
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Optimizing Scalability And Performance: Embracing The Dynamic Mern

Stack For Enhanced User Experience

Mr. Gaurav Omprakash Prajapati

Computer Engineering

Trinity College Of Engineering

and Research ,Pune

(SPPU)

Maharastra,India

Mr. Rohit Shahaji Thite

Computer Engineering

Trinity College Of Engineering

and Research, Pune

(SPPU)

Maharastra,India

Mr. Omkar Ganesh Mahangare

Computer Engineering

Trinity College Of Engineering

and Research ,Pune

(SPPU)

Maharastra,India

Prof. Manisha Patil

Computer Engineering

Trinity College Of Engineering

and Research, Pune

(SPPU)

Maharastra,India

Mr. Ahemad Rafik Shaikh

Computer Engineering

Trinity College Of Engineering

and Research , Pune

(SPPU)

Maharastra,India

Dr. Geetika Narang

Computer Engineering

Trinity College Of Engineering

and Research , Pune

(SPPU)

Maharastra,India

Abstract—The existing PHP-based application suffers from

significant scalability and performance issues, limiting its ability

to handle increasing user demand and leading to slow response

times. This situation necessitates a migration to a more efficient

architecture that can provide enhanced performance and

seamless scalability, ensuring a better user experience and

support for future growth PHP applications often face

challenges when trying to scale efficiently, especially in handling

multiple concurrent requests under heavy load. This can lead to

slow performance and bottlenecks. In contrast, the MERN

stack, particularly with Node.js, is designed to handle a large

number of simultaneous connections thanks to its non-blocking,

event-driven architecture, making it inherently more scalable

for modern web applications.

1. INTRODUCTION

 The growing demand for scalable and maintainable web

ap- plications has led to a shift from monolithic, server-

rendered architectures to modern, decoupled single-page

applications (SPAs). This paper outlines the migration of a

legacy PHP- based system to a full-stack MERN architecture,

utilizing Re- act and Redux on the frontend for dynamic UI

rendering and centralized state management. On the backend,

Node.js and Express.js handle RESTful API development,

authentication, and server-side logic. The new architecture

improves performance, maintainability, and scalability, while

enabling secure role-based access control. Server-side

routing, middleware integration, and modular code

organization further enhance the system’s robustness and

extensibility.

2. OBJECTIVES

• Replace the legacy PHP frontend with a scalable React-

based UI.

• Implement role-based access for Admin and SuperAdmin

users.

• Develop a responsive frontend using React with

component-based design.

• Centralize state management using redux for authentication

and permissions.

• Deliver a responsive and secure interface tailored to user

roles.

• Enhance routing and component rendering using React

Router.

• Design and develop RESTful APIs using Node.js and

Express.js.

• Ensure modularity and maintainability through

structured backend routing and middleware.

• Improve overall system performance, scalability, and

user experience.

• Enable seamless communication between frontend and

backend through decoupled architecture.

3. PROPOSED METHODOLOGY

 A modular development approach was adopted:

• Component Organization: React components

structured by role (Admin, SuperAdmin).

• Redux: Used for global state management of

authentication, roles, and permissions.

• React Router: Implemented protected routes and

redirects based on user role.

• JWT Authentication: Tokens stored in Redux for se-

cure API access.

• Modular Backend Structure: Backend built with

Express.js using MVC architecture, separating routes,

controllers, and services for maintainability.

• API Design: RESTful APIs developed to handle

authentication, user management, and role-based data

access with consistent response formats.

• Error Handling: Standardized error responses and

validation messages across all API endpoints to im-

prove debugging and UX.

• Secure Password Storage: Passwords encrypted

using bcrypt before storing in the database to ensure

data security.

• Testing & Validation: Manual testing conducted to

validate routes, permissions, and component rendering

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

under different roles.

4. PROPOSED SYSTEM

The proposed system is a fully decoupled, role-based

web application built using the MERN stack. Below is an

overview of its key components and functionalities:

Fig: System Architecture

1. System Architecture:

• Frontend: Built with React, providing a

dynamic and responsive UI.

• Backend: Powered by Node.js and Express.js,

handling API requests and business logic.

• Database: MongoDB stores user data, roles,

and application content.

2. User Roles and Access.

• Admin: Has access to core administrative features.

• SuperAdmin: Has full system access including

user and role management.

• Role-based routes and UI elements are

conditionally rendered.

3. Authentication and Authorization:

• JWT-based login system.

• Tokens stored securely (e.g., in HTTP-only

cookies or local Storage or Authorization

Headers).

• Middleware used for token verification and

route protection.

4. State Management with Redux:

• Global state stores authentication status, user

info, and permissions.

• Reduces prop drilling and improves scalability of

frontend logic.

5. RESTful API Communication:

• Well-structured A P I e n d p o i n t s

(e.g./api/login/api/users/api/roles).

• Frontend communicates using Axios/Fetch with

proper error handling.

6. Security Enhancements:

• Use of HTTP and secure headers.

• Input validation and sanitization.

• Proper error handling and logging.

7. Scalability and Maintainability:

• Modular code structure (separate folders for

models, controllers, routes).

• Reusable React components and Redux logic.

• Easily extendable for future features (e.g.,

notification, analytics).

Implementation Highlights.

• Redux Store: Auth slice manages login state and

role, while separate slices manage user data.

• Role-Based Routing: Private routes ensure only

al- lowed users access specific views.

• Conditional Rendering: Layout, menus, and

dash- boards render based on role using Redux

flags.

• User Schema with Roles: MongoDB schema

includes role attributes for users, supporting

flexible RBAC implementation.

• Error Handling & Response Standardization:

Consistent API responses with appropriate

HTTP status codes for unauthorized or forbidden

actions.

• Secure Password Handling: Passwords are

hashed using bcrypt, and sensitive operations are

protected against injection attacks

5. RESULT

The new system successfully supports distinct interfaces

and access levels for Admin and SuperAdmin roles. The

migration to the MERN stack improves system performance

and maintainability. Role-based access control works

efficiently with JWT and middleware. Redux manages state

seamlessly across components, while conditional rendering

and protected routes ensure a tailored user experience. The

system is secure, scalable, and flexible on both the frontend

and backend.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

 PHP Response Time

 MERN Response Time

 Table: Performance comparison between PHP Vs MERN

Measurable Improvements.

• User Experience: Faster load times and responsive design.

Reduced reloads and smoother navigation using React

Router.

• Security: Role-based route protection and session

persistence. Passwords securely hashed with bcrypt and

never stored in plain text.

• Maintainability: Code structured by roles for clarity and

future scalability. Clean folder hierarchy for models,

controllers, and utilities in backend.

• Scalability: Easily extendable to new roles and modules.

MongoDB’s flexible schema supports future data expansion.

• Performance: API response times improved through

optimized route handling and lightweight payloads. Backend

supports concurrent requests via Node’s non-blocking event

loop.

• Developer Efficiency: Reusable React components reduce

development time for new features

Metric PHP MERN Stack

Average Response

Time

200 ms to 500 ms 100 ms to 200 ms

Concurrent

Requests

Typically, 50-100 1,000+ (with

event-driven

architecture

Memory Usage

(for large apps

256 MB to 512

MB

150 MB to 300

MB

Throughput

(requests/sec

100-200 1,000-10,000

Scalability Vertical scaling

preferred324

Horizontal scaling

preferred

Real-Time

Capability

Requires

additional

libraries

 Built-in support

via WebSockets

Database Query

Performance

Latency: 50-100

ms

Latency: 10-50 ms

Development

Speed

30-50% slower for

large apps

20-30% faster due

to unified stack

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 04 | April - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

6. CONCLUSION & FUTURE SCOPE

Migrating to a MERN stack with Redux-enabled role

management has streamlined the frontend architecture. The

system now offers a secure, scalable, and user-specific

experiences The decoupled architecture enhances

performance and simplifies both frontend and backend

development through modular and maintainable code

structures. In addition to improving load times and reducing

server dependency, the integration of JWT-based

authentication and Express middleware provides robust

protection for sensitive routes and user actions. Redux has

proven effective in managing complex application state,

reducing redundancy, and enabling predictable data flow

across components. The backend, structured with Node.js

and Express.js, has enabled clean API routing and scalable

endpoint design. MongoDB’s flexible schema supports

dynamic role definitions and future extensions. The entire

system is now more adaptable to feature updates, new user

types, and integration with third-party services.

Future Enhancements.

• Add a role editor for SuperAdmins to manage permissions.

• Implement frontend activity logs to track user operations.

• Migrate to Next.js for SSR and SEO benefits.

• Add a real-time notification system using WebSockets.

• Integrate testing frameworks like Jest and Cypress for

frontend validation.

7. REFERENCES

[1] S. A. Bafna, P. Dutonde, S. Mamidwar, M. S. Korvate,

and D. Shirbhare, Study and Usage of MERN Stack for Web

Development, Year.

[2] V. Goyal, A. Jain, and V. K. Gupta, Data Migration its

Issues.

[3] M. B. Jadhav and R. R. Badre, GUI for Data Migration

and Query Conversion.

 [4] Y. Kadam, A. Goplani, S. Mattoo, S. K. Gupta, D.

Amrutkar, and J. Dhanke, Introduction to MERN Stack

Comparison with Previous Technologies.

 [5] V. Goyal, A. K. Mishra, and D. Singh, Implementation

and Comparison of MERN Stack Technology with

HTML/CSS, SQL, PHP MEAN in Web Development.

[6] A. Singh, Data Migration from Relational Database to

MongoDB.

[7] S. S. Sarmah, Data Migration

http://www.ijsrem.com/

