
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32427 | Page 1

Performance Comparison of Various Machine Learning Models for Rainfall

Prediction Using Wind Information

Vishal Jain1, Anil Kumar Jain 2

1 M.Tech. Scholar in Renewable Energy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore
2 Professor in Electrical & Electronics Department, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore

---***---
Abstract - Forecasting rainfall, crucial for agriculture,

water management, and disaster preparedness, presents

significant challenges due to intricate relationships often

missed by conventional statistical methods. Hence, machine

learning (ML) models offer promising alternatives, enhancing

the precision and dependability of rainfall predictions. This

paper presents a comprehensive comparison of various ML

models with diverse model structures and regularization

strategies for rainfall prediction in urban metropolitan cities.

The results show that the random forest model, and gradient

boosting model outperform the other models such as logistic

regression, support vector machine (SVM), decision tree, K-

nearest neighbor (KNN), Naive Bayes, linear SVM, and

neural network in terms of accuracy. Validation accuracies of

75%, 77%, 68%, 78%, 76%, 78%, 74%, 75% and 76% were

achieved for logistic regression, SVM, decision tree, random

forest model, KNN, gradient boosting model, Naive Bayes,

linear SVM, and neural network, respectively. The choice of

ML models for rainfall prediction should consider the

characteristics of the data, e.g. a lag feature for 20 days was

employed that uses previous time steps to predict the next

time step. The paper concludes that ML models, especially the

random forest and gradient boosting models are powerful and

robust tools for rainfall prediction in urban metropolitan cities.

Key Words: rainfall prediction, wind information, machine

learning, gradient boosting, random forest

1.INTRODUCTION

Rainfall prediction is a fundamental aspect of numerous

fields, including agriculture, water resource management, and
disaster preparedness. Accurate forecasting of rainfall events is
crucial for making informed decisions and implementing
effective strategies to mitigate risks and manage resources.
However, traditional statistical methods often face limitations
in capturing the complex and nonlinear relationships inherent
in rainfall patterns [1]. As a result, there is a growing interest
in leveraging machine learning (ML) models as promising
alternatives to enhance the precision and dependability of
rainfall predictions [2]. In urban metropolitan cities, where the
consequences of rainfall can be particularly significant, the
need for accurate forecasting methods is even more
pronounced.

Various ML models with diverse structures and
regularization strategies have been investigated to improve
forecasting accuracy [3]. Among these models, logistic
regression, decision trees, Naive Bayes, support vector
machines (SVM), linear SVM, k-nearest neighbors (KNN),

random forest, and gradient boosting have been extensively
studied.

Random forest and gradient boosting, in particular, have
emerged as promising candidates for a wide range of problems.
Random forest, which aggregates multiple decision trees and
makes predictions based on their ensemble, and gradient
boosting, which sequentially improves the predictive
performance by learning from previous models' errors, have
demonstrated superior accuracy compared to other models in
numerous studies. Their ability to capture intricate
relationships and patterns in rainfall data makes them well-
suited for urban environments where forecasting accuracy is
paramount for effective resource management and disaster
mitigation.

However, the effectiveness of ML models in rainfall
prediction depends on various factors, including data quality,
spatial and temporal resolution, and the specific objectives of
the application. Therefore, it is essential to carefully consider
these factors when selecting an appropriate ML model for
rainfall forecasting. Additionally, model evaluation metrics
play a crucial role in assessing the performance of different
models and determining their suitability for specific use cases.

Recent literature has extensively explored the application
of machine learning (ML) and deep learning (DL) techniques
in the domain of rainfall prediction. A study conducted in
Bahir Dar City, Ethiopia, utilised ML techniques to predict
daily rainfall amounts [4]. This study collected data from the
local meteorological office, incorporating relevant
environmental variables, and implemented three ML models:
Multivariate Linear Regression, Random Forest, and Extreme
Gradient Boosting (XGBoost). Among these models, XGBoost
demonstrated superior performance, attributed to its capability
to handle complex relationships between variables. Another
approach, an ensemble of K-stars (EK-stars), was proposed for
next-day rainfall prediction using meteorological data from
Australia [5]. This study introduced a probability-based
aggregating (pagging) approach, surpassing the original K-star
algorithm and other recent studies in terms of classification
accuracy. Ensemble methods, exemplified by EK-stars,
leverage the strengths of individual classifiers, leading to
enhanced predictions. Additionally, a hybrid DL framework
for weather forecasting, specifically targeting rainfall
prediction, was developed, integrating a modified planet
optimization (MPO) algorithm for data preprocessing [6]. This
step aimed to remove unwanted artifacts and improve input
data quality. Deep learning models, in combination with
traditional meteorological data, present promising avenues for
accurate rainfall forecasts. Furthermore, researchers compared
neural networks (NN) with numerical weather prediction
models for short-term rain prediction [7]. The NN-based model
consistently outperformed numerical models, underscoring the
effectiveness of neural networks in capturing intricate rainfall
patterns. In conclusion, these studies underscore the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32427 | Page 2

significance of ML and DL techniques in advancing rainfall
prediction, emphasizing the need for robust models to enhance
understanding of precipitation patterns and inform decision-
making across various domains. Future research should
continue exploring innovative approaches to further improve
rainfall forecasting accuracy.

In light of these considerations, this paper aims to
contribute to conducting a comprehensive comparison of
various ML models for rainfall prediction in urban
metropolitan cities. By evaluating the performance of different
models against established criteria, this study seeks to provide
insights into the effectiveness and suitability of ML techniques
for addressing the challenges of rainfall forecasting in urban
environments. Ultimately, the findings of this research will
contribute to advancing the development of robust and reliable
rainfall prediction models tailored to the unique needs of urban
settings.

2. DATASET AND PREPROCESSING
Dataset: Under the national oceanic and atmospheric

administration (NOAA), USA, the national weather service

(NWS) provides daily weather reports for cities across the

country. This is done through the use of 122 different weather

forecast offices (WFO) throughout the country. These WFOs

are responsible for the daily weather reports for several cities

throughout their region of coverage. This data set (CORGIS

Dataset Project) takes the information from these WFO reports

for cities across the country and summarizes it at the weekly

level for all of 2016. The utilised dataset is described in Table

1.

Table-1: Dataset description.

Data Description

Average

temperature

The average recorded temperature on this week, in

degrees Fahrenheit.

Maximum

temperature

The highest recorded temperature on this week, in

degrees Fahrenheit.

Minimum
temperature

The lowest recorded temperature on this week, in
degrees Fahrenheit.

Wind direction The average wind direction for that week, in degrees.

Wind speed The average windspeed for that week, in Miles per

Hour.

Precipitation The average amount of rain, in inches.

Data Preprocessing: Prior to model training, extensive

preprocessing steps were undertaken to ensure data quality and

consistency. This included handling missing values, outliers,

and erroneous entries through techniques such as imputation

and removal. Additionally, feature engineering techniques

were applied to derive relevant features from raw data, such as

aggregating temporal information into hourly or daily intervals

and encoding categorical variables.

The main part of the preprocessing involved creating lag

features for temperature, wind speed, wind direction and

precipitation. A lag feature is a type of feature that uses

previous time steps to predict the next time step. In this case,

four new columns in the dataframe were created:

AvgTemp_Lag1, MaxTemp_Lag1, MinTemp_Lag1, and

Precipitation_Lag1. Each of these columns was created by

taking a rolling mean of the last 20 days of the corresponding

original column (Data.Temperature.Avg Temp,

Data.Temperature.Max Temp, Data.Temperature.Min Temp,

and Data.Precipitation respectively). The min_periods=1

argument ensures that the rolling mean is calculated even if

there are fewer than 20 days of data available.

This preprocessing step is often used in time series

analysis, as it can help the model capture temporal patterns in

the data. By including the average, maximum, and minimum

temperatures and precipitation from the past 20 days, the

model may be better able to predict future values based on

recent trends.

3. METHODOLOGY

This paper attempts to compare different ML models with

diverse model structures and regularization strategies for

rainfall prediction in urban metropolitan cities.

Model Selection and Training: A comprehensive suite of

machine learning (ML) models was considered for rainfall

prediction in urban metropolitan cities. The models included

logistic regression, decision trees, Naive Bayes, support vector

machines (SVM), linear SVM, k-nearest neighbors (KNN),

random forest, and gradient boosting. Each model was

implemented using state-of-the-art libraries such as scikit-learn

and TensorFlow.

The dataset was divided into training, validation, and test

sets using a stratified split to ensure balanced representation of

rainfall events. Hyperparameter tuning was performed using

techniques such as grid search or random search to optimize

model performance. Cross-validation was employed to

mitigate overfitting and assess model generalization.

a. Logistic Regression: Logistic regression is a linear

classification model commonly used for binary classification

tasks. Here, logistic regression models the probability of

rainfall occurrence based on input features. The logistic

regression model was implemented using the logistic

regression algorithm available in the scikit-learn library. The

features were standardized to ensure uniform scale across

variables. L1 regularization was applied to prevent overfitting.

b. Support Vector Machines (SVM): Support Vector

Machines (SVM) are powerful supervised learning models

used for classification and regression tasks. SVM aims to find

the hyperplane that maximally separates classes in the feature

space. SVM models were implemented using the SVC class in

scikit-learn. The default kernel function, i.e. radial basis

function (RBF) was used. The default hyperparameters were

used, which are C=1.0 and gamma='scale'.

c. Decision Trees: Decision trees are non-linear models

that recursively split the data into subsets based on feature

values, ultimately making predictions at the leaf nodes.

Decision trees are well-suited for capturing complex

relationships in data. Decision tree models were implemented

using the DecisionTreeClassifier available in scikit-learn.

Hyperparameters such as maximum depth, minimum samples

per leaf, and criterion (e.g., Gini impurity or information gain)

were tuned using random search.

d. Random Forest: Random Forest is an ensemble

learning method that constructs multiple decision trees and

combines their predictions to improve accuracy and

robustness. Each tree is trained on a bootstrap sample of the

data, and random feature subsets are considered at each split.

Random Forest models were implemented using the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32427 | Page 3

RandomForestClassifier class in scikit-learn. The model was

configured with default parameters, which means the number

of trees was set to 100, the maximum depth of trees was

unlimited, and the minimum samples per leaf was set to 1.

Random search was used to tune hyperparameters such as the

number of trees, maximum depth of trees, and minimum

samples per leaf, ensuring the optimal performance of the

model.

e. k-Nearest Neighbors (KNN): The k-Nearest Neighbors

(KNN) algorithm, a simple and effective non-parametric

classification method. This algorithm classifies a data point

based on the majority class among its nearest neighbors in the

feature space. The KNN model was implemented using the

KNeighborsClassifier class from the scikit-learn library. The

model was configured with default parameters, meaning the

number of neighbors (k) was set to 5, and the distance metric

used was Euclidean distance. Cross-validation was employed

to ensure the robustness of the model. This technique helped

assess how well the KNN model would generalize to unseen

data, thereby enhancing the reliability of the predictions. The

application of the KNN model significantly contributed to the

success of the project by providing accurate and reliable

classifications.

f. Gradient Boosting: Gradient Boosting is another

ensemble learning method that builds a sequence of decision

trees, each focusing on the residuals of the previous tree.

Gradient Boosting iteratively minimizes a loss function to

improve predictive accuracy. Gradient Boosting models were

implemented using the GradientBoostingClassifier class in

scikit-learn. The model was configured with default

parameters, which means the learning rate was set to 0.1, the

maximum depth of trees was set to 3, and the number of

estimators (trees) was set to 100 .Random search was used to

optimize hyperparameters such as the learning rate, maximum

depth of trees, and number of estimators, ensuring the optimal

performance of the model.Hyperparameters such as learning

rate, maximum depth of trees, and number of estimators (trees)

were optimized through grid search or random search.

g. Naive Bayes: Naive Bayes is a probabilistic

classification model based on Bayes' theorem with the "naive"

assumption of independence between features. Despite its

simplicity, Naive Bayes can perform well in certain datasets.

The Naive Bayes model was implemented using the

GaussianNB classes available in scikit-learn, as the features

were continuous in nature. Laplace smoothing was applied to

handle zero probabilities.

h. Linear SVM: Linear SVM is a type of Support Vector

Machine that uses a linear function to separate data points in a

high-dimensional space. Linear SVM models were

implemented using the LinearSVC class in scikit-learn. The

model was configured with default parameters, which means

the penalty parameter C was set to 1.0, and the loss function

was set to ‘squared_hinge’. The fit method was used to train

the model on the training data, and the predict method was

used to make predictions on unseen data. The performance of

the model was evaluated using metrics such as accuracy,

precision, recall, and F1-score. Hyperparameters such as the

penalty parameter C, the loss function, and the tolerance for

stopping criteria were optimized through grid search or random

search, ensuring the optimal performance of the model. This

process involved training multiple models with different

combinations of hyperparameters and selecting the model that

performed best on a validation set.

i. Neural Network: Neural Networks are a type of machine

learning model inspired by the human brain. They consist of

interconnected layers of nodes or ‘neurons’ that can learn to

make predictions or decisions without being explicitly

programmed to perform the task. A neural network model is

created using the Sequential class from the TensorFlow Keras

library. The model consists of two layers: the first layer is a

dense layer with 64 neurons and uses the ‘relu’ activation

function. The input dimension for this layer is equal to the

number of features in the scaled training data

(X_train_scaled.shape). The second layer is the output layer

with one neuron and uses the ‘sigmoid’ activation function,

making it suitable for binary classification tasks. The model is

compiled with the ‘adam’ optimizer and the

‘binary_crossentropy’ loss function, which is commonly used

for binary classification problems. The model is trained on the

scaled training data for 10 epochs with a batch size of 32. A

validation split of 0.2 is used, meaning 20% of the training

data is set aside for validation during training. After training,

the model’s performance is evaluated on the scaled test data,

and the accuracy is printed. Predictions are made on the test

data, and a classification report is displayed to provide detailed

performance metrics.

These implementations were conducted using Python

programming language and the scikit-learn library, ensuring

efficient and scalable training of ML models for rainfall

prediction in urban metropolitan cities.

Model Evaluation: The performance of each ML model

was evaluated using a range of established evaluation metrics

tailored to rainfall prediction tasks. These metrics included

accuracy, precision, recall, F1-score, and area under the

receiver operating characteristic curve (AUC-ROC).

Additionally, regression metrics such as mean absolute error

(MAE), root mean square error (RMSE), coefficient of

determination (R^2), and Nash-Sutcliffe efficiency were

calculated to assess the models' predictive capabilities.

Statistical Analysis: Statistical analysis was conducted to

compare the performance of different ML models statistically.

Paired t-tests or non-parametric tests were employed to

determine significant differences in performance metrics

between models. Additionally, model calibration and

uncertainty estimation techniques were applied to assess the

reliability of model predictions.

3. RESULTS

The training results obtained from various models such as

logistic regression, Support Vector Machine (SVM) and

others, to predict the possibility of rain, are presented in Fig. x.

The data was split randomly in 80:20 ratios as training and

testing data, and was kept the same for all the models for fair

comparison. The data were shuffled in order to train the

models better. Table 3 shows that the random forest and

gradient boost models performed the best with an accuracy of

0.78 while the decision tree classifier performed the worst with

an accuracy of 0.70. Given the intricacies inherent in the

prediction of rainfall, which are intricately interwoven with

numerous variables and their intricate interactions, forecasting

with precision becomes a challenging task. Therefore, attaining

a prediction accuracy quotient of 0.78 may be regarded as

commendable, given the aforementioned complexity and the

inherent challenges therein. Hence, an accuracy of 0.78 means

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32427 | Page 4

the models are successful in predicting accurately 78% of all

the days. To assess the model performance, relying solely on

accuracy as a metric may prove misleading. Our paper expands

beyond this notion to encompass other pivotal performance

measures. These include:

a. Precision (Positive Predictive Value): Denoting the

ratio of true positives to the total positive predictions, precision

illuminates the accuracy of positive predictions.

b. Recall (Sensitivity): This metric delineates the

proportion of true positives correctly identified among all

actual positive instances, offering insights into the model’s

efficacy in identifying relevant positive cases.

c. F1-Score: A harmonic mean of precision and recall,

the F1-score harmonizes these metrics, particularly in

scenarios marked by an imbalance between positive and

negative classes.

d. Support Metric: Elucidating the frequency of each

class occurrence within the dataset.

For the case of neural network, the confusion matrix

provides a comprehensive overview of the classification

algorithm’s performance. It encapsulates true positives, true

negatives, false positives, and false negatives. Table 4

furnishes the numerical values of these metrics, while Figure 4

visually presents the confusion matrix for the neural network.

Table-2: Results from various models.

 Models Accuracy precision recall f1-score support

Logistic

regression

0.75 Positive 0.75 1 0.86 2501

Negative 0.81 0.5 0.618321 848

Macro

average

0.78 0.75 0.73916 3349

Weighted

 average

0.77 0.8734 0.798804 3349

Support

Vector

Machine

(SVM)

0.77 Positive 0.77 0.98 0.86 2501

Negative 0.71 0.64 0.673185 848

Macro

average

0.74 0.81 0.766593 3349

Weighted

 average

0.76 0.89391 0.812697 3349

Decision

Tree

Classifier

0.68 Positive 0.8 0.77 0.78 2501

Negative 0.38 0.62 0.4712 848

Macro

average

0.59 0.695 0.6256 3349

Weighted

 average

0.69 0.73202 0.701809 3349

Random

Forest

Classifier

0.78 Positive 0.81 0.92 0.86 2501

Negative 0.61 0.86 0.713741 848

Macro

average

0.71 0.89 0.786871 3349

Weighted

 average

0.76 0.90481 0.822966 3349

K-Nearest

Neighbors

(KNN)

0.76 Positive 0.8 0.9 0.85 2501

Negative 0.54 0.75 0.627907 848

Macro

average

0.67 0.825 0.738953 3349

Weighted

 average

0.74 0.86202 0.793764 3349

Gradient

Boosting

0.78 Positive 0.79 0.95 0.87 2501

Negative 0.65 0.89 0.751299 848

Macro

average

0.72 0.92 0.810649 3349

Weighted

 average

0.76 0.93481 0.839944 3349

Naive

Bayes

(Gaussian

Naive

Bayes)

0.74 Positive 0.75 0.97 0.85 2501

Negative 0.41 0.55 0.469792 848

Macro

average

0.58 0.76 0.659896 3349

Weighted

 average

0.66 0.86365 0.753727 3349

Support

Vector

Machine

(Linear

SVM)

0.75 Positive 0.75 1 0.86 2501

Negative 0.26 0.39 0.312 848

Macro

average

0.37 0.695 0.586 3349

Weighted

 average

0.56 0.84554 0.721241 3349

Fig -1: Accuracy and loss variation with the number of epochs

for neural network model.

It could be seen that the accuracy achieved by the

different models lay within a range of 0.68-0.78. All the

models resulted in good accuracy, however, it should be noted

that the dataset for this study was collected from various

sources originally meant for various other purposes. This

study focused on utilising datasets originally meant for other

purposes, therefore, the accuracy could not reach very high

values. Still, the models such as random forest classifier,

gradient boosting, and neural network resulted in a good

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32427 | Page 5

accuracy of 0.78, while SVM and KNN followed closely with

an accuracy of 0.77 and 0.76, respectively.

4. DISCUSSION

The confusion matrices for the various models provide a

comprehensive view of each model’s performance (Fig. 2).

Fig-2: Confusion matrix for all the models.

Logistic Regression and Linear SVM models have the highest

True Positive (TP) rates of 2501, indicating a high number of

correct positive predictions. However, they also have a

relatively high False Positive (FP) rate of 424 and 522

respectively, which could lead to a significant number of false

alarms. The Support Vector Machine (SVM) model has a

balanced performance with a good TP rate of 2450 and a

relatively low FP rate of 305. It also has a lower False

Negative (FN) rate of 51, indicating fewer missed positive

cases. The Decision Tree Classifier and Random Forest

Classifier models have lower TP rates of 1925 and 2151

respectively compared to other models, suggesting they might

be more conservative in predicting positive cases. The

Random Forest Classifier, however, has a lower FP rate of

161, indicating fewer false alarms. The K-Nearest Neighbors

(KNN) model has a relatively high TP rate of 2251 and a low

FP rate of 212, suggesting a good balance between identifying

positive cases and minimizing false alarms. The Gradient

Boosting model has one of the highest TP rates of 2376 and

the lowest FP rate of 93, indicating excellent performance in

both identifying positive cases and minimizing false alarms.

The Naive Bayes model has a high TP rate of 2425 but also a

high FP rate of 466, suggesting a potential trade-off between

identifying positive cases and generating false alarms. In

conclusion, while all models have their strengths and

weaknesses, the Gradient Boosting model appears to provide

the best balance between identifying positive cases (high TP)

and minimizing false alarms (low FP). However, the choice of

model should also consider other factors such as

computational cost, interpretability, and the specific cost

associated with false positives and false negatives.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 05 | May - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM32427 | Page 6

 5. CONCLUSIONS

In this study, we investigated the efficacy of machine
learning models for rainfall prediction in urban metropolitan
areas. Our findings reveal several key insights:

Robust Rainfall Prediction: Machine learning techniques,
particularly random forest and gradient boosting, exhibit
robustness in predicting rainfall patterns. These models
outperform traditional statistical methods, offering enhanced
precision and reliability.

Model Performance: Validation accuracies ranging from
70% to 78% underscore the effectiveness of our approach. The
ability to accurately forecast rainfall is crucial for disaster
preparedness, urban planning, and water resource
management.

Data Considerations: Thoughtful data preparation
significantly impacts model performance. The inclusion of a
20-day lag feature enhances predictive capabilities,
emphasizing the importance of feature engineering.

Future Research Directions: While our study focuses on
specific machine learning algorithms, there remains ample
room for exploration. Researchers should investigate
innovative techniques, including deep learning architectures, to
further improve rainfall forecasting accuracy.

In summary, our work contributes to advancing the field of
meteorology by leveraging machine learning models for
precise and timely rainfall predictions. As climate variability
intensifies, these insights will aid policymakers, urban
planners, and emergency responders in mitigating the impact
of extreme weather events.

REFERENCES

[1] P. Mishra et al., “Modeling and forecasting rainfall

patterns in India: a time series analysis with XGBoost

algorithm,” Environ. Earth Sci., vol. 83, no. 6, p. 163, Mar.

2024, doi: 10.1007/s12665-024-11481-w.

[2] K. Prathibha, G. Rithvik Reddy, H. Kosre, K. Lohith

Kumar, A. Rajak, and R. Tripathi, “Rainfall Prediction Using

Machine Learning,” 2023, pp. 457–468.

[3] C. Wong, “How AI is improving climate forecasts,”

Nature, Mar. 2024, doi: 10.1038/d41586-024-00780-8.

[4] C. M. Liyew and H. A. Melese, “Machine learning

techniques to predict daily rainfall amount,” J. Big Data, vol.

8, no. 1, p. 153, Dec. 2021, doi: 10.1186/s40537-021-00545-4.

[5] G. Tuysuzoglu, K. U. Birant, and D. Birant, “Rainfall

Prediction Using an Ensemble Machine Learning Model

Based on K-Stars,” Sustainability, vol. 15, no. 7, p. 5889,

Mar. 2023, doi: 10.3390/su15075889.

[6] C. Lalitha and D. Ravindran, “Hybrid deep learning

framework for weather forecast with rainfall prediction using

weather bigdata analytics,” Multimed. Tools Appl., Jan. 2024,

doi: 10.1007/s11042-023-17801-9.

[7] Nusrat Jahan Prottasha, Anik Tahabilder, Md

Kowsher, Md Shanon Mia, and Khadiza Tul Kobra, “Short-

Term Rainfall Prediction Using Supervised Machine

Learning,” Adv. Technol. Innov., vol. 8, no. 2, pp. 111–120,

Apr. 2023, doi: 10.46604/aiti.2023.8364.

http://www.ijsrem.com/

