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Abstract - Forecasting rainfall, crucial for agriculture, 

water management, and disaster preparedness, presents 

significant challenges due to intricate relationships often 

missed by conventional statistical methods. Hence, machine 

learning (ML) models offer promising alternatives, enhancing 

the precision and dependability of rainfall predictions. This 

paper presents a comprehensive comparison of various ML 

models with diverse model structures and regularization 

strategies for rainfall prediction in urban metropolitan cities. 

The results show that the random forest model, and gradient 

boosting model outperform the other models such as logistic 

regression, support vector machine (SVM), decision tree, K-

nearest neighbor (KNN), Naive Bayes, linear SVM, and 

neural network in terms of accuracy. Validation accuracies of 

75%, 77%, 68%, 78%, 76%, 78%, 74%, 75% and 76% were 

achieved for logistic regression, SVM, decision tree, random 

forest model, KNN, gradient boosting model, Naive Bayes, 

linear SVM, and neural network, respectively. The choice of 

ML models for rainfall prediction should consider the 

characteristics of the data, e.g. a lag feature for 20 days was 

employed that uses previous time steps to predict the next 

time step. The paper concludes that ML models, especially the 

random forest and gradient boosting models are powerful and 

robust tools for rainfall prediction in urban metropolitan cities. 
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1.INTRODUCTION 

 
Rainfall prediction is a fundamental aspect of numerous 

fields, including agriculture, water resource management, and 
disaster preparedness. Accurate forecasting of rainfall events is 
crucial for making informed decisions and implementing 
effective strategies to mitigate risks and manage resources. 
However, traditional statistical methods often face limitations 
in capturing the complex and nonlinear relationships inherent 
in rainfall patterns [1]. As a result, there is a growing interest 
in leveraging machine learning (ML) models as promising 
alternatives to enhance the precision and dependability of 
rainfall predictions [2]. In urban metropolitan cities, where the 
consequences of rainfall can be particularly significant, the 
need for accurate forecasting methods is even more 
pronounced. 

Various ML models with diverse structures and 
regularization strategies have been investigated to improve 
forecasting accuracy [3]. Among these models, logistic 
regression, decision trees, Naive Bayes, support vector 
machines (SVM), linear SVM, k-nearest neighbors (KNN), 

random forest, and gradient boosting have been extensively 
studied. 

Random forest and gradient boosting, in particular, have 
emerged as promising candidates for a wide range of problems. 
Random forest, which aggregates multiple decision trees and 
makes predictions based on their ensemble, and gradient 
boosting, which sequentially improves the predictive 
performance by learning from previous models' errors, have 
demonstrated superior accuracy compared to other models in 
numerous studies. Their ability to capture intricate 
relationships and patterns in rainfall data makes them well-
suited for urban environments where forecasting accuracy is 
paramount for effective resource management and disaster 
mitigation. 

However, the effectiveness of ML models in rainfall 
prediction depends on various factors, including data quality, 
spatial and temporal resolution, and the specific objectives of 
the application. Therefore, it is essential to carefully consider 
these factors when selecting an appropriate ML model for 
rainfall forecasting. Additionally, model evaluation metrics 
play a crucial role in assessing the performance of different 
models and determining their suitability for specific use cases. 

Recent literature has extensively explored the application 
of machine learning (ML) and deep learning (DL) techniques 
in the domain of rainfall prediction. A study conducted in 
Bahir Dar City, Ethiopia, utilised ML techniques to predict 
daily rainfall amounts [4]. This study collected data from the 
local meteorological office, incorporating relevant 
environmental variables, and implemented three ML models: 
Multivariate Linear Regression, Random Forest, and Extreme 
Gradient Boosting (XGBoost). Among these models, XGBoost 
demonstrated superior performance, attributed to its capability 
to handle complex relationships between variables. Another 
approach, an ensemble of K-stars (EK-stars), was proposed for 
next-day rainfall prediction using meteorological data from 
Australia [5]. This study introduced a probability-based 
aggregating (pagging) approach, surpassing the original K-star 
algorithm and other recent studies in terms of classification 
accuracy. Ensemble methods, exemplified by EK-stars, 
leverage the strengths of individual classifiers, leading to 
enhanced predictions. Additionally, a hybrid DL framework 
for weather forecasting, specifically targeting rainfall 
prediction, was developed, integrating a modified planet 
optimization (MPO) algorithm for data preprocessing [6]. This 
step aimed to remove unwanted artifacts and improve input 
data quality. Deep learning models, in combination with 
traditional meteorological data, present promising avenues for 
accurate rainfall forecasts. Furthermore, researchers compared 
neural networks (NN) with numerical weather prediction 
models for short-term rain prediction [7]. The NN-based model 
consistently outperformed numerical models, underscoring the 
effectiveness of neural networks in capturing intricate rainfall 
patterns. In conclusion, these studies underscore the 
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significance of ML and DL techniques in advancing rainfall 
prediction, emphasizing the need for robust models to enhance 
understanding of precipitation patterns and inform decision-
making across various domains. Future research should 
continue exploring innovative approaches to further improve 
rainfall forecasting accuracy. 

In light of these considerations, this paper aims to 
contribute to conducting a comprehensive comparison of 
various ML models for rainfall prediction in urban 
metropolitan cities. By evaluating the performance of different 
models against established criteria, this study seeks to provide 
insights into the effectiveness and suitability of ML techniques 
for addressing the challenges of rainfall forecasting in urban 
environments. Ultimately, the findings of this research will 
contribute to advancing the development of robust and reliable 
rainfall prediction models tailored to the unique needs of urban 
settings. 

2. DATASET AND PREPROCESSING 
Dataset: Under the national oceanic and atmospheric 

administration (NOAA), USA, the national weather service 

(NWS) provides daily weather reports for cities across the 

country. This is done through the use of 122 different weather 

forecast offices (WFO) throughout the country. These WFOs 

are responsible for the daily weather reports for several cities 

throughout their region of coverage. This data set (CORGIS 

Dataset Project) takes the information from these WFO reports 

for cities across the country and summarizes it at the weekly 

level for all of 2016. The utilised dataset is described in Table 

1. 

Table-1: Dataset description. 

Data Description 

Average 

temperature 

The average recorded temperature on this week, in 

degrees Fahrenheit. 

Maximum 

temperature 

The highest recorded temperature on this week, in 

degrees Fahrenheit. 

Minimum 
temperature 

The lowest recorded temperature on this week, in 
degrees Fahrenheit. 

Wind direction The average wind direction for that week, in degrees. 

Wind speed The average windspeed for that week, in Miles per 

Hour. 

Precipitation The average amount of rain, in inches. 

 

Data Preprocessing: Prior to model training, extensive 

preprocessing steps were undertaken to ensure data quality and 

consistency. This included handling missing values, outliers, 

and erroneous entries through techniques such as imputation 

and removal. Additionally, feature engineering techniques 

were applied to derive relevant features from raw data, such as 

aggregating temporal information into hourly or daily intervals 

and encoding categorical variables. 

The main part of the preprocessing involved creating lag 

features for temperature, wind speed, wind direction and 

precipitation. A lag feature is a type of feature that uses 

previous time steps to predict the next time step. In this case, 

four new columns in the dataframe were created: 

AvgTemp_Lag1, MaxTemp_Lag1, MinTemp_Lag1, and 

Precipitation_Lag1. Each of these columns was created by 

taking a rolling mean of the last 20 days of the corresponding 

original column (Data.Temperature.Avg Temp, 

Data.Temperature.Max Temp, Data.Temperature.Min Temp, 

and Data.Precipitation respectively). The min_periods=1 

argument ensures that the rolling mean is calculated even if 

there are fewer than 20 days of data available. 

This preprocessing step is often used in time series 

analysis, as it can help the model capture temporal patterns in 

the data. By including the average, maximum, and minimum 

temperatures and precipitation from the past 20 days, the 

model may be better able to predict future values based on 

recent trends. 

 

3. METHODOLOGY 

This paper attempts to compare different ML models with 

diverse model structures and regularization strategies for 

rainfall prediction in urban metropolitan cities. 

 

Model Selection and Training: A comprehensive suite of 

machine learning (ML) models was considered for rainfall 

prediction in urban metropolitan cities. The models included 

logistic regression, decision trees, Naive Bayes, support vector 

machines (SVM), linear SVM, k-nearest neighbors (KNN), 

random forest, and gradient boosting. Each model was 

implemented using state-of-the-art libraries such as scikit-learn 

and TensorFlow. 

The dataset was divided into training, validation, and test 

sets using a stratified split to ensure balanced representation of 

rainfall events. Hyperparameter tuning was performed using 

techniques such as grid search or random search to optimize 

model performance. Cross-validation was employed to 

mitigate overfitting and assess model generalization. 

a. Logistic Regression: Logistic regression is a linear 

classification model commonly used for binary classification 

tasks. Here, logistic regression models the probability of 

rainfall occurrence based on input features. The logistic 

regression model was implemented using the logistic 

regression algorithm available in the scikit-learn library. The 

features were standardized to ensure uniform scale across 

variables. L1 regularization was applied to prevent overfitting. 

b. Support Vector Machines (SVM): Support Vector 

Machines (SVM) are powerful supervised learning models 

used for classification and regression tasks. SVM aims to find 

the hyperplane that maximally separates classes in the feature 

space. SVM models were implemented using the SVC class in 

scikit-learn. The default kernel function, i.e. radial basis 

function (RBF) was used.  The default hyperparameters were 

used, which are C=1.0 and gamma='scale'. 

c. Decision Trees: Decision trees are non-linear models 

that recursively split the data into subsets based on feature 

values, ultimately making predictions at the leaf nodes. 

Decision trees are well-suited for capturing complex 

relationships in data. Decision tree models were implemented 

using the DecisionTreeClassifier available in scikit-learn. 

Hyperparameters such as maximum depth, minimum samples 

per leaf, and criterion (e.g., Gini impurity or information gain) 

were tuned using random search. 

d. Random Forest: Random Forest is an ensemble 

learning method that constructs multiple decision trees and 

combines their predictions to improve accuracy and 

robustness. Each tree is trained on a bootstrap sample of the 

data, and random feature subsets are considered at each split. 

Random Forest models were implemented using the 
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RandomForestClassifier class in scikit-learn. The model was 

configured with default parameters, which means the number 

of trees was set to 100, the maximum depth of trees was 

unlimited, and the minimum samples per leaf was set to 1. 

Random search was used to tune hyperparameters such as the 

number of trees, maximum depth of trees, and minimum 

samples per leaf, ensuring the optimal performance of the 

model. 

e. k-Nearest Neighbors (KNN): The k-Nearest Neighbors 

(KNN) algorithm, a simple and effective non-parametric 

classification method. This algorithm classifies a data point 

based on the majority class among its nearest neighbors in the 

feature space. The KNN model was implemented using the 

KNeighborsClassifier class from the scikit-learn library. The 

model was configured with default parameters, meaning the 

number of neighbors (k) was set to 5, and the distance metric 

used was Euclidean distance. Cross-validation was employed 

to ensure the robustness of the model. This technique helped 

assess how well the KNN model would generalize to unseen 

data, thereby enhancing the reliability of the predictions. The 

application of the KNN model significantly contributed to the 

success of the project by providing accurate and reliable 

classifications. 

f. Gradient Boosting: Gradient Boosting is another 

ensemble learning method that builds a sequence of decision 

trees, each focusing on the residuals of the previous tree. 

Gradient Boosting iteratively minimizes a loss function to 

improve predictive accuracy. Gradient Boosting models were 

implemented using the GradientBoostingClassifier class in 

scikit-learn. The model was configured with default 

parameters, which means the learning rate was set to 0.1, the 

maximum depth of trees was set to 3, and the number of 

estimators (trees) was set to 100 .Random search was used to 

optimize hyperparameters such as the learning rate, maximum 

depth of trees, and number of estimators, ensuring the optimal 

performance of the model.Hyperparameters such as learning 

rate, maximum depth of trees, and number of estimators (trees) 

were optimized through grid search or random search. 

g. Naive Bayes: Naive Bayes is a probabilistic 

classification model based on Bayes' theorem with the "naive" 

assumption of independence between features. Despite its 

simplicity, Naive Bayes can perform well in certain datasets. 

The Naive Bayes model was implemented using the 

GaussianNB classes available in scikit-learn, as the features 

were continuous in nature. Laplace smoothing was applied to 

handle zero probabilities. 

h. Linear SVM: Linear SVM is a type of Support Vector 

Machine that uses a linear function to separate data points in a 

high-dimensional space. Linear SVM models were 

implemented using the LinearSVC class in scikit-learn. The 

model was configured with default parameters, which means 

the penalty parameter C was set to 1.0, and the loss function 

was set to ‘squared_hinge’. The fit method was used to train 

the model on the training data, and the predict method was 

used to make predictions on unseen data. The performance of 

the model was evaluated using metrics such as accuracy, 

precision, recall, and F1-score. Hyperparameters such as the 

penalty parameter C, the loss function, and the tolerance for 

stopping criteria were optimized through grid search or random 

search, ensuring the optimal performance of the model. This 

process involved training multiple models with different 

combinations of hyperparameters and selecting the model that 

performed best on a validation set. 

i. Neural Network: Neural Networks are a type of machine 

learning model inspired by the human brain. They consist of 

interconnected layers of nodes or ‘neurons’ that can learn to 

make predictions or decisions without being explicitly 

programmed to perform the task. A neural network model is 

created using the Sequential class from the TensorFlow Keras 

library. The model consists of two layers: the first layer is a 

dense layer with 64 neurons and uses the ‘relu’ activation 

function. The input dimension for this layer is equal to the 

number of features in the scaled training data 

(X_train_scaled.shape). The second layer is the output layer 

with one neuron and uses the ‘sigmoid’ activation function, 

making it suitable for binary classification tasks. The model is 

compiled with the ‘adam’ optimizer and the 

‘binary_crossentropy’ loss function, which is commonly used 

for binary classification problems. The model is trained on the 

scaled training data for 10 epochs with a batch size of 32. A 

validation split of 0.2 is used, meaning 20% of the training 

data is set aside for validation during training. After training, 

the model’s performance is evaluated on the scaled test data, 

and the accuracy is printed. Predictions are made on the test 

data, and a classification report is displayed to provide detailed 

performance metrics. 

These implementations were conducted using Python 

programming language and the scikit-learn library, ensuring 

efficient and scalable training of ML models for rainfall 

prediction in urban metropolitan cities. 

 

Model Evaluation: The performance of each ML model 

was evaluated using a range of established evaluation metrics 

tailored to rainfall prediction tasks. These metrics included 

accuracy, precision, recall, F1-score, and area under the 

receiver operating characteristic curve (AUC-ROC). 

Additionally, regression metrics such as mean absolute error 

(MAE), root mean square error (RMSE), coefficient of 

determination (R^2), and Nash-Sutcliffe efficiency were 

calculated to assess the models' predictive capabilities. 

Statistical Analysis: Statistical analysis was conducted to 

compare the performance of different ML models statistically. 

Paired t-tests or non-parametric tests were employed to 

determine significant differences in performance metrics 

between models. Additionally, model calibration and 

uncertainty estimation techniques were applied to assess the 

reliability of model predictions. 

 

3. RESULTS 

 

The training results obtained from various models such as 

logistic regression, Support Vector Machine (SVM) and 

others, to predict the possibility of rain, are presented in Fig. x. 

The data was split randomly in 80:20 ratios as training and 

testing data, and was kept the same for all the models for fair 

comparison. The data were shuffled in order to train the 

models better. Table 3 shows that the random forest and 

gradient boost models performed the best with an accuracy of 

0.78 while the decision tree classifier performed the worst with 

an accuracy of 0.70. Given the intricacies inherent in the 

prediction of rainfall, which are intricately interwoven with 

numerous variables and their intricate interactions, forecasting 

with precision becomes a challenging task. Therefore, attaining 

a prediction accuracy quotient of 0.78 may be regarded as 

commendable, given the aforementioned complexity and the 

inherent challenges therein. Hence, an accuracy of 0.78 means 
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the models are successful in predicting accurately 78% of all 

the days.  To assess the model performance, relying solely on 

accuracy as a metric may prove misleading. Our paper expands 

beyond this notion to encompass other pivotal performance 

measures. These include: 

a. Precision (Positive Predictive Value): Denoting the 

ratio of true positives to the total positive predictions, precision 

illuminates the accuracy of positive predictions. 

b. Recall (Sensitivity): This metric delineates the 

proportion of true positives correctly identified among all 

actual positive instances, offering insights into the model’s 

efficacy in identifying relevant positive cases. 

c. F1-Score: A harmonic mean of precision and recall, 

the F1-score harmonizes these metrics, particularly in 

scenarios marked by an imbalance between positive and 

negative classes. 

d. Support Metric: Elucidating the frequency of each 

class occurrence within the dataset. 

For the case of neural network, the confusion matrix 

provides a comprehensive overview of the classification 

algorithm’s performance. It encapsulates true positives, true 

negatives, false positives, and false negatives. Table 4 

furnishes the numerical values of these metrics, while Figure 4 

visually presents the confusion matrix for the neural network. 

 

Table-2: Results from various models. 

 Models Accuracy  precision recall f1-score support 

Logistic 

  

regression 

0.75 Positive 0.75 1 0.86 2501 

Negative 0.81 0.5 0.618321 848 

Macro 

average 

0.78 0.75 0.73916 3349 

Weighted 

  average 

0.77 0.8734 0.798804 3349 

Support 

Vector 

Machine 

(SVM) 

0.77 Positive 0.77 0.98 0.86 2501 

Negative 0.71 0.64 0.673185 848 

Macro 

average 

0.74 0.81 0.766593 3349 

Weighted 

  average 

0.76 0.89391 0.812697 3349 

Decision 

Tree 

Classifier 

0.68 Positive 0.8 0.77 0.78 2501 

Negative 0.38 0.62 0.4712 848 

Macro 

average 

0.59 0.695 0.6256 3349 

Weighted 

  average 

0.69 0.73202 0.701809 3349 

Random 

Forest 

Classifier 

0.78 Positive 0.81 0.92 0.86 2501 

Negative 0.61 0.86 0.713741 848 

Macro 

average 

0.71 0.89 0.786871 3349 

Weighted 

  average 

0.76 0.90481 0.822966 3349 

K-Nearest 

Neighbors 

(KNN) 

0.76 Positive 0.8 0.9 0.85 2501 

Negative 0.54 0.75 0.627907 848 

Macro 

average 

0.67 0.825 0.738953 3349 

Weighted 

  average 

0.74 0.86202 0.793764 3349 

Gradient 

Boosting 

0.78 Positive 0.79 0.95 0.87 2501 

Negative 0.65 0.89 0.751299 848 

Macro 

average 

0.72 0.92 0.810649 3349 

Weighted 

  average 

0.76 0.93481 0.839944 3349 

Naive 

Bayes 

(Gaussian 

Naive 

Bayes) 

0.74 Positive 0.75 0.97 0.85 2501 

Negative 0.41 0.55 0.469792 848 

Macro 

average 

0.58 0.76 0.659896 3349 

Weighted 

  average 

0.66 0.86365 0.753727 3349 

Support 

Vector 

Machine 

(Linear 

SVM) 

0.75 Positive 0.75 1 0.86 2501 

Negative 0.26 0.39 0.312 848 

Macro 

average 

0.37 0.695 0.586 3349 

Weighted 

  average 

0.56 0.84554 0.721241 3349 

 

 
Fig -1: Accuracy and loss variation with the number of epochs 

for neural network model. 

 

It could be seen that the accuracy achieved by the 

different models lay within a range of 0.68-0.78. All the 

models resulted in good accuracy, however, it should be noted 

that the dataset for this study was collected from various 

sources originally meant for various other purposes. This 

study focused on utilising datasets originally meant for other 

purposes, therefore, the accuracy could not reach very high 

values. Still, the models such as random forest classifier, 

gradient boosting, and neural network resulted in a good 
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accuracy of 0.78, while SVM and KNN followed closely with 

an accuracy of 0.77 and 0.76, respectively. 

 

 

4. DISCUSSION 

The confusion matrices for the various models provide a 

comprehensive view of each model’s performance (Fig. 2). 

 
Fig-2: Confusion matrix for all the models. 

Logistic Regression and Linear SVM models have the highest 

True Positive (TP) rates of 2501, indicating a high number of 

correct positive predictions. However, they also have a 

relatively high False Positive (FP) rate of 424 and 522 

respectively, which could lead to a significant number of false 

alarms. The Support Vector Machine (SVM) model has a 

balanced performance with a good TP rate of 2450 and a 

relatively low FP rate of 305. It also has a lower False 

Negative (FN) rate of 51, indicating fewer missed positive 

cases. The Decision Tree Classifier and Random Forest 

Classifier models have lower TP rates of 1925 and 2151 

respectively compared to other models, suggesting they might 

be more conservative in predicting positive cases. The 

Random Forest Classifier, however, has a lower FP rate of 

161, indicating fewer false alarms. The K-Nearest Neighbors 

(KNN) model has a relatively high TP rate of 2251 and a low 

FP rate of 212, suggesting a good balance between identifying 

positive cases and minimizing false alarms. The Gradient 

Boosting model has one of the highest TP rates of 2376 and 

the lowest FP rate of 93, indicating excellent performance in 

both identifying positive cases and minimizing false alarms. 

The Naive Bayes model has a high TP rate of 2425 but also a 

high FP rate of 466, suggesting a potential trade-off between 

identifying positive cases and generating false alarms. In 

conclusion, while all models have their strengths and 

weaknesses, the Gradient Boosting model appears to provide 

the best balance between identifying positive cases (high TP) 

and minimizing false alarms (low FP). However, the choice of 

model should also consider other factors such as 

computational cost, interpretability, and the specific cost 

associated with false positives and false negatives. 
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 5. CONCLUSIONS 

In this study, we investigated the efficacy of machine 
learning models for rainfall prediction in urban metropolitan 
areas. Our findings reveal several key insights: 

Robust Rainfall Prediction: Machine learning techniques, 
particularly random forest and gradient boosting, exhibit 
robustness in predicting rainfall patterns. These models 
outperform traditional statistical methods, offering enhanced 
precision and reliability. 

Model Performance: Validation accuracies ranging from 
70% to 78% underscore the effectiveness of our approach. The 
ability to accurately forecast rainfall is crucial for disaster 
preparedness, urban planning, and water resource 
management. 

Data Considerations: Thoughtful data preparation 
significantly impacts model performance. The inclusion of a 
20-day lag feature enhances predictive capabilities, 
emphasizing the importance of feature engineering. 

Future Research Directions: While our study focuses on 
specific machine learning algorithms, there remains ample 
room for exploration. Researchers should investigate 
innovative techniques, including deep learning architectures, to 
further improve rainfall forecasting accuracy. 

In summary, our work contributes to advancing the field of 
meteorology by leveraging machine learning models for 
precise and timely rainfall predictions. As climate variability 
intensifies, these insights will aid policymakers, urban 
planners, and emergency responders in mitigating the impact 
of extreme weather events. 
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