline DLN. 

It's important to note that ACE refines a pre-existing baseline model 

by adding output layers, thereby reducing computational demands 

during testing. 

 

Motivated by the promising results in accuracy enhancement, our 

research ventured into a novel territory with Integrated Training 

using Conditional Deep Learning (CDL), as detailed in Section 6. 

This exploration involved harnessing the additional output layers for 

training a Deep Learning Network (DLN) from the ground up. DLNs 

have historically encountered obstacles during training, notably the 

issue of diminishing gradients, as identified by Glorot and Bengio in 

2010. CDL capitalizes on the strengths of Convolutional Neural 

Network (CNN) features and these extra output layers to streamline 

the DLN's testing phase. In contrast, Integrated CDL (ICDL) training 

utilizes the guidance provided by these layers to enhance DLN 

accuracy and alleviate training challenges. 

 

The field has seen various innovative training strategies, such as data 

augmentation, dropout, maxout, and layerwise pre-training, which 

have significantly boosted DLN performance on complex tasks. 

Building upon the work of Szegedy et al. in 2015, who incorporated 

two additional output layers in a 22-layer DLN (GoogleLeNet) for 

better regularization and gradient propagation, we introduce 

Integrated CDL training. This method, an evolution of our prior 

research, aims to refine DLN learning processes further. Our 

experiments indicate that Integrated CDL markedly betters gradient 

convergence and minimizes error rates. 

 

 
 

Fig. 2. A standard architecture of a Deep-Learning Convolutional 

Network. 

 

Although our training approach is inspired by Szegedy et al., it is 

distinct in its focus, design, and evaluation techniques. The concept 

of adding extra output layers was initially proposed in our earlier 

work. However, that preliminary study on CDL was limited to the 

MNIST dataset for digit recognition. In the current research, we 

expand CDL's application to a broader range of datasets and more 

complex state-of-the-art DLNs, confirming our methodology's 

efficacy in addressing intricate recognition challenges. We examine 

the CDL architecture across renowned networks like LeNet, 

AlexNet, and ResNet, and datasets such as MNIST, CIFAR10, and 

Tiny ImageNet, utilizing the Torch platform. Our findings 

demonstrate that our proposed approach not only enhances accuracy 

but also significantly curtails runtime and computational expenses 

during testing. Furthermore, we introduce an optimized training 

regimen based on CDL's observed accuracy gains. This regimen, 

known as Integrated CDL training, boosts DLN accuracy through 

additional oversight from the intermediate output layers during the 

training phase. By backpropagating error gradients from these layers, 

alongside the final output layer, we achieve a more favorable 

gradient convergence pattern. 

 

The remainder of the article is structured as follows: Sections 2 and 3 

outline the foundational design of a CDL network with an emphasis 

on energy efficiency. Section 4 details the experimental framework 

for assessing the CDL network. Section 5 discusses the observed 

energy savings and corresponding accuracy improvements with 

CDL. Finally, Section 6 delves into the Integrated CDL training 

methodology, with a primary focus on enhancing accuracy. 

 

2. Conditional deep learning classification 

 
In this discourse, we delineate the systematic methodology employed 

to construct the envisioned Conditional Deep Learning Network 

(CDLN). As previously established, Convolutional Neural Networks 

(CNNs) are the cornerstone of a deep learning network (DLN), 

which typically comprises multiple convolution and max pooling 

layer pairs, as described by LeCun and colleagues in 1998. A basic 

DLN architecture, illustrated in Figure 2, consists of convolutional 

layers (C1, C2) succeeded by pooling layers (P1, P2). The 

convolutional layer applies a set of weight kernels across the 

preceding layer to generate a series of output maps. These kernels are 

systematically applied over the entire input field. Subsequently, a 

max-pooling layer reduces the dimensionality of the convolution 

layer's activations by selecting the highest activation within a 

segment of the prior layer's map, thereby instilling translational 

invariance to minor pixel shifts in input images. The deeper layers, 

equipped with an increased number of kernels, process the more 

intricate elements of the image on reduced-dimensional inputs. The 

terminal fully connected layers amalgamate inputs from all preceding 

maps to execute the comprehensive classification of the input data. 

This layered hierarchy has proven effective for image recognition 

tasks, as noted by LeCun et al. in 2004.  

 

Building on the premise that CNN layers in DLN models, when 

trained for classification, can serve as feature extractors upon 

removal of the output layer, we harness the power of convolutional 

layer features to forge an architecture where simpler instances are 

classified at earlier stages, thus bypassing the activation of 

subsequent DLN layers. This approach not only streamlines the 

classification process but also optimizes computational efficiency by 

reducing unnecessary processing for less complex inputs. 

 

 
 

Fig. 3. (a) Baseline deep-learning network. (b) CDLN with linear 

classifiers added at the convolutional layers whose output is 

monitored to decide if classification can be terminated at current 

stage or not. 

 

Figure 3 presents a visual representation of the Conditional Deep 

Learning Network (CDLN) concept. In Figure 3(a), the foundational 

deep learning network is depicted, comprising three convolutional 

layers (C1, C2, C3), which are trained using the conventional 
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backpropagation technique. To simplify the illustration, pooling 

layers and filters are omitted. 

 

Figure 3(b) demonstrates the proposed cascaded structure. Here, the 

outputs from each convolutional layer are directed to a linear 

classifier. These classifiers have an equivalent number of output 

neurons as the final output layer in the baseline DLN (as shown in 

Figure 3(a)). Consequently, the proposed CDLN is composed of 

multiple stages, each corresponding to a CNN layer, and linked 

sequentially. Each stage includes a linear classifier that is trained 

using the features from its respective convolutional layer. The 

activation of subsequent stages in the CDLN is contingent upon the 

results from the linear classifiers at each stage. 

 

As the network delves deeper, the decision boundary models at each 

CDLN stage become increasingly complex and non-linear. 

Therefore, simpler inputs are classified at the initial stage, while 

more complex inputs are processed in the later stages for accurate 

classification. This tiered approach allows for efficient computation 

by adapting the level of processing to the complexity of the input, 

thereby optimizing both speed and energy usage. 

 

In simpler terms, think of the process as a series of checkpoints, each 

with a guard (the activation module) who checks your ID (the input 

instance). If your ID isn't clear enough or matches too many people 

(low confidence in class labels), the guard sends you to the next 

checkpoint for further verification. But if your ID is clear and 

matches only you (high confidence in one label), you're given the all-

clear, and you don't need to go any further. This system ensures that 

only the instances with clear, strong identification are quickly 

processed, while the more complex cases get extra scrutiny. 

 

To put it in a more relatable way, imagine you're improving a recipe. 

The original recipe (the baseline DLN) is good, but you've found a 

way to make it even better by adding a special ingredient (the linear 

networks). This ingredient is easy to prepare and mixes well because 

it's based on the flavors already present in the dish. By incorporating 

this new ingredient, you end up with a dish (the CDL network) that 

not only tastes better (higher classification accuracy) but also cooks 

faster (energy efficiency). Even if the original recipe wasn't perfect, 

this special ingredient helps to enhance the overall flavor, making 

your dish stand out in a cooking competition (competitive 

classification accuracy). 

 

2.1. Efficiency and Accuracy Optimization (Adding Linear 

Classifiers at the Convolutional Layers.) 

First, we examine whether it is desirable to add a linear classifier for 

every convolutional layer of the DLN. Please note that we need to 

take into account the additional cost of adding an output layer of 

neurons for each convolutional layer while calculating energy costs 

[Venkataramani et al. 2015]. Let the computational cost of the 

CDLN at a particular stage (including the additional cost of linear 

network at that stage) i be γi per instance. Let the fraction of 

instances that reach stage i be Ii. Similarly, the fraction of instances 

that reach stage i   1 is Ii  1. Thus, the stage i classifies only a smaller 

subset (Ii    Ii  1) of the inputs. Stage i should satisfy Equation (1) 

shown below in order to improve the overall efficiency of the 

framework, 

(γi+1 − γi).(Ii − Ii+1) > γi.Ii+1. 

3. Benefits with CDL 

In this section, we present the experimental results that establish the 

potential of CDL. We use MNIST (with LeNet as baseline DLN) as 

our primary benchmark to evaluate the benefits with CDL with 

respect to energy and accuracy. 

3.1. Energy Improvement 

Imagine you're looking at a report card that shows how much 

students (different digits) have improved in their studies (efficiency) 

compared to last year (standard DLN models). In this report, 

represented by Figure 6, we're focusing on a particular group of 

students (20 classes from Tiny ImageNet using AlexNet-8) for ease 

of understanding. 

The report measures improvement by counting how many questions 

(operations or computations) each student can solve per test (per 

input). It turns out that one student, representing the number 1, has 

shown the most improvement, with scores ranging from **1.50 to 

2.32 times better** than last year, averaging at **1.91 times** 

better. This suggests that the number 1 is a quick learner, easily 

grasping concepts (easier instances) that don't require much 

explanation (early layers of classification). 

 

On the other hand, the student representing the number 5 didn't show 

as much improvement and needed more help (activation of deeper 

layers) to understand the lessons (accurate classification). This is 

because the lessons for number 5 were more complex (closer to the 

non-linear decision boundary). 

Overall, the new teaching method (AlexNet_CDL) used for the 

CIFAR dataset shows that, on average, students are doing **2.85 

times better** than with the old method (AlexNet-8). This means the 

new method is not only helping students learn faster but also 

understand the material better, leading to a significant boost in their 

performance. 

 

Fig: 3(a) and 3(b) 
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Table I. Performance Results for Different CDLN Structures 

 

Table II. Accuracy of CDLN Compared to Baseline 

3.2. Improvement in Accuracy 

Let's imagine we're in a classroom where the teacher has found a new 
way to help students (CDL structures) score better on their tests 

(accuracy) compared to the old teaching method (baseline DLN 
architecture). The teacher's report (Table II) shows that every student 

who tried the new method did better than before. 

The new method is special because it uses a series of smaller quizzes 

(linear classifiers) throughout the course, instead of just one big final 
exam (fully connected output layer). These quizzes are based on 

what the students have already learned (features from the 
convolutional layers), and they're easier to study for because they're 
smaller and more focused. This means students can get really good at 

these quizzes quickly, leading to better overall scores. 

To prove this approach works, the teacher did an experiment with the 
class (LeNet-5 for MNIST). They introduced these quizzes one by 
one, and with each new quiz, the students' scores kept getting better. 

When they added just one quiz, the average score went up a little 
(from **97.55% to 97.65%**), but when they added three quizzes, 

the improvement was much bigger (up to **98.92%**). This showed 
that the more quizzes they took, the fewer mistakes they made, which 
confirmed that the new teaching method really does help students 

learn better. 

 

 

4. Cost & Accuracy Analysis 

 

 

 

 

 

 

 

 

 

 
 

Let's think of this scenario as a game where players (input instances) 

go through a series of levels (output layers) in a video game (the 

DLN trained with ICDL for MNIST). Each level has a certain 

number of obstacles (operations or computations) they must 

overcome. The goal is to complete the game with as few obstacles as 

possible, which means the player is very efficient. 

 

In Figure 4(a), we see a scorecard that shows how players are doing. 

As they pass through the first two levels (O1-O2-FC), they overcome 

fewer obstacles, showing a **3.14 times reduction** in the number 

of obstacles. This is the "break-even point," where the game is most 

efficient. But after this point, even though there are more obstacles, 

the players make fewer mistakes (lower error rate), which is good 

because it means they're getting better at the game. 

 

One interesting point is when we only look at the first level (O1-FC), 

the players make very few mistakes—only **0.49%**. This is a 

**7.5% improvement** compared to players who didn't use this new 

method. It's like they've found a shortcut that makes the game easier 

to play. 

 

Now, imagine we have two versions of the game. One is the original 

(standard CDL), and the other is a new and improved version 

(ICDL). In Figure 4(b), we compare how often players make 

mistakes in each version. It's clear that the new version helps players 

make fewer mistakes at every level. Before, in the original game, 

players would often get stuck early on (misclassified at earlier 

stages), but with the new version, they're getting past those tricky 

parts right from the start. This means the new game not only makes 

players more efficient but also better at each step of the way, proving 

that the new method (ICDL) really enhances the game's training 

program, making it more effective overall. 

 

5. Improved Gradient Convergence with ICDL 

The essence of the integrated training approach is to boost the 

accuracy of classifications. To achieve the lowest error rates, it's 

necessary to include additional output stages at every layer of the 

Deep Learning Network (DLN) during testing. This comprehensive 

setup, detailed in Figure 12(b) and Table III, goes beyond the break-

even point, meaning that while it increases the number of operations 

per second (#OPS), it doesn't outweigh the cost of the extra layers. 
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However, despite the increase in #OPS, this full configuration is 

crucial for achieving the highest possible accuracy during tests. 

When compared to other advanced DLN methods, the integrated 

Conditional Deep Learning (CDL) training shows a notable decrease 

in error rates, dropping to **0.44%** from **0.53%** for MNIST 

and to **10.76%** from **11.68%** for CIFAR10. This 

improvement is significant when compared to the standard DLN 

architectures. 

 

The integrated training not only enhances accuracy by about **1.4–

1.5%** for both datasets but also refines the gradient convergence 

within the DLN. This is a stark contrast to the previous method 

where a CDL is constructed atop an already trained DLN. The result 

is a substantial leap in performance with the integrated CDL 

approach, demonstrating its effectiveness over prior techniques. 

Essentially, this method fine-tunes the learning process, making 

intermediate layers more robust and capable of discriminating 

features, which leads to a more accurate and efficient classification 

system. 

 

 

6. Comclusion 

In the realm of computer vision, deep-learning convolutional 

networks are essential but require a lot of computational power. This 

study introduces a new method to make these networks more 

efficient by using features from the convolutional layers to tell apart 

simple from complex input data. The idea is called Conditional Deep 

Learning (CDL), where easy cases are sorted out early on, so the 

network doesn't have to work as hard. This is done by adding a linear 

network to each convolutional layer and checking its output to see if 

we can stop the classification process there. The system adapts the 

number of layers it uses based on how tough the input is, creating a 

CDL that's as efficient as possible. 

 

To test out CDL, it was applied to top-notch deep-learning structures 

for datasets like MNIST, CIFAR10, and Tiny ImageNet. The 

experiments showed that not only does CDL save energy, but it also 

makes the networks more accurate compared to the standard models. 

Taking inspiration from these findings, Integrated CDL training was 

developed. This method builds a CDL from the ground up by using 

the mistakes made by the extra linear classifiers during training to 

improve the network. The end result? The networks trained this way 

on MNIST and CIFAR10 datasets were significantly more accurate. 

Essentially, this approach fine-tunes the network's learning process, 

leading to smarter and more resourceful deep-learning systems. 
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