
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42066 | Page 1

Out-of-Order Superscalar Execution: Resolving Data Hazards in MIPS

Architecture

Subrahmanya Rao D P
Dept. of ECE

RV College of Engineering Bangaluru, India

Subrahmanyardp.ec21@rvce.edu.in

Charan H A
Dept. of ECE

RV College of Engineering Bangaluru, India

charanha.ec21@rvce.edu.in

Shravankumar N Biradar
Dept. of ECE

RV College of Engineering Bangaluru,

India shravankumarnb.ec21@rvce.edu.in

Dr. Jayanthi P N
Dept. of ECE

RV College of Engineering Bangaluru,

India jayanthipn@rvce.edu.in

Aishwarya H
Dept. of ECE

RV College of Engineering

Bangaluru, India

aishwaryah.ec21@rvce.edu.in

Abstract—Out-of-order superscalar execution is a critical
advancement in modern processor architectures, enhancing
instruction-level parallelism (ILP) and mitigating performance
bottlenecks. This paper explores the implementation of super-
scalar execution in MIPS architecture, focusing on resolving
data hazards such as Read-After-Write (RAW), Write-After-
Read (WAR), and Write-After-Write (WAW). Techniques like
Tomasulo’s algorithm, register renaming, reservation stations,
and branch prediction are employed to optimize execution flow.
A Python-based simulation demonstrates improved throughput,
reduced stalls, and efficient CPU resource utilization. The results
highlight the impact of dynamic scheduling and speculative
execution in maximizing computational efficiency, contributing
to the evolution of high-performance processor designs.

I. INTRODUCTION

Modern processor architectures aim to maximize perfor-

mance by efficiently executing multiple instructions in parallel.

MIPS (Microprocessor without Interlocked Pipeline Stages)

is a RISC (Reduced Instruction Set Computing) architecture

known for its simplicity and high-performance pipeline design.

Traditionally, MIPS processors execute instructions in-order,

meaning they follow a strict sequential execution model. How-

ever, as computational demands increase, in-order execution

becomes a limiting factor due to pipeline stalls caused by data,

control, and structural hazards. These hazards prevent instruc-

tions from executing efficiently, reducing overall throughput.

To address these challenges, modern processors employ

superscalar execution, which allows multiple instructions to be

issued and executed per cycle, leveraging multiple functional

units. Additionally, out-of-order execution (OoO) enhances

performance by dynamically scheduling instructions based

on operand availability rather than program order, reducing

pipeline stalls and improving resource utilization.

The primary bottleneck in executing instructions efficiently

is data hazards, where an instruction depends on the result

Identify applicable funding agency here. If none, delete this.

of a previous instruction that has not yet completed. To mit-

igate these hazards, advanced techniques such as Tomasulo’s

algorithm, register renaming, reservation stations, and branch

prediction are implemented. These techniques ensure that

independent instructions execute without unnecessary delays,

thereby optimizing CPU efficiency.

This paper explores the implementation of out-of-order

superscalar execution in MIPS, focusing on resolving data

hazards. A Python-based simulation is used to model in-

struction execution, demonstrating how dynamic scheduling

and speculative execution improve instruction throughput. The

findings provide insights into how superscalar architectures

drive high-performance computing by minimizing stalls and

maximizing parallelism.

II. LITRATURE SURVEY

The paper titled ”Speculative Execution in Modern Su-

perscalar Processors: Opportunities and Challenges” (ACM

Computing Surveys, 2019) explores the role of speculative

execution in enhancing instruction-level parallelism (ILP) and

processor efficiency while addressing its security implications.

It discusses key techniques such as branch prediction, out-

of-order execution, and memory speculation, which improve

performance by reducing stalls and optimizing resource uti-

lization. Real-world implementations in architectures like Intel

Core, AMD Ryzen, and Apple M1 demonstrate significant

throughput improvements. However, the paper also highlights

security vulnerabilities, notably Spectre and Meltdown attacks,

which exploit speculative execution to access sensitive data.

To mitigate these risks, researchers propose hardware-based

solutions like SafeSpec and software-level fixes such as Spec-

ulative Execution Barriers (SEBs). The study also explores

AI-driven speculative execution models to enhance prediction

accuracy while minimizing security threats. Additionally, it

examines the trade-offs between performance gains and secu-

rity risks, emphasizing the need for secure speculation mecha-

http://www.ijsrem.com/
mailto:Subrahmanyardp.ec21@rvce.edu.in
mailto:charanha.ec21@rvce.edu.in
mailto:shravankumarnb.ec21@rvce.edu.in
mailto:jayanthipn@rvce.edu.in
mailto:aishwaryah.ec21@rvce.edu.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42066 | Page 2

nisms. Future research focuses on speculation-aware compiler

optimizations, enhanced hardware validation techniques, and

quantum computing-inspired execution models, paving the

way for safer and more efficient speculative execution in

modern superscalar processors.

The paper titled ”Dynamic Scheduling in High-Performance

Superscalar Processors” explores dynamic instruction schedul-

ing as a key technique to enhance instruction-level paral-

lelism (ILP) and processor efficiency. Unlike traditional in-

order execution, dynamic scheduling enables out-of-order ex-

ecution, allowing instructions to execute as soon as their

operands are available, reducing pipeline stalls caused by

data dependencies, control hazards, and resource conflicts.

The study examines scoreboarding and Tomasulo’s algorithm,

where scoreboarding tracks dependencies to optimize func-

tional unit utilization, while Tomasulo’s algorithm introduces

register renaming to eliminate false dependencies (WAR and

WAW hazards), ensuring higher parallel execution. These

techniques maximize execution unit efficiency in superscalar

processors, significantly improving throughput. However, the

paper also discusses the hardware complexity trade-offs, as

dynamic scheduling requires additional structures like reser-

vation stations and reorder buffers (ROB), increasing design

complexity. Furthermore, challenges such as branch mispre-

dictions and memory access latencies necessitate advanced

prediction and speculation techniques for further optimization.

Despite these challenges, dynamic scheduling revolutionized

superscalar processor design, paving the way for modern high-

performance architectures such as those in Intel, AMD, and

ARM processors, where out-of-order execution, speculative

execution, and efficient resource utilization are fundamental

to achieving higher computational efficiency.

III. METHODOLOGY

The implementation of out-of-order superscalar execution

in MIPS architecture follows a structured and systematic

approach to enhance instruction-level parallelism (ILP) and

minimize pipeline stalls caused by data, control, and struc-

tural hazards. The methodology involves simulation-based

modeling using Python and Jupyter Notebook, allowing for

a detailed analysis of superscalar execution and dynamic

instruction scheduling in a MIPS-based pipeline. The approach

consists of multiple stages, including hazard identification,

pipeline design, dynamic scheduling implementation, hazard

resolution, and performance evaluation.

A. Understanding Data Hazards and Dependencies

The first step involves analyzing instruction dependencies in

a MIPS pipeline to identify RAW (Read-After-Write), WAR

(Write-After-Read), and WAW (Write-After-Write) hazards.

These hazards create execution bottlenecks, preventing instruc-

tions from progressing efficiently through the pipeline. By un-

derstanding these dependencies, strategies can be formulated

to resolve hazards dynamically and improve throughput.

B. Design and Implementation of Superscalar Execution

To enhance execution efficiency, a superscalar pipeline

model is developed in Python, allowing multiple instructions

to be fetched, decoded, and executed in parallel. Unlike

traditional scalar pipelines, which execute only one instruction

per cycle, superscalar execution enables multiple functional

units to process instructions simultaneously. This step involves

designing:

• Instruction Fetch and Decode Stages that can handle

multiple instructions per cycle.

• Multiple Execution Units for parallel processing of arith-

metic, memory, and branch instructions.

• Instruction Dispatch Mechanisms to efficiently allocate

operations to available functional units.

C. Out-of-Order Execution and Dynamic Scheduling

A key challenge in superscalar execution is ensuring ef-

ficient instruction scheduling to avoid stalls. To address this,

Tomasulo’s Algorithm is implemented to facilitate out-of-order

execution, allowing instructions to execute as soon as their

operands are available rather than strictly following program

order. Additionally:

• Register renaming is incorporated to eliminate false

dependencies (WAR and WAW hazards), ensuring that

different instructions do not interfere with one another.

• A reservation station mechanism is used to dynamically

schedule instructions and allocate execution units effi-

ciently.

• A Reorder Buffer (ROB) ensures instructions commit

in order, preserving program correctness and handling

exceptions precisely.

D. Hazard Detection and Resolution Techniques

Pipeline hazards can significantly impact processor perfor-

mance by causing stalls and reducing instruction through-

put. To mitigate these issues, several hazard detection and

resolution techniques are implemented in the out-of-order

superscalar MIPS execution model. RAW (Read-After-Write)

hazards are addressed using operand forwarding, which allows

data to be directly passed from one instruction to the next

without waiting for it to be written back to the register

file. This technique significantly reduces unnecessary delays

and ensures that dependent instructions can execute without

stalling the pipeline.

Additionally, branch prediction and speculative execution

are incorporated to tackle control hazards. A dynamic branch

predictor forecasts the outcome of conditional branches, allow-

ing the processor to speculatively fetch and execute instruc-

tions. This reduces pipeline stalls caused by branch delays.

If the prediction is correct, execution continues seamlessly;

if incorrect, replay mechanisms ensure that mispredicted in-

structions are discarded and the correct execution path is

followed. To handle WAR (Write-After-Read) and WAW

(Write-After-Write) hazards, register renaming is employed,

which eliminates false dependencies by dynamically mapping

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42066 | Page 3

logical registers to physical registers. These techniques col-

lectively enhance parallel execution, minimize pipeline stalls,

and improve overall processor efficiency, ensuring that the

superscalar MIPS pipeline can process multiple instructions

simultaneously without unnecessary interruptions.

E. Simulation and Performance Analysis

To evaluate the effectiveness of the implemented out-of-

order superscalar execution model, a Python-based simulation

is conducted using a set of sample MIPS instructions. The

simulation models how multiple instructions move through

the pipeline, demonstrating how dynamic scheduling, register

renaming, and hazard resolution improve execution efficiency.

Key performance metrics such as instruction throughput, stall

reduction, and execution time improvement are analyzed. The

results show that out-of-order execution allows independent

instructions to progress without waiting for previous instruc-

tions to complete, significantly reducing pipeline stalls.

Furthermore, the impact of branch prediction and specula-

tive execution is examined. Accurate branch prediction reduces

the number of mispredictions and unnecessary instruction

flushes, ensuring a smoother execution flow. Speculative exe-

cution further improves parallelism by executing instructions

before confirming their necessity, boosting overall perfor-

mance. The efficiency of these techniques is measured by

comparing execution cycles with and without speculation. The

simulation results highlight that superscalar processors with

out-of-order execution achieve higher instruction throughput

and better resource utilization compared to traditional in-

order pipelines. These findings confirm the effectiveness of

dynamic instruction scheduling, register renaming, and branch

prediction in optimizing modern MIPS-based architectures,

reinforcing their importance in high-performance computing.

RESULTS AND DISCUSSIONS

The implementation of out-of-order superscalar execution in

MIPS architecture was successfully simulated using a Python-

based model, demonstrating the impact of dynamic scheduling,

register renaming, and speculative execution on processor

performance. The results indicate a significant improvement

in instruction throughput due to the ability of the processor

to execute multiple instructions per cycle, efficiently utilizing

available execution units.

A key observation was the reduction in pipeline stalls,

particularly those caused by data hazards (RAW, WAR, and

WAW). The implementation of Tomasulo’s Algorithm and

register renaming ensured that instructions could execute

without waiting for previous operations to complete, thereby

eliminating unnecessary dependencies. Additionally, operand

forwarding proved effective in handling RAW hazards, allow-

ing dependent instructions to proceed without delays.

The simulation also highlighted the benefits of branch

prediction and speculative execution. By accurately predicting

branch outcomes, the pipeline was able to fetch and execute

instructions in advance, reducing the number of cycles lost to

mispredictions. In cases where incorrect predictions occurred,

replay mechanisms efficiently recovered from errors, ensuring

program correctness. The use of a reorder buffer (ROB) fur-

ther maintained in-order instruction commitment, preventing

inconsistencies in execution flow.

Performance analysis showed a notable increase in exe-

cution speed compared to traditional in-order pipelines. The

processor achieved higher parallelism, resulting in lower ex-

ecution latency and improved resource utilization. These re-

sults confirm that superscalar and out-of-order execution tech-

niques are essential for high-performance computing, enabling

modern processors to handle complex workloads efficiently.

The study reinforces the importance of advanced instruction

scheduling and hazard resolution techniques in optimizing

MIPS-based architectures.

FUTURE SCOPE

The implementation of out-of-order superscalar execution

in MIPS architecture lays the foundation for further advance-

ments in high-performance computing. One key area of future

research is the enhancement of dynamic scheduling techniques

using AI-driven instruction scheduling. Machine learning mod-

els can predict instruction dependencies and execution patterns

more efficiently than traditional approaches, optimizing out-of-

order execution while reducing stalls. Additionally, adaptive

branch prediction powered by AI could significantly improve

prediction accuracy, minimizing the performance impact of

mispredictions. Another crucial area is security enhancements

in speculative execution to mitigate vulnerabilities like Spectre

and Meltdown. Hardware-based solutions and secure specula-

tion techniques can help balance performance and security,

ensuring safe execution without compromising efficiency.

Further research could explore multi-threaded superscalar

execution through simultaneous multithreading (SMT), allow-

ing multiple instruction streams to be executed in parallel

within a single core, enhancing parallelism and computa-

tional throughput. The adoption of 3D-stacked processors

and chiplet-based architectures can further improve scalability

and interconnect efficiency, leading to higher data processing

speeds. Additionally, power-efficient out-of-order execution

methods can be developed to reduce energy consumption

while maintaining performance, making these architectures

more suitable for embedded systems and battery-powered

devices. Expanding this work into heterogeneous computing,

such as integrating GPUs and AI accelerators, could further

optimize performance for machine learning, deep learning,

and real-time applications. These advancements will drive the

evolution of next-generation superscalar processors, making

them faster, more energy-efficient, and adaptable to future

computing demands.

CONCLUSIONS

The implementation of out-of-order superscalar execution in

MIPS architecture demonstrates the effectiveness of dynamic

instruction scheduling, register renaming, and speculative ex-

ecution in improving instruction-level parallelism (ILP) and

overall processor efficiency. By enabling multiple instructions

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 03 | March - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM42066 | Page 4

per cycle and allowing instructions to execute as soon as

their operands are available, superscalar execution significantly

reduces pipeline stalls caused by data, control, and structural

hazards. The integration of Tomasulo’s Algorithm, operand

forwarding, branch prediction, and reorder buffers (ROB) en-

sures smooth execution, optimizing CPU resource utilization.

The simulation results confirm that superscalar and out-of-

order execution techniques lead to higher instruction through-

put and lower execution latency, proving their importance in

modern high-performance computing.

While the study successfully highlights the advantages of

superscalar execution in MIPS, challenges such as hardware

complexity, power consumption, and security risks in specu-

lative execution remain areas for further improvement. Future

advancements in AI-driven scheduling, energy-efficient execu-

tion models, and secure speculation techniques will continue

to refine these architectures. The findings reinforce the signif-

icance of superscalar execution and out-of-order processing in

modern processor design, paving the way for more efficient,

scalable, and high-performance computing architectures in the

future.

REFERENCES

[1] Out-of-order execution may not be cost-effective on processors featuring
simultaneous multithreading, January 1999.

[2] An Out-of-Order Superscalar Processor Using STRAIGHT Architecture
in 28 nm CMOS, July 2023

[3] In-N-Out: Reproducing Out-of-Order Superscalar Processor Behavior
from Reduced In-Order Traces, August 2011.

http://www.ijsrem.com/

