

Performance Evaluation of Concrete Based on Material Characterization

Keshav Deo¹, Mirza Shahab Husain², Aamir Rahi³

¹Assistant Professor Department of Civil Engg. & MIT Purnea

²Assistant Professor Department of Civil Engg. & MIT Purnea

³Assistant Professor Department of Civil Engg. & MIT Purnea

Abstract - This research report provides an exhaustive technical evaluation of concrete mix design, focusing on the transition from empirical nominal proportioning to advanced performance-based methodologies. It delineates the physicochemical properties of constituent materials—cement, Fine and Coarse aggregates —while analyzing their synergistic impact on structural durability and mechanical integrity. Central to this study is the application of Indian Standards, specifically IS 10262 and IS 456, which govern the statistical determination of target mean strength through the integration of characteristic compressive values and standard deviation. The investigation details the experimental protocols for material characterization, including cement hydration kinetics, aggregate mechanical testing, and the rheological assessment of fresh concrete via slump and compaction factor metrics. Quantitative case studies for M20, M25, and M30 grades validate the theoretical framework by correlating water-cement ratios with 28-day performance outcomes. Furthermore, the report examines the evolution of mix design codes, highlighting the shift toward sustainability through the incorporation of supplementary cementitious materials. This synthesis serves as a definitive resource for professional engineers to optimize concrete performance across diverse environmental exposure conditions ranging from mild to extreme.

Key Words: cement, fine aggregate, coarse aggregate, water-cement ratio, Grade of concrete.

1. INTRODUCTION

Concrete is the most widely used construction material in the world due to its versatility, durability, and cost-effectiveness. It plays a vital role in infrastructure development such as buildings, bridges, pavements, dams, and industrial structures. The performance of concrete largely depends on the quality of its constituent materials, cement, aggregates, water, and admixtures—as well as their proper proportioning and interaction. A thorough understanding of these materials and their properties is therefore essential for achieving concrete with desired strength, workability, durability, and long-term performance. This thesis focuses on the fundamental materials of concrete and their influence on the overall behavior of concrete mixes.

Cement acts as the primary binding material in concrete, forming a hardened matrix that binds aggregate together through hydration reactions. Ordinary Portland Cement (OPC) is the most used cement, though several other types such as Portland Pozzolana Cement, Portland Slag Cement, sulphate-resisting cement, and low-heat cement are used depending on exposure conditions and structural requirements. The chemical composition of cement, mainly consisting of lime, silica, alumina, and iron oxide, governs its setting characteristics, strength development, and durability. To ensure quality and consistency, cement is subjected to various standard tests including fineness, consistency, setting time, soundness, heat of hydration, and compressive strength as per Indian Standards. These tests help in assessing the suitability of cement for specific construction applications.

Aggregates form nearly 70 to 75 percent of the concrete volume and significantly influence both fresh and hardened concrete properties. Though often considered inert, aggregates play a crucial role in strength, dimensional stability, durability, and economy of concrete. Aggregates are classified based on size into fine and coarse aggregates and further categorized based on geological origin and physical characteristics. Properties such as strength, hardness, abrasion resistance, particle shape, size, and surface texture directly affect workability, water demand, and bond strength between cement paste and aggregate. Proper grading and selection of aggregates are essential for producing dense, strong, and durable concrete. Special aggregates such as lightweight aggregates are also used where reduction in self-weight, thermal insulation, or fire resistance is required.

Water is another essential component of concrete, as it initiates the hydration of cement and provides workability to the mix. The quality of water used for mixing and curing must be carefully controlled, as impurities such as salts, acids, oils, and organic matter can adversely affect setting time, strength, and durability of concrete. Potable water is generally considered suitable for concrete works, while the use of sea water is restricted due to the risk of corrosion in reinforced concrete.

Modern concrete technology also incorporates admixtures to modify specific properties of concrete in fresh or hardened states. Admixtures such as

accelerators, retarders, water reducers, and air-entraining agents improve workability, control setting time, enhance strength development, and increase durability under adverse environmental conditions.

2. Objective of Study

This study focuses on the detailed evaluation of concrete constituent materials including cement, aggregates, water, and admixtures. Standard laboratory tests are conducted to assess their physical, chemical, and mechanical properties as per Indian Standards. The influence of material characteristics on strength, workability, durability, and overall performance of concrete is analyzed to ensure quality and suitability for structural construction.

The following are the objectives of this study.

1. To study the physical and chemical properties of cement using standard laboratory tests.
2. To evaluate the mechanical properties and grading of fine and coarse aggregates.
3. To assess the suitability of water used for mixing and curing of concrete.
4. To understand the role of chemical admixtures in concrete performance.
5. To analyze the combined effect of concrete constituents on strength and durability.

3. RESEARCH METHODOLOGY

3.1 The methodology adopted for this study is given below:

1. Literature Review: A comprehensive review of existing literature related to the utilization of plastic in concrete was conducted.
2. Material Testing: Various tests were conducted on the properties of cement and aggregates used in the concrete mix.
3. Mix Design: A mix design was established for achieving M₂₀, M₂₅ & M₃₀ grades of concrete, and tests were conducted to determine the characteristic compressive strength of the concrete.

3.2 Target Mean Strength

Target Strength for Mix Proportioning In order that not more than the specified proportion of test results are likely to fall below the characteristic strength, the concrete mix has to be proportioned for higher target mean compressive strength \bar{f}_{ck} . The margin over characteristic strength is given by the following relation:

$$\bar{f}_{ck} = f_{ck} + 1.65 S$$

Where ,

\bar{f}_{ck} : Target mean compressive strength at 28 days in N/mm²

f_{ck} : Characteristic compressive strength at 28 day's in N/mm²

S : Standard deviation N/mm²

Table 1 : (Table 2 IS: 10262 , Assumed Standard Deviation)

Grade Of Concrete	Assumed Standard deviation (N/mm ²)
M10	
M15	3.5
M20	4.0
M25	
M30	
M35	
M40	5
M45	
M50	

3.3 Material

The materials used are Cement, Fine Aggregate (sand), Coarse Aggregate (Stone), and Water.

3.3.1 Cement: -

The Ordinary Portland Cement (53 Grade) is used.

Table 2: Test Result of Cement

Physical Properties	Test Result
Fineness of Cement	5.4 %
Consistency of Cement	32 %
Initial Setting Time	54 Minutes
Final Setting Time	12 Hours

3.3.2 Fine Aggregate: -

Table 3: Test Result F.A

Physical Properties	Test Result
Gradation Of Fine Aggregate	Zone - II
Specific Gravity of Fine Aggregate	2.67

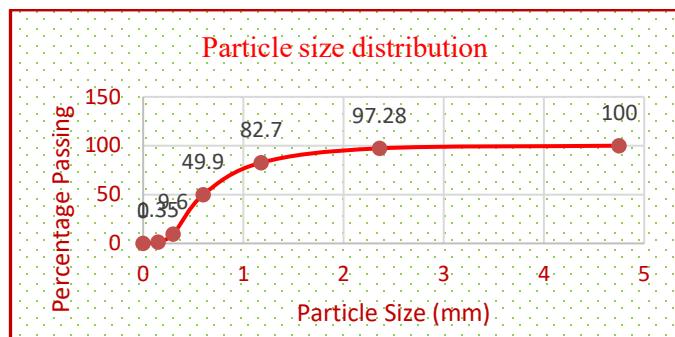


Figure 1: Particle Size Distribution of Fine Aggregate

3.3.3. Coarse Aggregate: -

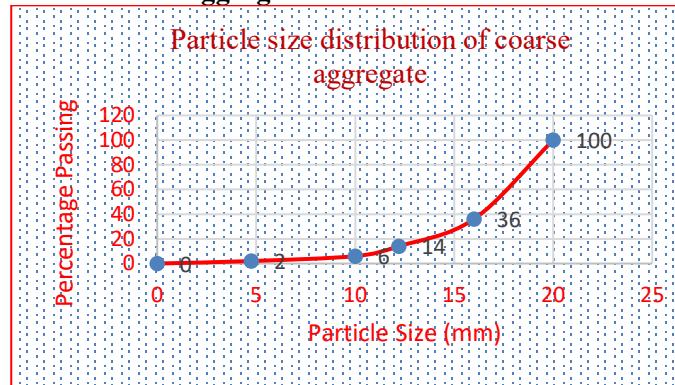


Figure 2 : Particle Size Distribution of Coarse Aggregate

4. Mix Design as Per IS : 10262-2009 & IS:456-2000

4.1 Target mean strength

Table 4: Target mean strength

Grade of Concrete	Standard Deviation	Target mean strength (N/mm ²)
M ₂₀	4	26.6
M ₂₅	4	31.6
M ₃₀	5	38.25

4.2 Mix Proportions

Table 4: Material quantity

Material	M ₂₀	M ₂₅	M ₃₀
Cement	370 kg/m ³	388 kg/m ³	422 kg/m ³
Water	186 kg/m ³	186 kg/m ³	186 kg/m ³
F.A	743 kg/m ³	684 kg/m ³	655 kg/m ³
C.A	1143 kg/m ³	1163 kg/m ³	1164 kg/m ³
Admixture	Nil	Nil	Nil
Water Cement ratio	0.5	0.48	0.44

5. Experiment on Concrete Mix

5.1 Workability by Slump Test

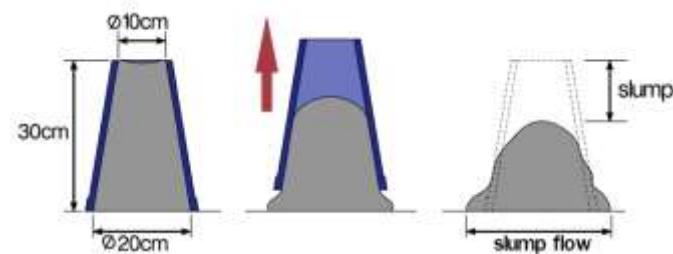


Figure 3: Slump Test

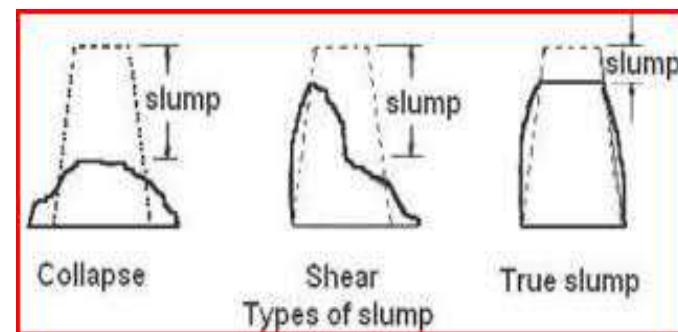
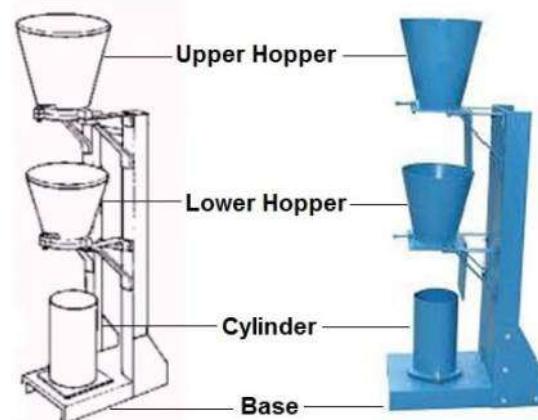



Figure 4: Types of Slump Failure

Compaction Factor Test on Concrete

5.2 Compressive Strength Test

Figure 6: Compressive Strength Test of Concrete Cube

5.3 Flexural Strength of Concrete

Figure 7: Flexural strength of concrete

$$f_{bt} = \frac{P \cdot L}{b \cdot d^2}$$

Where ,

- P is the compressive load at failure
- f_{bt} is the modulus of rapture
- L is the length of the beam
- b is the width of the beam
- d is the depth of the beam

5.4 Curing of Concrete

Figure 8: Curing of Concrete

6. Result

6.1 Workability by Compaction Factor

Table 5 : workability by Compaction Factor	
Grade Of Concrete	Compaction Factor
M20	0.83
M25	0.86
M30	0.90

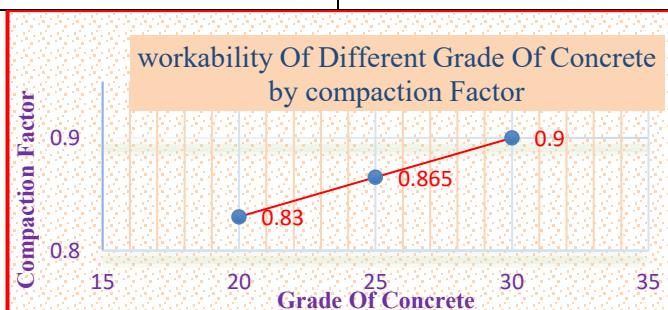


Figure 9: Workability of Concrete by compaction factor by graph

6.2 Workability by Slump Test

Table 6 : Workability Of Concrete by Slump	
Grade Of Concrete	Slump Value (mm)
M20	35
M25	31
M30	28

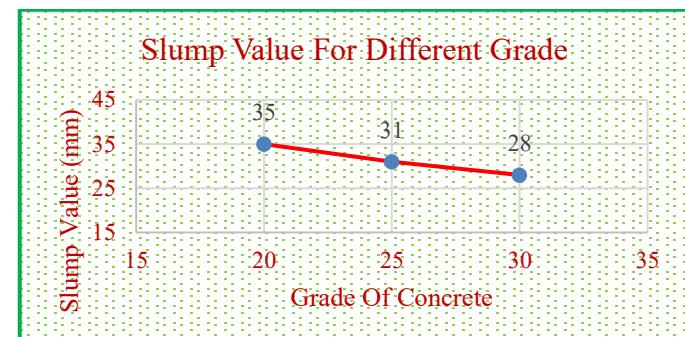


Figure 10: Slump Value by graph

6.3 Compressive Strength of Concrete

Table 7 : Compressive Strength value for Different Grade

Grade Of Concrete	Compressive Strength Value (N/mm ²)		
	For 7 Days	For 14 Days	For 28 Days
M20	13.3	16.2	22
M25	16.625	20.25	27.5
M30	19.95	24.3	33.32

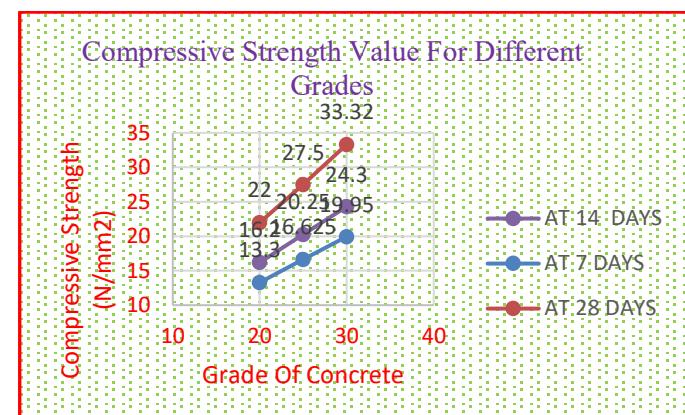


Figure 11: Compressive strength of concrete by graph

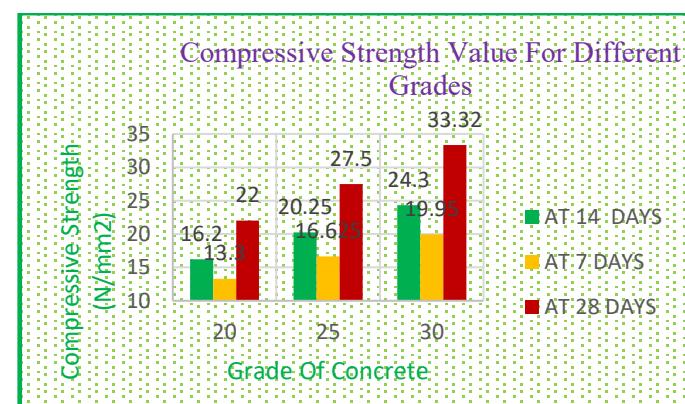


Figure 12: Compressive strength of concrete by chart

6.3 Flexural Strength of Concrete

Table 8 : Tensile Strength of Concrete

S.No	Grade Of Concrete	Tensile Strength Value At 28 Days(N/mm ²)
1	M20	2.31
2	M25	2.84
3	M30	3.73

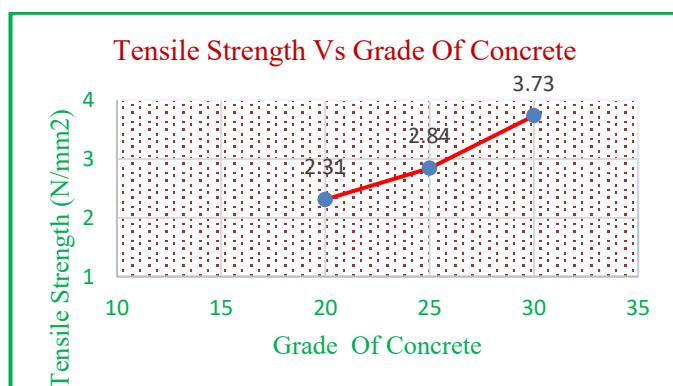


Figure 13: Tensile strength of concrete by graph

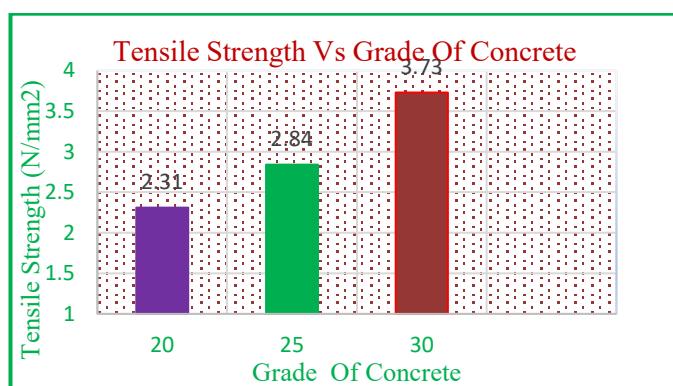


Figure 14: Tensile strength of concrete by chart

3. CONCLUSIONS

From the present study, it can be concluded that the quality and performance of concrete are highly dependent on the properties of its constituent materials. Cement conforming to relevant Indian Standards showed satisfactory fineness, setting time, soundness, and strength characteristics, making it suitable for structural applications. Properly graded fine and coarse aggregates with adequate strength, shape, and abrasion resistance significantly contributed to improved workability and mechanical performance of concrete. The use of clean, potable water ensured proper hydration and strength development, while the controlled use of chemical admixtures enhanced workability and setting characteristics without adversely affecting durability. The study confirms that systematic testing, proper selection, and proportioning of cement, aggregates, water, and admixtures are essential for producing durable, strong, and economical concrete suitable for

modern construction practices. In the mix design producers, the following general observations were observed.

- Strength increases as Water cement ratio decreases.
- Strength increases as Cement content increase.
- Strength increases as the Fine aggregate content decrease.

REFERENCES

1. Gambhir, M.L. (1992) Concrete Manual, 4th ed., Dhanpat Rai & Sons, DELHI.
2. IS: 456 (2000) Code of Practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi.
3. IS: 10262 (2009) Concrete Mix Design, Bureau of Indian Standards, New Delhi.
4. IS: 12269; 53 Grade Ordinary Portland Cement Specification, Bureau of Indian Standards, New Delhi.
5. IS : 383 (2016) Specification for coarse and fine aggregates, Bureau of Indian Standards, New Delhi.
6. Jain, A.K.(2002) Reinforced Concrete, 6th ed., Nem Chand & Bros. Roorkee.

BIOGRAPHIES

Keshav Deo
(M-Tech in Environmental Engg.)

Mirza Shabhab Husain
(M-Tech in Construction Technology & Management)

Aamir Rahi
(M-Tech in Earthquake Engg)