
 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 11 | NOV - 2024 SJIF RATING: 8.448 ISSN: 25823930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39275 | Page 1

Page Replacement Algorithms: A Survey of Performance and Case Studies

Burhanuddin Mal

Elctronics and Telecommunication

Vishwakarma Institute Information of

Technology

Pune, India

burhanuddin.22210596@viit.ac.in

Avanti Savji

Elctronics and Telecommunication

Vishwakarma Institute Information of

Technology

Pune, India

avanti.22210023@viit.ac.in

Ved Thorat

Elctronics and Telecommunication

Vishwakarma Institute Information of

Technology

Pune, India

ved.22211044@viit.ac.in

Vedashri Patil

Elctronics and Telecommunication

Vishwakarma Institute Information of

Technology

Pune, India

vedashri.22210642@viit.ac.in

Minal Deshmukh

Elctronics and Telecommunication

Vishwakarma Institute Information of

Technology

Pune, India

minal.deshmukh@viit.ac.in

Abstract— This system uses paging as part of memory

management in a computer's operating system. Page

replacement algorithms are responsible for deciding which

pages should be replaced when new allocations are required.

Paging happens when there is a page fault, and there are

insufficient or no free pages available for allocation.

Keywords— Operating System, Page Replacement

Algorithms, Virtual Memory Management, Page Allocation

I. INTRODUCTION

In memory management systems, page replacement is a
key concept. When the kernel produces a process using system
calls , pages needs to reside in the main memory. These pages,
therefore, need pages to be kept in the main memory This
process will first identify if a required page is not available in
the main memory, a condition called as page fault.

A process has to identify the missing page on the disk if
page fault is present. Then page will be allocated into that free
space in the main memory if there exists free space in the
memory. However, if there is no available space, a page
replacement must be performed using the implemented page
replacement algorithm.[1] The removed page is then written
back to disk. Once the page is successfully transfered into the
main memory, the process can resume its operation, as it can
now access the necessary page.

A. When page fault occurs?

A page fault occurs when a page contain preferred

information or instruction is searched for in translation

lookaside buffer (TLB) or page tables and is found absent

from the main memory. [2]

B. Role of page replacement algorithm?

Since the main memory is limited in size and smaller

compared to the primary storage, the role of page replacement

is to select the optimal page to remove from memory when a

page fault occurs. This allows the operating system to replace

it with a new page from the disk containing the necessary

instructions. [3]

C. Need of page replacement algorithm :

An efficient page replacement strategy can reduce the cost

of page faults, improving system performance.[12] A high

number of page faults can consume resources as the system

spends more time paging in and out, rather than executing

tasks, eventually leading to system overload. [3]

II. PAGE REPLACEMENT ALGORITHMS

A. Optimal Page Replacement

At the time memory is full, the optimal approach for page

replacement is to evict the page which will not be referenced

for prolonged duration ahead. This strategy ensures that the

number of page faults are minimal by always retaining the

pages that will be needed sooner. [1] However, this scheme is

only feasible to implement during a second, identical run of

the program, where page usage patterns have been recorded in

the first run.[10] In practical scenarios, especially in

applications that involve external inputs, the operating system

cannot foresee which pages will be accessed next, as the

timing and content of inputs can vary widely, altering the

access patterns.

Despite this limitation, the optimal algorithm—referred to

as OPT or MIN—serves as an important theoretical

benchmark. It provides a standard for comparing the

efficiency of real-world page replacement algorithms. Since

OPT assumes perfect knowledge of future events, it is

impossible to implement in practice, but its conceptual

framework helps in assessing how well practical algorithms

approximate this ideal performance, such as Least Recently

Used (LRU) or First-In First-Out (FIFO) algorithms.[4]

http://www.ijsrem.com/
mailto:burhanuddin.22210596@viit.ac.in
mailto:avanti.22210023@viit.ac.in
mailto:ved.22211044@viit.ac.in
mailto:vedashri.22210642@viit.ac.in
mailto:minal.deshmukh@viit.ac.in

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 11 | NOV - 2024 SJIF RATING: 8.448 ISSN: 25823930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39275 | Page 2

Figure 1: Optimal PGA

 The page which takes maximum time until its next

reference among all pages in set S is chosen for replacement.

The decision is based solely on the time of the next reference,

and control state is fully described by t. In this and the

subsequent algorithms, the size of set S consists of m

pages.[11, 17]

Figure 2: Optimal Page Replacement Algorithm

B. Not Recently Used (NRU)

In the Not Recently Used (NRU) is a page replacement
algorithm, pages are categorized into four classes based on
their reference and modification status.[4, 25]

1) Class 0 includes pages which neither been referenced

nor modified.[13]

2) Class 1 consists of pages which not been referenced

but have been modified.[13]

3) Class 2 includes pages which have been referenced but

not modified.[13]

4) Class 3 includes pages which have both been

referenced and modified[13].

Which page needs to be evicted, NRU selects a random

page from the lowest-numbered class that contains pages,
prioritizing pages that are less likely to be needed soon or
expensive to write back to disk. This approach aims to
minimize page faults by favoring unreferenced pages for
replacement and by reducing the overhead of writing modified
pages back to disk when unnecessary.[26]

Although NRU is simple and efficient to implement, it is
an approximation of the more sophisticated Least Recently
Used (LRU) algorithm. Unlike LRU, which tracks exact
usage, NRU operates by periodically resetting the reference
and modification bits, making it less precise but still effective
in balancing performance and overhead.[15]

Figure 3: Not Recently Used (NRU) PGA

Let y be a random page selected from the lowest class that

contains pages. The control state is defined as a collection of

classes [16]

qₜ = {C₀ₜ, C₁ₜ, C₂ₜ, C₃ₜ}. (1)

If C₀ₜ = Ø and C₁ₜ ≠ Ø, then y ∈ C₁ₜ, and the next state is

qₜ₊₁ = {C₀ₜ₊₁, C₁ₜ₊₁, C₂ₜ, C₃ₜ}, (2)

where C₀ₜ₊₁ = {rₜ₊₁} and C₁ₜ₊₁ = C₁ₜ ∪ {rₜ₊₁ \ y}

C. First-In, First-Out (FIFO)

One of the simplest yet widely used page replacement

methods is the First-In, First-Out (FIFO) algorithm. In this

method, pages in memory are organized in a list where the

most recently added page is placed at the beginning, and the

oldest one stays at the end. [5, 20] If the requirement arises

for eliminating a page, the oldest page which is at the

tail is removed and the new page inserted at the head of the

list. It is simply this mechanism that gives rise to the

property of the page which has been in memory the longest

being replaced. [18]

An alternative implementation of FIFO is the Clock

algorithm, which arranges pages in a circular list, resembling

a ring. A pointer moves around the ring to track page

replacements. When a page must be evicted, the page

currently pointed to by the pointer is replaced, and the new

page is inserted in its position.[21] After replacement, the

pointer moves ahead to the next page in the cycle. The Clock

algorithm is superior to simple FIFO, because it permits to

use page usage information of pages with reference bits, that

makes it able to avoid eviction of recently referenced pages

by checking and resetting them. That makes it a more

practical variation of FIFO for utilization, since the number

of unnecessary swaps of pages is decreased.[22]

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 11 | NOV - 2024 SJIF RATING: 8.448 ISSN: 25823930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39275 | Page 3

Figure 3: First-In, First-Out (FIFO)

D. Least Recently Used (LRU)

A page that was accessed recently is more likely to be

needed again soon, whereas a page that has not been used for

a long time is less likely to be needed in the immediate future.

This is the basis of the (LRU) algorithm and can be

implemented by maintaining a sorted list of all pages in

memory. [8, 23]

1. The list is ordered by the last time each page was

referenced; more frequently it is called the LRU stack.

2) That is to say, it means that this position of each and

every page in the list must be updated with every access to the

page about its recent access.[24]

But still the implementation of LRU directly is costly. In

fact overheads occur due to the constant updating of the

position of pages after every access or clock tick involving

sort and reordering of the list. Another limitation is that the

algorithm is only an approximation: it cannot distinguish

between two pages unless they happened to be referenced in

the exact same tick of clocks. With this amount of complexity

and the cost of frequent updates, pure LRU is rarely used in

practice, especially when more efficient approximations such

as the Clock algorithm are available and frequently used in

real systems. [7, 21, 22]

Figure 4: Least Recently Used (LRU)

Let yₘ be the page that is used the least recently in set S. The

control state is defined as

 qₜ = (y₁, y₂, y₃, ..., yₘ), (3)

where the resident pages are ordered by their most recent

reference, with y₁ being the most recently referenced page and

yₘ being the least recently referenced.[24]

E. Adaptive Replacement Cache (ARC)

 ARC is a page replacement algorithm. It is designed by

the researchers at IBM's Almaden Research Center. This

algorithm tracks pages which recently and frequently used

while providing information about how long it has been since

a page was evicted.[27] The cache is broken down into two

LRU lists: L1 contains all the pages accessed only once

recently, and L2 contains pages that have been accessed at

least twice. L1 captures short-term utility (recency), while L2

reflects long-term utility (frequency). [5, 28]

 These groups are then classified into two parts: top cache

entries and bottom ghost entries. L1 is divided into T1, which

includes the most recent cache entries, and B1 which includes

the entries that have just been retrieved from T1. Similarly,

L2 consists of T2, the category of more frequent entries, and

B2, whose contents consisted of more recent entries that had

been taken out from T2. Active cache is a union of T1 and T2,

B1 and B2 are inaccessible caches, or ghost lists, which help

the algorithm in understanding recently removed entries and

modifying its action accordingly. These ghost lists store only

metadata, not the actual pages. The entire cache directory is

composed of four LRU lists:[29, 30]

1) T1: recently accessed cache entries

2) T2: frequently accessed entries in the cache, which have

been at least accessed once

3) B1: recently evicted entries from T1 but still tracked

4) B2: recently evicted entries from T2[29]

 Assuming that c denotes the size of the cache then

 |T1+T2| = c, (4)

 and if |T1|=p,

 then |T2|=c−p (5)

ARC continuously adjusts the value of p based on whether

recency or frequency is going to dominate in the workload.

When recency is important, then p is incremented to give

more space to T1. If frequency is important then p is

decremented thus giving more space to T2. The total size of

the cache directory ∣L1+L2∣=2c.

For a fixed p, the replacement process works as follows:

5) If ∣T1∣>p, replace the LRU page in T1.

6) if ∣T1∣<p then, replace LRU page in T2

7)if ∣T1∣=p and missed page is in B1, replace the LRU

page in T2

8)if ∣T1∣=p and missed page is in B2, replace the LRU

page in T1.[28, 29, 30]

 The adaptation of p depends on the following principle: a

hit in B1 indicates the importance of recency, so p should

increase to allocate more space to T1. Conversely, a hit in B2

highlights the relevance of frequency, prompting p to

decrease, giving more space to T2. The size adjustment of p

is proportional to the relative sizes of B1 and B2.[28]

F. CLOCK with Adaptive Replacement (CAR)

 CAR is an algorithm that combines the adaptive strategy

of ARC and the effectiveness of CLOCK. It manages four

doubly linked lists, T1, T2, B1, and B2. T1 and T2 are

implemented as structures of CLOCK while B1 and B2 as

simple LRU lists. The structure overall is a synonym for

ARC. In T1 and T2-the cache-pages there is also reference bit

which can be set or cleared. [5, 31]

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 11 | NOV - 2024 SJIF RATING: 8.448 ISSN: 25823930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39275 | Page 4

The lists are defined as follows:

1) T1 and B1: T1 and B1 hold pages that have been

referenced only once since their last removal from any of the

lists (T1, T2, B1, B2) or pages that have not been referenced

at all.

2) T2 and B2: T2 and B2 are caches which store pages

that have been referenced a multiple of times since their last

eviction from any of the lists (T1, T2, B1, B2).[21, 32]

 Two important constraints on the sizes of T1, T2, B1,

and B2 are:

 1)∣T1∣+∣B1∣≤c, where c is the cache size. T1
and B1 represent recency. The size of these lists changes
as Recently accessed or highly accessed pages keep
changing. This reduces the chances of a page which is
accessed only once from filling up the entire cache
directory (which is limited to size 2c). In case the size of
T1 and B1 becomes huge then it is a sign that the recently
accessed pages are no longer referred to and hence, the
recency information stored becomes ineffective. This also,
therefore implies either that frequently accessed pages
are being reused or novel pages are being accessed. [6, 32]

 2) ∣ T2∣+∣B2∣≤2c. When accessing a small set of pages
frequently and there are no references being formed, then
its directory in the cache will carry mainly the frequency
information of those pages.

G. Belady’s MIN

 Belady’s MIN algorithm, also referred to as the

clairvoyant algorithm, is theoretically the most optimal page

replacement strategy. Its goal is to remove the page that won’t

be needed for the longest period, ensuring the lowest page

fault rate possible.[7, 33] Nonetheless, the fundamental

disadvantage of this algorithm is that it assumes the

availability of future page requests, which cannot be done in

real life. Therefore, it is not applicable in practice.[7]

Although it is not applicable in practice, Belady’s MIN

algorithm has still a functional importance in theory. For

instance, it is used as standard to compare the performance of

other replacement policies and in particular those such as

LRU, LFU, or CLOCK. This way, when using MIN as a

comparison, researchers are able to approximate to what

extent the performance of the given algorithm reaches its

optimal performance. [7, 34] In simulation studies, it also

allows obtaining the worst case of page fault rates and thus

enables the system designers to study the behavior of different

algorithms layers used in the system under different

workloads and operating conditions.[31]

Moreover, Belady's MIN algorithm has revealed page

replacement anomalies, such as Belady's anomaly, which

occurs when an increase in the number of page frames results

in more page faults for some algorithms A situation which

was not seen with MIN. While it remains a theoretical ideal,

MIN’s insights are foundational in the development of

efficient memory management techniques.

III. SUMARRY

Table 1: Page Replacement Algorithms

Algorithm Description Features

Optimal Page

Replacement

(OPT)

Evicts the page

that will not be

referenced for

the longest

time in the

future.

Used as a

theoretical

benchmark for

comparing other

algorithms.

Not Recently

Used (NRU)

Pages are

classified into

4 categories

based on their

reference and

modification

status. Evicts a

random page

from the

lowest-

numbered

class.

Periodically resets

reference and

modification bits.

First-In , First-

Out (FIFO)

Evicts the

oldest page in

memory.

FIFO variant

(Clock algorithm)

avoids evicting

recently accessed

pages.

Least Recently

Used (LRU)

Evicts the least

recently used

page.

Evicts the least

recently used

page.

Adaptive

Replacement

Cache (ARC)

Tracks both

recency and

frequency,

maintaining

two LRU lists:

one for recent

pages (T1) and

one for

frequent pages

(T2).

Uses ghost lists

(B1 and B2) to

track evicted

pages for adaptive

behavior.

Clock with

Adaptive

Replacement

(CAR)

Combines the

efficiency of

CLOCK with

ARC’s

adaptive

strategy.

Uses CLOCK

structures with

reference bits and

adaptive size for

recency/frequency.

Belady’s MIN

Algorithm

Evicts the page

that will not be

needed for the

longest time in

the future.

Serves as a

theoretical

benchmark;

identifies

anomalies like

Belady's anomaly.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 11 | NOV - 2024 SJIF RATING: 8.448 ISSN: 25823930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39275 | Page 5

IV. CASE STUDY: LEAST RECENTLY USED (LRU)

ALGORITHM

A. Objective:

This case study evaluates the practical performance of the

Least Recently Used (LRU) page replacement algorithm by

comparing it against Optimal Page Replacement (OPT) and

First-In, First-Out (FIFO) algorithms. The primary focus is on

minimizing page faults in a simulated environment using a

fixed sequence of page references.

B. Simulation Setup:

• Workload: A predefined sequence of page

references: [7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0,

1, 7, 0].

• Page Frames: A total of 3-page frames were

allocated for the simulation.

• Metric: The number of page faults recorded during

the execution of the workload.

C. Results:

1) Optimal Page Replacement (OPT):

The OPT algorithm recorded 9-page faults during

the simulation, demonstrating the theoretically best

performance by replacing the page that would not

be used for the longest duration in the future.

However, its reliance on future knowledge of page

references renders it impractical for real-world

implementation.[18]

2) Least Recently Used (LRU):

The LRU algorithm achieved 12-page faults, closely

approximating the performance of the OPT

algorithm. By replacing the least recently used page

upon a page fault, LRU showcased its adaptability to

real-time memory access patterns, making it a

feasible alternative for practical applications. [21,

22]

3) First-In, First-Out (FIFO):

The FIFO algorithm experienced 15-page faults,

significantly more than both OPT and LRU. Its

"oldest page first" replacement policy introduced

inefficiencies and exhibited Belady’s Anomaly,

where an increase in the number of allocated frames

paradoxically resulted in a higher number of page

faults in certain scenarios.[20]

D. Analysis:

 The results demonstrated that LRU effectively

minimizes page faults by leveraging recent access patterns,

making it significantly better than FIFO and comparable to

OPT in performance. The LRU algorithm’s trade-off lies in

its computational complexity, as it requires tracking the order

of recent page accesses, which adds overhead compared to

simpler algorithms like FIFO.

V. CASE STUDY: ADAPTIVE REPLACEMENT CACHE (ARC)

ALGORITHM

A. Objective:

This case study evaluates the performance of the

Adaptive Replacement Cache (ARC) algorithm compared to

Least Recently Used (LRU) and First-In, First-Out (FIFO)

algorithms. The focus is on its ability to dynamically adapt to

varying workloads by balancing recency and frequency of

page references.

B. Simulation Setup:

• Workload: A mixed sequence of page references:

[1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5].

• Page Frames: A total of 3-page frames were used

for the simulation.

• Metric: The primary metric was the number of page

faults encountered. Additionally, the algorithm's

adaptability to recency and frequency was observed.

C. Results:

1) Adaptive Replacement Cache (ARC):

The ARC algorithm achieved 9-page faults,

outperforming both LRU and FIFO. By

dynamically adjusting its cache allocation between

recently accessed pages (T1) and frequently

accessed pages (T2), ARC effectively balanced

recency and frequency. This adaptability enabled it

to maintain optimal performance across varied

workload patterns. [27, 28]

2) Least Recently Used (LRU):

The LRU algorithm recorded 10-page faults,

performing well in scenarios where recency was the

dominant access pattern. However, it struggled to

account for the reuse of frequently accessed pages,

leading to additional page faults compared to

ARC.[21, 22[

3) First-In, First-Out (FIFO):

The FIFO algorithm experienced 12-page faults, the

highest among the three algorithms. Its rigid "oldest

page first" replacement policy led to inefficiencies,

including the unnecessary eviction of pages still in

active use, which negatively impacted its

performance.[20]

D. Analysis:

 The ARC algorithm outperformed LRU and FIFO due

to its adaptive nature. By dynamically dividing cache space

between recently and frequently used pages, ARC managed

to reduce unnecessary evictions and page faults. In contrast,

LRU struggled with recognizing frequently used pages, while

FIFO’s fixed eviction policy led to poor performance.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 11 | NOV - 2024 SJIF RATING: 8.448 ISSN: 25823930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39275 | Page 6

VI. CONCLUSION

 The objective of this study was to determine which page

replacement algorithm delivers optimal system performance.

An efficient page replacement strategy helps minimize page

faults during execution, reduces input/output operations, and

greatly enhances overall system performance. Since time is a

crucial factor for system efficiency, lowering the number of

page faults contributes significantly to improved

performance.

A. Optimal Page Replacement Algorithm (OPT/MIN):

• Performance: The Optimal Page Replacement

algorithm makes optimistic choices of pages which

will not be accessed for the longest time in the

future. It is ensured that minimum page faults are

generated.

• Feasibility: While it provides the best theoretical

performance, it is impractical for real-world systems

because predicting future page access patterns is

impossible.

• Usage: Its main purpose is to serve as a benchmark

for evaluating the performance of other page

replacement algorithms.

B. First-In, First-Out (FIFO):

• Performance: FIFO tends to perform poorly,

especially as the number of pages increases. It

frequently leads to more page faults (degenerates)

because it replaces the oldest page, regardless of its

future use.

• Issue: FIFO can make inefficient decisions, such as

evicting a page only to bring it back shortly after,

which causes unnecessary disk I/O operations.

• Conclusion: Due to its tendency to make poor

replacement choices, FIFO often results in higher

page fault rates compared to other algorithms.

C. Least Recently Used (LRU):

• Performance: LRU is a more practical and efficient

algorithm compared to FIFO, as it attempts to

approximate the behavior of the Optimal algorithm

by replacing the least recently used page.

• Advantage: It significantly reduces the number of

pages faults and generally performs close to the

Optimal algorithm in practical scenarios.

• Conclusion: LRU is the better choice for real-world

implementations where frequent page replacements

occur, balancing performance and simplicity.

D. Not Recently Used (NRU):

• Performance: NRU is a simpler, less precise

approximation of LRU. It sorts pages into classes

according to their reference and modification status,

preferring pages from lower-priority classes for

replacement.

• Feasibility: NRU is less accurate than LRU but

easier to implement and still fair about page faults

and overhead writing modified pages back to disk.

• Conclusion: NRU should be suitable for systems

where simplicity outweighs the fine-tuned

The accuracy of LRU.

E. Adaptive Replacement Cache (ARC):

• Performance: ARC dynamically and automatically

change its behavior according to the characteristics

of workload from recency versus frequency for

optimizing cache performance.

• Advantage: It keeps track of recently as well as

frequently accessed pages along with using ghost

lists to place metadata of pages replaced out of

the cache thereby easily adapting a wide variety of

access patterns.

• Conclusion: ARC performs well in diverse

workloads and is highly adaptive, making it a strong

candidate for modern systems where workloads may

vary over time.

F. Clock with Adaptive Replacement (CAR):

• Performance: It employs the adaptive

characteristics of ARC while enhancing

implementation practices of the CLOCK scheme. In

this regard, it keeps several lists to consider the

recently accessed pages and frequently accessed

pages.

• Advantage: CAR is more efficient than typical ARC

due to the implementation of policies akin to the

CLOCK which help reduce the burden LRU incur.

• Conclusion: Not only does CAR demonstrates a

extreme level of adaptation, but also can be

implemented at a reasonable cost which makes it

ideal for any system with varying access patterns

and great expectations in performance.

G. Belady’s MIN (Clairvoyant Algorithm):

• Performance: MIN is theoretically the most optimal

algorithm, as it evicts the page that will not be used

for the longest time, guaranteeing the lowest page

fault rate.

• Feasibility: Due to its reliance on future knowledge,

MIN is impractical for real-world use but serves as

a key theoretical benchmark.

• Conclusion: While MIN cannot be implemented in

real systems, it helps evaluate the effectiveness of

other algorithms and provides a lower bound on

page fault rates in simulations.

H. Best Algorithm:

 The Optimal Page Replacement Algorithm (OPT/MIN) is

the best in terms of performance because it guarantees the

fewest page faults. However, it is impractical for real-world

use due to the need for future knowledge.

 For practical implementation, Least Recently Used

(LRU) is generally the best, as it closely approximates the

performance of the Optimal algorithm.

http://www.ijsrem.com/

 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

 VOLUME: 08 ISSUE: 11 | NOV - 2024 SJIF RATING: 8.448 ISSN: 25823930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM39275 | Page 7

I. Moderate Algorithm:

 The Clock Algorithm (or its variants like CLOCK with

Adaptive Replacement (CAR)) is considered a moderate

algorithm. It strikes a balance between performance and

simplicity by approximating LRU but with lower overhead.

While not as efficient as LRU, it performs better than FIFO

and is more practical to implement in many systems.

J. Worst Algorithm:

 First-In, First-Out (FIFO) is considered the worst due to

its tendency to result in higher page faults, especially under

increasing workloads. It can make inefficient eviction

decisions, such as removing pages that are still needed soon.

REFERENCES

[1] Thakkar, Binita & Padhy, Rabi. (2024). Comparative Analysis of Page

Replacement Algorithms in Operating System. Journal of Emerging
Technologies and Innovative Research. 11. 7.

[2] Rexha, Genta & Elmazi, Erand & Tafa, Igli. (2015). A Comparison of
Three Page Replacement Algorithms: FIFO, LRU and Optimal.
Academic Journal of Interdisciplinary Studies. 4.
10.5901/ajis.2015.v4n2s2p56.

[3] Shastri, Shourab, Anand Sharma, and Vibhakar Mansotra. "Study of
Page Replacement Algorithms and their analysis with C#." The
International Journal Of Engineering And Science (IJES) 5.1 (2016).

[4] Tingare, Bhagyashree A., and Vaishali L. Kolhe. "Analysis of Various
Page Replacement Algorithms in Operating System."

[5] Saini Mohit, and Manju Verma. "A Study of Page Replacement
Algorithms." International Journal of Research Fellow for Engineering
Volume 4, Issue 1.

[6] Kumari, Juhi, et al. "A Comparison of Page Replacement Algorithms:
A Survey." International Journal of Scientific and Engineering
Research, Volume 7, Issue 12, December-2016 57 ISSN 2229-5518.

[7] Chawan, Pramila. (2011). A Comparison of Page Replacement
Algorithms. International Journal of Engineering and Technology. 3.
10.7763/IJET.2011.V3.218.

[8] Farooqui, Mohd Zeeshan, et al. "A Comprehensive Survey of Page
Replacement Algorithms." International Journal of Advanced Research
in Computer Engineering and Technology (IJARCET) Volume 3 Issue
1, January 2014.

[9] Saxena, Anvita. "A Study of Page Replacement Algorithms."
International Journal of Engineering Research and General Science
Volume 2, Issue 4, June-July, 2014 ISSN 2091-2730.

[10] Medak, Jogamohan & Gogoi, Partha. (2020). Critical Scrutiny of Page
Replacement Algorithms: FIFO, Optimal and LRU. International
Journal of Innovative Technology and Exploring Engineering. 9. 345-
348. 10.35940/ijitee.J7553.0891020.

[11] Madisetti, Prashanth & Truong, Dan & Yallapragada, Srisailendra.
(2013). Identifying replacement memory pages from three page record
lists.

[12] Tsai, Hong-Bin & Lei, Chin-Laung. (2017). A page replacement
algorithm based on frequency derived from reference history. 1522-
1527. 10.1145/3019612.3019737.

[13] Ramachandran, Rajesh & Paulson, Hitha. (2017). Page Replacement
Algorithms – Challenges and Trends. International Journal of
Computer & Mathematical Sciences. 6. 112.

[14] Akbari-Bengar, Davood & Ebrahimnejad, Ali & Motameni, Homayun
& Golsorkhtabar, Mehdi. (2020). A page replacement algorithm based
on a fuzzy approach to improve cache memory performance. Soft
Computing. 24. 10.1007/s00500-019-04624-w.

[15] Lo, Chia-Tien & Srisa-an, Witawas & Chang, J.Morris. (2001). A study
of page replacement performance in garbage collection heap. Journal

of Systems and Software. 58. 235-245. 10.1016/S0164-
1212(01)00041-3.

[16] Rathod, Vasundhara & Chim, Monali & Chawan, Pramila. (2013). A
Survey Of Page Replacement Algorithms In Linux. International
Journal of Engineering Research and Applications (IJERA). 3. 1397-
1401.

[17] Aho, Alfred & Denning, Peter & Ullman, Jeffrey. (1971). Principles of
Optimal Page Replacement. J. ACM. 18. 80-93.
10.1145/321623.321632.

[18] Research Publish Journals. "Page Replacement Algorithms." Research
Publish. Accessed November 27, 2024.

[19] Chavan, Amit S., et al. "A comparison of page replacement
algorithms." International Journal of Engineering and Technology 3.2
(2011): 171.

[20] Sandeep N. Bhatt ,Fan R.K. Chung, F.Thomas Leighton, Arnold L.
Rosenberg

[21] Kavar, Chandu & Parmar, Shaktisinh. (2013). Improve the performance
of LRU page replacement algorithm using augmentation of data
structure. 1-5. 10.1109/ICCCNT.2013.6726496.

[22] Neil, Elizabeth & Neil, Patrick & Weikum, Gerhard. (1999). An
Optimality Proof of the LRU-K Page Replacement Algorithm. Journal
of the ACM, v.46, 92-112 (1999). 46. 10.1145/300515.300518.

[23] Gupta, Ruchin & Teotia, Narendra. (2013). Least Recently Used Page
Replacement using Last Use Distance (LRUL). International Journal of
Computer Applications. 84. 8-10. 10.5120/14546-2631.

[24] Wang, Hong. (2014). Research on the Realization of LRU Algorithm.
Applied Mechanics and Materials. 530-531. 891-894.
10.4028/www.scientific.net/AMM.530-531.891.

[25] Sa’ed Abed, Sara Abdul Aziz AlAwadh, Wathiq Mansoor, Shadi
Atalla, Ahmad Alomari & Eric Yocam

[26] Zohreh Safari; Nahid Bohlol; Erfan Fouladfar

[27] Li, Jiatong & Hu, Huaixiang. (2021). An Adaptive Double Area Page
Replacement Algorithm for NAND Flash. Journal of Physics:
Conference Series. 1757. 012163. 10.1088/1742-6596/1757/1/012163.

[28] Lee, Woojoong & Park, Sejin & Sung, Baegjae & Park, Chanik.
Improving Adaptive Replacement Cache (ARC) by Reuse Distance.

[29] N. Megiddo and D. S. Modha, "Outperforming LRU with an adaptive
replacement cache algorithm," in Computer, vol. 37, no. 4, pp. 58-65,
April 2004

[30] P. Singh, R. Kumar, S. Kannaujia and N. Sarma, "Adaptive
Replacement Cache Policy in Named Data Networking," 2021
International Conference on Intelligent Technologies (CONIT), Hubli,
India, 2021, pp. 1-5

[31] Bansal, Sorav, and Dharmendra S. Modha. "Car: Clock with adaptive
replacement." FAST. Vol. 4. 2004.

[32] Jiang, Song, Feng Chen, and Xiaodong Zhang. "CLOCK-Pro: An
Effective Improvement of the CLOCK Replacement." USENIX Annual
Technical Conference, General Track. 2005.

[33] A. Jain and C. Lin, "Rethinking Belady's Algorithm to Accommodate
Prefetching," 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), Los Angeles, CA, USA, 2018, pp.
110-123, doi: 10.1109/ISCA.2018.00020

[34] A. Vakil-Ghahani, S. Mahdizadeh-Shahri, M. -R. Lotfi-Namin, M.
Bakhshalipour, P. Lotfi-Kamran and H. Sarbazi-Azad, "Cache
Replacement Policy Based on Expected Hit Count," in IEEE Computer
Architecture Letters, vol. 17, no. 1, pp. 64-67, 1 Jan.-June 2018, doi:
10.1109/LCA.2017.2762660.

http://www.ijsrem.com/

