
         International Journal of Scientific Research in Engineering and Management (IJSREM) 
                  Volume: 09 Issue: 06 | June - 2025                          SJIF Rating: 8.586                                    ISSN: 2582-3930                          

  

© 2025, IJSREM      | www.ijsrem.com                                                                                                          |        Page 1 

Performance Evaluation of Machine Learning Models for EEG-Based 

Motor Imagery Classification Control 

 
Prof. M. M. Wankhade1, Akash Anekar2*, Shantanu Kale3*, Riya Pawar4* 

Assistant Professor, Electronics and Telecommunication, Sinhgad College of Engineering, Pune, India1 

Student, Electronics and Telecommunication, Sinhgad College of Engineering, Pune, India234 

 

 

Abstract: This project explores the integration of electroencephalography (EEG) with machine learning (ML) 

and Arduino microcontrollers to classify and execute motor commands based on brain signals. EEG signals are 

collected from users performing specific motor imagery tasks, such as imagining left- or right-hand movements. 

These signals are preprocessed to remove noise and segmented into feature sets that are then input into a machine 

learning model trained to differentiate motor intentions. The classified output from the ML model is subsequently 

transmitted to an Arduino, which controls physical hardware to demonstrate the intended movement, such as 

rotating a motor left or right. This interface has potential applications in assistive technology, enabling 

individuals with motor impairments to control devices through thought alone. The project demonstrates an 

innovative approach to brain-computer interfacing (BCI), highlighting the feasibility of real-time EEG signal 

processing for practical hardware applications. 
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I. INTRODUCTION 

In BCIs focused on motor imagery tasks, such as distinguishing imagined left- and right-hand movements, ML 

algorithms classify EEG signals to interpret user intentions. This project applies a similar approach where 

classified signals are transmitted to an Arduino microcontroller, which interfaces with hardware to perform the 

intended physical action. This setup provides a cost-effective solution for real-time, flexible control of physical 

devices like turning a motor left or right using only cognitive inputs, demonstrating practical applications for 

motor-impaired individuals.[2] By classifying these commands, they were able to guide the robots movements in 

real-time, showcasing how BCI technology can bridge neural activity with robotic control systems. This approach 

underscores the adaptability of BCI technology in robotics and hints at its potential for broader assistive 

applications, such as enabling motor-impaired individuals to control devices through thought alone. Such research 

supports the goals of your project, which aims to integrate EEG and machine learning with Arduino to control 

physical hardware [2] 

 

II. LITERATURE SURVEY 

 The integration of EEG signals with machine learning algorithms and microcontrollers, such as Arduino, 

has emerged as a promising area within brain-computer interface (BCI) research. 

 

1. In EEG signal acquisition and preprocessing, ensuring clean data is critical, as raw EEG signals are often 

contaminated by noise and artifacts, especially from muscle movements (EMG) and eye blinks. Preprocessing 

techniques, including filtering and adaptive filtering, help mitigate these artifacts. Filters like bandpass filters can 

target specific frequency ranges, preserving key neural frequencies while removing noise. 

2. Feature extraction in EEG-based brain-computer interfaces (BCI) is crucial for transforming raw EEG 
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signals into meaningful input for machine learning algorithms. Commonly used techniques include Fast Fourier 

Transform (FFT), wavelet transform, and Common Spatial Pattern (CSP). Specifically, CSP is widely recognized 

for distinguishing motor imagery tasks, such as differentiating left and right-hand movements. 

3. Machine Learning Models: Classification algorithms like Support Vector Machines (SVM), k-Nearest 

Neighbors (kNN), and neural networks are commonly employed in BCI research. SVMs provide a promising 

approach to improve classification accuracy, even with small datasets, due to their ability to capture spatial 

dependencies in EEG signals. 

4. Interfacing EEG with Arduino: Arduino microcontrollers are popular in BCI research due to their cost-

effectiveness and flexibility. Studies by Xu et al. (2015) discuss using Arduino to interface with EEG devices for 

controlling robotics, highlighting Arduino’s ability to process real-time EEG data and execute control commands. 

Arduino’s open-source nature also makes it accessible for various applications, such as controlling household 

devices or prosthetics via thought-based commands.[2] 

 

III. BLOCK DIAGRAM AND EXPLANATION 

 

Fig. 1 Block diagram of Motor Imagery BCI 

 

1. EEG Signal Acquisition: The EEG headset captures brain signals as the user imagines movements 

(left/right), sending raw data wirelessly or via USB. 

2. Preprocessing: The data undergoes noise filtering and segmentation into time windows for analysis. 

3. Feature Extraction: Techniques like FFT or wavelet transform are used to identify key signal features 

(e.g., alpha and beta waves). 

4. Classification: A machine learning model (e.g., SVM) classifies the signals as left or right movements 

after being trained on labelled EEG data. 

5. Command to Arduino: Classified commands are sent as digital signals to the Arduino microcontroller. 

6. Hardware Control: The Arduino interprets commands and triggers physical actions (e.g., motor or LED 

indicating direction) based on brain signals. 
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  The following is the flowchart for the same:- 

Fig. 2 Flowchart 

The data captures signals from motor imagery tasks, where the user imagines movements (e.g., left- or right-hand 

movement). Using Common Spatial Patterns (CSP), relevant features are extracted from the EEG data to highlight 

differences between the motor imagery tasks. CSP emphasizes patterns specific to each task by maximizing 

variance for one class and minimizing it for the other, making the data easier to classify. SVM learns to draw a 

boundary (or hyperplane) that best separates the two classes (motor imagery tasks). This boundary helps the model 

make predictions on new data by identifying which side of the boundary the new data falls on. This step checks 

the model's accuracy in classifying unseen data, helping to ensure that it generalizes well and isn’t just memorizing 

the training data. This process optimizes the model, making it more effective at distinguishing between the motor 

imagery tasks. After tuning, the model provides predictions (left or right movement) on new data. 
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IV. RESULTS AND DISCUSSION 

 

 

The following are the insights of the models trained over a number of models for comparison and different 

parameters tabulated to calculate the better model for EEG datasets. 

 

 

The optimized SVM model clearly outperformed all other classifiers in this study, achieving an accuracy of 

94.01%—not only higher than Random Forest (90.63%) and Decision Tree (80.47%), but also demonstrating the 

most balanced precision and recall across both classes (0.92/0.96 and 0.96/0.92, respectively). This superior 

performance is attributable to SVM’s ability to find the optimal separating hyperplane in high-dimensional feature 

spaces and its robustness when properly tuned (e.g., via GridSearchCV for CCC and γ\gamma) . In contrast, while 

Random Forest benefits from ensemble averaging to reduce variance, it still fell short of SVM’s classification 

boundary precision. Decision Trees, although highly interpretable, suffered from overfitting and reduced 

generalization when depth and split criteria were constrained . Furthermore, SVM’s reliance on support vectors 

makes it particularly effective for EEG signal classification, where the decision surface must be finely tuned to 

subtle feature differences  

 

The EEG-based brain-computer interface (BCI) project demonstrates a significant step toward bridging the gap 

between human cognitive intentions and machine execution. The ability to classify mental commands related to 

motor imagery opens avenues for various applications, including assistive technologies for individuals with 

mobility impairments, rehabilitation tools for stroke patients, and advanced control systems in robotics. Studies 

have shown that proper preprocessing is critical for improving the signal-to-noise ratio, which ultimately enhances 

classification accuracy.[13] The ability to achieve high accuracy in interpreting user intentions underscores the 

system's reliability for real-time applications, particularly in controlling hardware through Arduino. This 

responsiveness, demonstrated through servo motors, highlights the potential of brain-computer interfaces (BCIs) 

to translate neural signals into physical actions, offering promising avenues for assistive devices that enhance the 

quality of life for individuals with disabilities 

 

Metric SVM (Before 

Optimization) 

SVM 

(Optimized) 

Random 

Forest 

Decision Tree 

(Before 

Optimization) 

Decision Tree 

(Optimized) 

Accuracy 83.07% 94.01% 90.63% 82.03% 80.47% 

Precision(0) 0.82 0.92 0.88 0.79 0.79 

Precision(1) 0.84 0.96 0.94 0.85 0.83 

Recall (0) 0.84 0.96 0.94 0.86 0.84 

Recall (1) 0.83 0.92 0.87 0.78 0.77 

F1-Score (0) 0.83 0.94 0.91 0.83 0.81 

F1-Score (1) 0.83 0.94 0.90 0.81 0.80 
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Fig 3 Hardware Output 

 

The EEG-based brain-computer interface (BCI) project aims to translate mental commands (specifically, left hand 

or right hand movement imaginations) into real-time physical outputs using an Arduino and servo motors. 1. 

Signal Acquisition: The EEG headset successfully captured brain activity with a sampling rate of 128 Hz, 

providing sufficient data for analysis. The data acquisition was stable, and the headset effectively detected brain 

patterns associated with motor imagery.[13] Initial tests achieved around 80-85% accuracy in distinguishing 

between left and right movement intentions, showcasing the model's capability to interpret EEG data 

effectively.[3] 5. Arduino Command Execution: The system transmitted classified signals to the Arduino, which 

successfully controlled the servo motors or LEDs based on the user's mental commands. 6. Physical Output: The 

servo motors accurately represented the intended movements (left or right), demonstrating the functionality of the 

BCI system. These results  

indicate that the project effectively demonstrates the feasibility of using EEG signals for  controlling external 

devices, paving the way for further enhancements and applications in assistive technology and rehabilitation 

 

 

 

V. CONCLUSION 

The EEG-based brain-computer interface (BCI) project successfully demonstrated the feasibility of translating 

mental commands into real-world actions through an integrated system involving EEG signal acquisition, 

preprocessing, feature extraction, machine learning classification, and hardware control via Arduino. The results 

indicated a reliable classification accuracy of 80-85%, showcasing the system's potential for interpreting user 

intentions associated with left and right hand movements. Future work could involve utilizing larger datasets and 

refining algorithms to improve accuracy and reliability. 
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From these results, it is evident that the optimized SVM model delivers the best overall performance for EEG 

motor imagery classification, achieving the highest accuracy (94.01%) and balanced precision and recall across 

both classes [9]. The Random Forest model follows closely, with strong performance attributable to its ensemble 

of decision trees and robustness against overfitting [3]. The Decision Tree model, while more interpretable, shows 

lower accuracy and F1-scores, and its performance declines further after optimization—likely due to the 

regularization imposed by limiting tree depth and minimum sample splits [14]. 

Thus, SVM—with careful hyperparameter tuning—proves to be the most effective algorithm for this binary EEG 

classification task, balancing high accuracy with reliable class-wise performance.  
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