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ABSTRACT  
 

The Bellman-Ford algorithm's temporal complexity of O(VE) renders 

it ineffective for big and dense networks, which is a serious 

computational disadvantage. The need for effective algorithms that can 

handle large-scale graph structures has increased due to the modern 

digital landscape's rapid data expansion. The Single Source Shortest 

Path (SSSP) problem, which entails determining the shortest pathways 

from a single source vertex to every other vertex in a graph, is one of 

the most basic and extensively researched topics in graph theory. 

Numerous real-world applications, including biological network 

modelling, social media analysis, telecommunications routing, and 

navigation systems, are based on this issue. The Bellman-Ford 

algorithm stands out among the other algorithms created to address the 

SSSP problem because it can handle networks with negative weight 

edges and detect negative weight cycles, two features that more 

effective algorithms like Dijkstra's do not allow.  

  

Our project investigates using Graphics Processing Units (GPUs) to 

parallelise the Bellman-Ford algorithm in order to get around this 

restriction. With thousands of cores, GPUs are made for extremely 

parallel calculations and provide significant speedups over 

conventional CPU-based processing for jobs that can be divided into 

discrete, independent work units. We developed a GPUaccelerated 

version of the Bellman-Ford algorithm by utilising NVIDIA's parallel 

computing platform, CUDA (Compute Unified Device Architecture).  

  

Keywords  
Computer Unified Device Architecture (CUDA), Graphics Processing 

Units (GPUs), and the Single Source Shortest Path (SSSP) problem.  

  

1. INTRODUCTION 

  
Effectively resolving graph-based problems has become essential in 

today's data-driven world for a variety of applications, such as social 

networks, biological networks, telecommunications infrastructures, and 

navigation systems. The Single Source Shortest Path (SSSP) problem, 

which entails determining the shortest pathways from a given source 

node to every other node in a graph, is one such basic issue in the fields 

of graph theory and computer science. Real-time applications like GPS-

based route finding, dynamic routing in computer networks, and even 

social media analytics for determining influencers or link channels 

depend on a speedy and precise solution to this issue.  

Bellman-Ford is unique among the traditional algorithms for this 

problem because it can handle graphs with negative edge weights and 

identify negative weight cycles, something that more widely used 

algorithms like Dijkstra's cannot do. When applied to largescale graphs, 

like those found in road networks or social media graphs, which might 

have millions of nodes and connections, its time complexity of O(VE), 

where V is the number of vertices and E is the number of edges, makes 

it extremely inefficient. 

   

  

 

 

 

 

 

 

 

The goal of this project is to employ GPU parallelisation to optimise 

the Bellman-Ford method in order to alleviate this performance 

bottleneck. Originally created for graphics rendering, modern graphics 

processing units (GPUs) have developed into strong instruments for 

general-purpose computing, particularly for parallelexecutable 

workloads. GPUs are perfect for speeding up computations like edge 

relaxations in the Bellman-Ford algorithm because they have thousands 

of smaller cores that can handle multiple threads, unlike Central 

Processing Units (CPUs), which have a limited number of cores 

optimised for sequential execution.  

  

This project implements a GPU-accelerated version of the BellmanFord 

technique using NVIDIA's parallel computing platform, CUDA 

(Compute Unified Device Architecture). The project intends to greatly 

cut down on calculation time and enhance the scalability of the 

technique by designating distinct GPU threads to perform edge 

relaxations concurrently. In order to ensure accuracy and performance, 

the solution also incorporates essential GPU optimisation techniques 

including memory coalescing, shared memory utilisation, thread 

synchronisation, and early termination schemes.  

  

The project is divided into two stages: a parallel implementation using 

C++ and CUDA and a baseline sequential implementation using 

Python. The USA road network was one of the synthetic and real-world 

graph datasets used to evaluate both versions. With speedups of up to 

185x over the sequential version, the results unequivocally show that 

GPU parallelisation results in significant performance gains, 

particularly for big and dense graphs.  

  

In summary, this project not only overcomes the performance 

constraints of the conventional Bellman-Ford algorithm but also 

demonstrates how GPU computing can effectively solve large-scale, 

real-world graph problems. It creates the framework for next 

developments in scalable social network analysis, real-time routing 

systems, and other applications that need quick graph traversal and 

optimisation.  

  

2. Model of CUDA Programming  
 

There are many threads in the CUDA programming architecture, and 

these threads combine to create a warp. On a multi-core architecture, a 

warp is a group of threads that operate in parallel. Similar to how a 

block is the group of threads that execute on a multiprocessor in a 

specific amount of time, many blocks can operate in a time-shared 

fashion on a single multiprocessor. These few blocks are gathered into 

a grid. Every block in a grid and every thread in a block have their own 

unique ID. A kernel is a section of code that uses the thread ID to 

execute on each thread and defines the task in a parallel application. 

Since all of the device memory is readily accessible to every thread in 

the block, the multiprocessor operates in a SIMD fashion, similar to a 

GPU, allowing each thread to run the same kernel over various data. In 

this approach, using shared memory enhances calculation performanc  

  

  

http://www.ijsrem.com/


  

           
           International Journal of Scientific Research in Engineering and Management (IJSREM) 

                         Volume: 09 Issue: 05 | May - 2025                             SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM47660                                             |        Page 2 
 

  
  

Figure 1: CUDA programming model  

  

3. GRAPH REPRESENTATION ON CUDA  
 

Adjacency matrices are commonly used to represent graphs G (V,E), 

although they are incredibly inefficient in terms of memory usage for 

sparse graphs. The adjacency list is a more condensed option that does 

not store extra zero entries for edges that do not exist. However, the 

General-Purpose GPU (GPGPU) architecture presents difficulties in 

effectively modelling adjacency lists on GPUs because each vertex's 

edge list has a variable size. By enabling the formation of arrays with 

variable sizes, UDA offers a solution to this restriction and makes it 

possible to represent graphs in a more space-efficient manner. This 

method uses a compact adjacency list format to store graphs.   

  

The graph's vertices are kept in a different vertex array (V a), while the 

adjacency lists are crammed into a single, sizable edge array (E a). In 

this illustration: The beginning index of each vertex's adjacency list 

within the edge array (E a) is stored in the vertex array (V a). The 

adjacency lists are contained in the edge array (E a), where, for every  i 

in V, the edges of vertex i+1 come right after those of vertex i. A direct 

mapping between the two arrays is created when each entry in 𝐸 𝑎 E a  

refers to a vertex in 𝑉𝑎Va. This small adjacency list structure is ideal 

for large-scale graph analysis on GPUs since it reduces memory 

overhead and complements CUDA's effective memory management.  

  

 
Figure 2: A graph representation where a packed edge list is 

referenced by a vertex list.  

  

4. BELLMAN- FORD ALGORITHM  
 

A weighted directed graph's shortest paths from a single source vertex 

to every other vertex are determined via the Bellman Ford algorithm 

[11], an SSSP discovery algorithm. It employs the relax approach, 

which substitutes the minimum of the newly computed value and the 

previous value for the approximate distance to each vertex, which is 

always larger than or equal to the true distance.  

This approach relaxes all of the edges for |V| - 1 times, where |V| is the 

graph's vertex count. Each node will obtain its shortest distance from 

the source in this manner node. We can make some changes and 

parallelise this approach to get faster results because it typically takes a 

long time. We will demonstrate our parallel Bellman Ford Algorithm 

implementations in this section. Here, we used CUDA to develop a 

basic parallel Bellman-Ford algorithm and its improved versions on a 

GPU.  

  

4.1 Basic Parallel Bellman Ford 

Algorithm  
This algorithm uses CUDA to implement the fundamental Bellman 

Ford algorithm. The number of threads in this approach is equal to the 

number of graph edges, which will relax in parallel for |V| iterations. 

All vertices have their initial costs set to "infinity," with the exception 

of the start node, whose cost is set to "0." Algorithm1 describes the 

fundamental BF algorithm.  

.  

  

Algorithm 1: BF ( G (V, E, W), S)  

Create edge_strt_node(Sa), edge_end_node (Ea), 

edge_weight (Wa) and node_weight (Na) from G (V, E, W)  

[1] for each vertex V in parallel do  

[2] Invoke INITNODEWEIGHT (Na, S)  

[3] end for  

[4] for i = 0 toV-1 do  

[5] for each edge E in parallel do  

[6] Invoke RELAX (Na, Sa, Ea, Wa)  

[7] end for  

[8] end for  

  

Two kernels are used in the basic Bellman Ford algorithm's 

implementation.   

As demonstrated in Algorithm 2, the node weight of every node except 

the source node is initialised to "infinity" in the first kernel 

INITNODEWEIGHT (Ns, S), and it is initialised to "0" for the source 

node. As demonstrated in Algorithm 3, the second kernel RELAX (Na, 

Sa, Ea, and Wa) updates the cost of each neighbour if it exceeds the cost 

of the current vertex plus the edge weight to that neighbour. To prevent 

concurrent read/write conflicts, this update is carried out atomically 

using CUDA's atominMin function.  

  

  

Algorithm 2: INITNODEWEIGHT (Na, S)  

[1] id = blockIdx.x*blockDim.x+threadIdx.x  

[2] Na[id] = ∞;  

[3] if(id == S)  

[4] Na[id] = 0;  

Algorithm 3: RELAX (Na, Sa, Ea, Wa)  

[1] id = blockIdx.x*blockDim.x+threadIdx.x  

[2] if Na[Ea[id]]> Na[Sa[id]]+Wa[id]  

[3] begin atomic  

[4] Na[Ea[id]] ← Na[Sa[id]]+Wa[id]  

[5] end atomic  

[6] end if  
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 Every iteration of the basic Bellman Ford algorithm attempted to 

relax every edge. Therefore, if we apply certain criteria to this 

algorithm, we can lower the computation time that it takes. In light of 

this, we will introduce the Parallel Bellman Ford algorithm, which 

uses two flags.  

  

4.2 Parallel Bellman Ford Algorithm using  

Two Flags  
  
Two flags, F1 and F2, are used in this technique to identify which edges 

should be relaxed in the following iteration. The number of threads used 

to implement this technique is equal to the number of edges in the graph, 

and they should be relaxed |V| times. However, only the edges whose 

source node weight was changed in the previous iteration will be 

relaxed in each iteration. Because just a small number of nodes' node 

weights need to be modified in each iteration, we will be able to 

drastically cut down on calculation time. Algorithm 4 describes the BF 

algorithm with two flags.  

  

  

Algorithm 4: BF_2FLAGS ( G (V, E, W), S)  

Create edge_strt_node(Sa), edge_end_node (Ea), edge_weight (Wa) 

, node_weight (Na) from G (V, E, W)  

Create Flag (F1) and Flag (F2)  

[1] for each vertex v in parallel do  

[2] Invoke INITNODEWEIGHT (Na, S, F1, F2)  

[3] end for  

[4] for i=0 toV-1 do  

[5] for each edge E in parallel do  

[6] Invoke RELAX (Na, Sa, Ea, Wa, F1, F2)  

[7] Invoke COPYFLAG (F1, F2)  

[8] end for  

[9] end for  

  

The implementation of the BF algorithm with two flags uses three 

kernels. As demonstrated in Algorithm 5, the first kernel 

INITNODEWEIGHT (Na, S, F1, F2) initialises the node weight of each 

node in parallel, just like in the Basic BF algorithm. Additionally, both 

flags are initialised to "0" in parallel for every node, with the exception 

of the source node, for which flag F1 is initialised to 1. The edge 

relaxation in the second kernel RELAX (Na, Sa, Ea, Wa, F1, F2), as 

demonstrated in method 6, is carried out in the same way as in the Basic 

BF method; however, only the edges whose source node was modified 

in the previous iteration should relax in this case.  

  

  

Algorithm 5: INITNODEWEIGHT (Na, S, F1, F2)  

[1] id = blockIdx.x*blockDim.x+threadIdx.x;  

[2] Na[id] = ∞;  

[3] F1[id] = 0;  

[4] F2[id] = 0;  

[5] if(id == S)  

[6] Na[id] = 0;  

[7] F1[id] = 1;  

[8] end if  

  

Algorithm 6: RELAX (Na, Sa, Ea, Wa, F1, F2)  

[1] id = blockIdx.x*blockDim.x+threadIdx.x;  

[2] if(F1[Sa[id]] == 1)  

[3] if (Na[Ea[id]] > Na[Sa[id]]+Wa[id]) [4] 

 begin atomic  

[5] Na[Ea[id]]   Na[Sa[id]]+Wa[id];  

[6] end atomic  

[7] F2[Ea[id]] = 1;  

[8] end if  

[9] end if  

  

As seen in Algorithm 7, the third kernel, COPYFLAG (F1, F2), finds 

the next nodes whose outgoing edges should be relaxed by copying the 

current flag value from one flag to another.  

  

Algorithm 7: COPYFLAG (F1, F2)  

[1] id = blockIdx.x*blockDim.x+threadIdx.x;  

[2] F1[id] = F2[id];  

[3] F2[id] = 0;  

  
The results of the BF algorithm with two flags are significantly better 

than those of the Basic BF Algorithm.  

  

5. PERFORMANCE ANALYSIS  
 

On a wide variety of graph statistical data, including sparse, general, 

and dense directed networks with 8K to 62K vertices and up to.15M 

edges, we have assessed the performance of concurrent Bellman Ford 

algorithms. The execution times of these algorithms will be compared. 

For big graphs, the Bellman-Ford algorithm is inevitably slow due to its 

O(VE)O(VE)O(VE) time complexity. GPU parallelisation using 

NVIDIA's CUDA framework was used to increase execution speed. 

This method greatly accelerated the edge relaxing procedure by 

distributing computations across thousands of GPU cores.  

  

The study also tackled the scaling issues that conventional CPU 

implementations encounter, which include memory and computational 

constraints for networks with millions of vertices and edges. The 

approach was made scalable and effective for practical uses by utilising 

GPU-based parallelism.   

A thorough analysis was carried out to contrast the sequential and 

parallel implementations.   

  

The investigation, which concentrated on scalability, memory usage, 

and execution time, showed how much better the GPUaccelerated 

method is at managing large-scale graphs.   

The project had a strong foundation thanks to a thorough literature 

analysis that looked at current shortest path methods and associated 

GPU optimisations. To create a baseline for comparison, the Bellman-

Ford algorithm's sequential implementation was initially created in its 

conventional form using Python/C++.  

  

CUDA was subsequently used to parallelise the algorithm, which was 

then optimised for GPU execution with an emphasis on thread 

allocation, memory management, and performance tuning. The 

performance of both systems was evaluated using real-world datasets, 

such as synthetic random networks and USA Road Network.   
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The execution times of the sequential and parallel implementations 

were measured across a range of graph sizes as part of the performance 

evaluation process, which shed light on the efficiency and speedup 

improvements made by the parallel approach. To improve performance 

even more, other optimisation strategies like early termination and 

shared memory usage were investigated.  

This approach produced a structured performance analysis that showed 

how the Bellman-Ford algorithm's scalability and execution speed were 

enhanced when it was optimised for GPU execution.  

  

  
  

  

USA Road Networks Dataset Analysis  
  

On the USA road network dataset, the effectiveness of four 
algorithms—Sequential, ver1, ver2, and ver3—was assessed as 
the number of edges rose. The Sequential Algorithm's poor 
scalability for larger datasets was evident from the sharp rise in 
elapsed time that accompanied the increase in edge count. The 
ver1 Algorithm, on the other hand, outperformed the sequential 
version, showing higher scalability with a less abrupt increase in 
elapsed time.  

  

The ver2 Algorithm proved to be the most effective of the 
parallel algorithms. It was the most scalable and efficient method 
for this dataset, continuously maintaining the lowest elapsed 
times across different edge counts. Although it outperformed 
ver1, the ver3 Algorithm fell short of ver2's efficiency levels.   
  

  

Examination of Dense Graphs Produced at 

Random  
  

The performance of three parallel methods, ver1, ver2, and ver3, was 
examined for dense graphs with different numbers of edges. Although 
the duration of the ver1 Algorithm varied, it generally showed an 
upward trend as the edge count rose. Likewise, the duration of the ver2 
Algorithm fluctuated, peaking at about 10 7 10 7 edges, suggesting 
possible inefficiencies at particular edge counts.  

  

However, the consistency and effectiveness of the ver3 Algorithm made 
it stand out. The most appropriate option for dense graphs, it maintained 
noticeably shorter elapsed times than ver1 and ver2. Its resilience and 
effectiveness in managing densely connected networks are 
demonstrated by its consistent performance across all edge counts.  

  

 

 

 

6. CONCLUSION  
 

This research demonstrates the revolutionary effect of GPU 

parallelisation on the Bellman-Ford method by utilising CUDA to 

obtain a notable speedup of increase to 100x. By leveraging the 

enormous processing capacity of contemporary GPUs, the parallelised 

method efficiently divides the task among thousands of cores. This 

leads to significantly shorter execution times and faster edge relaxation, 

especially for huge graphs with millions of edges. Coalesced memory 

access, thread synchronisation, and shared memory usage are important 

optimisations that help reduce memory latency and increase 

computational performance. These improvements guarantee peak 

performance, even for intricate and huge graph datasets. Future research 

avenues include expanding the system to provide real-time processing 

for dynamic graphs and using dynamic load balancing to optimise 

thread allocation and minimise idle GPU threads. This will make it 

possible for applications like network monitoring and navigation 

systems to update the shortest paths in real time.  

  

Overall, the findings highlight GPU parallelization's promise for large-

scale graph processing applications where scalability and performance 

are essential for practical implementation, like social network analysis, 

transportation systems, and network routing.  
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