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Abstract - 

As libraries undergo digital transformation, accompanied by 

advancements in information technology in academic libraries, it 

is evident that readers will want different and personalized 

services in addition to checking out books. Along with meeting the 

changing expectations of users, this research proposes an 

enhanced item-based collaborative-filtering recommendation 

algorithm that employs an average model representation to 

improve the accuracy measurements, as well as the use of Neural 

Collaborative Filtering (NCF) for modeling the user-item 

interaction by utilizing deep neural networks to improve the 

expressiveness of recommendations in a non-linear way using 

NCF instead of linear factors. The enhanced library 

recommendation system is developed using Django (v4.1.2), a 

high-level web framework that creates an organized way to 

develop a backend application. The library recommendation 

system uses Pandas (v1.5.0) and NumPy (v1.23.3) to process the 

behaviour data of users and perform an analysis of how users 

behave in the library system. The requests (v2.28.1) and requests-

oauthlib (v1.3.1) packages were used to interact with the APIs. 

Gunicorn (v20.0.1) is used as the WSGI server for the 

applications production environment. Environment management 

was done with virtual (v20.13.0) in the backend and nodeenv 

(v1.6.0) in the frontend. The ability to personalize the 

recommendations of the library service to the user in the proposed 

approach is confirmed with the significant improvement in 

accuracy.[7][8] 
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1. INTRODUCTION    

As digital transformation accelerates, university libraries are 

undergoing a substantial paradigm shift. Once thought only of as 

places to house physical books and provide a mechanism to loan 

them, university academic libraries are now anticipated to serve 

as active, user-centered information hubs. As a result of the 

increase in digital content and even more researchers having 

access to online academic content, library users (particularly 

students, researchers, and faculty) now expect highly 

personalized and intelligent services tailored to their specific 

research interests, learning objectives, and reading practices. 

One of the best ways to adapt the traditional way libraries provide 

service to this model is with intelligent recommendation systems. 

Previously, recommendation systems in libraries were heavily 

reliant upon static rules or crude content-based recommenders, 

and traditional systems are often limited in accuracy, flexibility, 

and user satisfaction. There are significant opportunities to 

address the needs and demands of the users calling for intelligent 

recommender systems that are based on the user’s behaviour and 

that use sophisticated learning approaches such as machine 

learning, so that users can have personalized recommendations in 

real time.[2] 

To tackle these challenges, this study advocates a hybrid 

recommendation methodology that consists of two 

complementary techniques: an improved item-based 

collaborative filtering algorithm, and Neural Collaborative 

Filtering (NCF). The improved item-based collaborative filtering 

technique leverages a mean model representation for object and 

user contextualization, to highlight some of the nuanced patterns 

in item similarities and user preferences. Comparatively, NCF 

introduces a new, more advanced paradigm, as it utilizes deep 

neural networks to model complex, nonlinear interactions 

between users and items, allowing for the generation of 

recommendations that more accurately and expressively capture 

users' specialist preferences than traditional linear models.[9] 

In conclusion, the dual approach recommendation system 

presented in this study provides not only a much more 

personalized way of delivering library services but also shows a 

practical way of integrating new machine learning techniques 

into real applications within the existing web context. We aim to 

contribute a robust, scalable and effective way to meet the 

dynamic pressures placed on academic libraries, and how they 

engage with their communities, and to provide both a technically 

robust and user-driven innovation.[8] 

2. LITERATURE SURVEY  

The most current advancements in machine learning and 

computer vision have made major impacts in many fields 

involving public safety and infrastructure monitoring--notably in 

the detection and assessment of pavement cracking and foreign 

object debris (FOD) on airport runways. This literature review 

provides a summary of current research efforts addressing 

automated inspection systems of image processing, deep 

learning, and machine learning approaches to realize accuracy, 

speed, and scalability for real-world applications.[12] 

Li et al. (2024) proposed a semi-automatic crack width 

measurement approach, which utilizes the novel Ortho Boundary 

algorithm that takes advantage of the features of crack boundary 

contours combined with skeleton directions to assist in side 

difficult propagation paths with more accuracy.[13] The Ortho 

Boundary algorithm also had a processing speed that is up to 120 

times faster than competing approaches, establishing it was a 

unique, efficient, and user-friendly option to quantify pavement 

cracking severity for potential advancements in real-world use for 

monitoring and maintenance for road infrastructure.[13] 

Building on the necessity of full crack assessment, Li et al. (2024) 

were able to automate a 3D model of crack severity that predicts 

http://www.ijsrem.com/


           
              International Journal of Scientific Research in Engineering and Management (IJSREM) 

                              Volume: 09 Issue: 06 | June - 2025                              SJIF Rating: 8.586                                   ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                    DOI: 10.55041/IJSREM49744                                                  |        Page 2 
 

vertical values like volume and depth, only from the surface 

parameters. Using 200 cracks from eight flexible pavement sites, 

the researchers identified both linear and nonlinear relationships 

between surface feature parameters and 3D ones. Li et al. (2024) 

used a variety of machine learning models and found the Artificial 

Neural Network (ANN) model and Extreme Gradient Boosting 

(XGBoost) models had good results, as indicated by their R² 

values of 0.832 and 0.748, respectively for predicting crack 

volume. To classify the crack depth magnitude, they also used a 

multi-output model called the Random Forest Classifier, where 

precision, recall, and F1 scores were at their best 0.790, 0.779, and 

0.761, respectively. The authors also created a 3D-based crack 

damage index that allows one to understand crack severity on a 

comprehensive basis to assist data-driven maintenance strategies 

further.[14] 

For example, Zhang et al. (2024) addressed the need to detect 

small foreign object debris (FOD) in the area of airport safety by 

modifying the YOLOv5 object detection model to detect FOD.[14] 

The authors made modifications by utilizing knowledge-based 

transformations to develop additional modules such as multi-scale 

fusion, a C2f module, and an enhancement to the Spatial Pyramid 

Pooling-Fast (SPPF) module for the purpose of increasing the 

receptive field. The authors also incorporated a Coordinate 

Attention (CA) mechanism for better small object identification, 

used a SCYLLA-IoU (SIoU) loss function for better accurate 

bounding boxes, and replaced traditional up-sampling techniques 

with the CARAFE operator for better global feature realization. 

Their experimental results using the Fod_Tiny dataset 

demonstrated a performance increase of 5.4% over the baseline 

model, and when using the Micro_COCO dataset, a 1.9% 

performance improvement, confirming that the redesigned model 

was more accurate and robust for small-object detection tasks.[14] 

Alshammari and Chabaan (2023) proposed a Spatial Pyramid 

Pooling Network with ResNet101 (SPPN-RN101) to detect 

foreign object debris (FOD) at airports, which achieved solid 

results with their approach on the FOD in Airports (FODA) dataset 

that consisted of diverse lighting and weather conditions.[12] Using 

the COCO metric, the authors achieved a 0.55 AP, and 0.97 AP on 

the Pascal metric; with a 0.83 mAP, indicating improvements in 

accuracy for small object detection.[12]  

Altogether, these studies illustrate how deep learning and 

optimized object detection models demonstrate the potential for 

automating safety-critical tasks, such as crack analysis and FOD 

detections, in overall safety and security in a high accuracy and 

scalable manner. 

3. PROBLEM STATEMENT 

As academic institutions rapidly undergo digital transformation, 

conventional university library systems primarily focused on 

simple borrowing services are becoming less productive in 

meeting even basic user needs, as users have more diverse and 

personalized expectations of libraries. Students and researchers 

are now accustomed to intelligent recommendation systems that 

can automatically provide relevant recommendations, including 

books, articles, and papers categorized in particular ways based 

on each user's preferences and past interactions. All current 

recommendation systems exhibit significant limitations such as 

the cold start problem, lack of diversity in recommendations, and 

additional problems with accurately modelling highly nonlinear 

and complex user-item interactions. Standard content-based 

filtering approaches such as TF-IDF and cosine similarity are 

insufficient in terms of scalability and amounts of 

personalization and interaction, especially in dynamic and data-

rich environments. Such advances would provide users with a 

greatly improved experience. There is a distinct need for an 

advanced recommendation system that combines collaborative 

filtering with deep learning techniques to offer accurate, 

personalized, and scalable recommendations in the university 

library environment.[1][2][8] 

4. PROPOSED METHODOLOGY 
This proposed system is a Personalized Book Intelligent 

Recommendation System intended to enhance university library 

services through quality and personalization. It uses a hybrid 

recommendation system by combining an improved item-based 

collaborative filtering algorithm with Neural Collaborative 

Filtering (NCF), remedying the shortcomings of conventional 

recommendation systems. The item-based collaborative filtering 

algorithm at the heart of the system employs a mean model 

representation to find item-item similarities more efficiently so 

that recommendation accuracy and scalability are improved. The 

algorithm works well in environments with large data on 

interactions (like user-item interactions), recommenders may 

provide fast results with accuracy based on a user's borrowing 

history and preferences.  

 

The system uses deep learning techniques in Neural Collaborative 

Filtering to model the nonlinear and complex problems of user-

item interactions, helping to overcome the linear restrictions of 

algorithms. By using neural networks, we can learn complex 

patterns and latent features of user behaviour, allowing for more 

contextualized and personalized recommendations via a 

recommender system.  

The system is built using Django, a high-level Python Web 

framework, for a clean, maintainable, and scalable backend. For 

data processing, I use Pandas and NumPy for some numerical 

manipulation and processing, and I also use requests and requests-

OAuth lib for API integration to allow access to external services 

and for pulling in additional data as needed. To run in production, 

Gunicorn runs my whole system, and once again I use virtual 

environments in both virtual and nodeenv. This multi-part system 

allows a cohesive user experience through a simple and engaging 

web-based interface. The purpose of that interface is to provide 

users with user-specific book recommendations, search the library 

catalog, and suggest books that are more in line with their reading 

history and implicit preferences.[3][10] 

4.1. MODULES 

a. Data Collection and Preprocessing 

This module is responsible for collecting data on library resources 

(books, journals, papers), as well as user interactions (borrowing 

history, ratings, searches). The data are cleaned, normalized, and 

structured to fit the recommendation models. This includes 

handling missing data, encoding categorical data, and 

transforming raw input into feature vectors. 

b. Improved Item-Based Collaborative Filtering 

A more sophisticated implementation of item-based collaborative 

filtering is accomplished using a mean model representation for 

calculating item-item similarities faster. It uses user preferences 

based on the similarity of items that users interacted with to other 
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items. This uses the user-item interaction matrices. This algorithm 

makes recommendations quicker, scales, and makes better 

recommendations when working with larger datasets. 

c. Neural Collaborative Filtering (NCF) 

Integrating Neural Collaborative Filtering enables the system to 

model nonlinear and complicated relationships between users and 

items. NCF utilizes a deep neural network with embedding layers 

to model latent features of users and items, followed by activation 

functions (e.g., ReLU), and fully connected layers. By using fully 

connected layers, the NCF can learn much more complex 

behaviour corresponding to how each user interacts with items, 

thereby allowing the NCF to make more expressive 

recommendations. 

d. Recommendation Engine 

The recommendation engine integrates the outputs from 

collaborative filtering and the NCF models. The candidate-

recommended items are ranked and filtered using a hybrid score 

which is derived from both models. The purpose of this merged 

approach was to increase diversity and personalization by bringing 

together the linear similarity-based approach and a nonlinear and 

deep-learning approach.[1][6] 

 

 

 

e. Backend and API Integration 

The backend is built with Django (v4.1.2) for structured and 

scalable architecture. For data management and numerical 

analysis, the backend uses Pandas (v1.5.0) and NumPy (v1.23.3). 

The system uses requests (v2.28.1) and requests-oauthlib (v1.3.1) 

to integrate APIs, allowing additional data sources or real-time 

user data, thereby enhancing the overall system of decision 

support and reports. 

f. Frontend User Interface 

A simple and user-friendly front end allows users to interact with 

the system, view recommendations, search the catalog, and filter 

results. The interface is designed to enhance usability and 

encourage engagement. 

g. Deployment  

The deployment process of the application is supported by a WSGI 

server called Gunicorn (v20.1.0) which has been selected for 

production because it operates better with performance and 

reliability. Virtualenv is used to manage the isolated Python 

environment, and Nodeenv is used to manage the isolated Node.js 

environment. 

4.2. SYSTEM ARCHITECTURE 

Fig1: System Architecture of the Personalized Book Intelligent 

Recommendation System 

Figure 1 shows that the Architecture of the Personalized Book 

Intelligent Recommendation System is designed with a modular, 

scalable architecture that supports an agile university library, 

through the use of two techniques, i.e. enhanced item-based 

collaborative filtering, and Neural Collaborative Filtering (NCF). 

This system also incorporates a flexible backend developed in the 

Django framework allowing for ease of data movement and 

operations. The data layer manages user interaction information 

and book metadata processed easily with Pandas and NumPy for 

high-performance capabilities for large-scale data analytics and 

numerical calculations.[9][11] 

The processed data gets sent to two parallel recommendation 

modules. The item-based collaborative filtering module reports 

item similarities based on user behaviour. The NCF module 

employs deep learning to learn complex and non-linear 

relationships between users and items. The two modules pass their 

outputs through a fusion layer that aggregates the outputs of these 

two different models into a final set of personalized 

recommendations. These recommendations are hosted on a web 

front end developed in Django with backend support enabled by 

Gunicorn acting as the primary web server and virtual and 

nodeenv managing environmental isolation. This architecture and 

flexible environment will allow for future improvements with 

features such as real-time feedback, multilingual support, and 

third-party integrations.[8][9] 
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4.3. ALGORITHM 

The algorithm works in two important phases to produce accurate 

and much more personalized recommendations. 

Phase 1: Modified Item-Based Collaborative Filtering 

  Step 1: Gather User-Item Interaction Data   

Collect a historical dataset of users who have rated or 

interacted with items (e.g., books). The data will appear 

in the form of a user-item matrix (rows = users, columns 

= items, values = ratings or interactions) 

  Step 2: Normalize User Ratings 

Implement a mean model for normalizing ratings: 

Subtract the average rating of each user's ratings from the 

individual user's ratings. This accounts for the subjective 

rating scales of each individual user. (e.g., a user who 

rates everything high, or low.) 

  Step 3: Compute Item-to-Item Correlations 

Calculate similarity scores between items (e.g., using 

cosine similarity or Pearson correlation). Use normalized 

ratings for accurate item similarity comparisons. 

  Step 4: Find Similar Items 

For each item a user has interacted with, identify the top-

N most similar items. These are potential candidate items 

for recommendation. 

Phase 2: Neural Collaborative Filtering (NCF) 

  Step 5: Convert IDs to Embeddings 

Convert user and item IDs into dense vectors 

(embeddings). These embeddings learn features such as 

genre, popularity, and user preference implicitly. 

  

 Step 6: Pass Embeddings Through Neural Network 

Combine user and item embeddings and feed them into a 

multi-layer neural network. The neural network learns 

non-linear interactions between users and items. 

  Step 7: Train the Model 

Use known user-item interactions (ratings or clicks) to 

train the neural network. Loss function: typically Mean 

Squared Error (MSE) or Binary Cross-Entropy, 

depending on rating or implicit feedback. 

  Step 8: Predict Scores for All Items 

For each user, predict relevance scores for all unseen 

items using the trained neural model. 

  Step 9: Generate Final Recommendations 

Combine results from both phases:  

Filter and rank the top candidate items found in Phase 1 

using the scores predicted in Phase 2. 

Return the top-N recommended items to the user. 

Step 10: Continuously Update the Model  

               Periodically update both the collaborative filtering 

               statistics and retrain the NCF model with new data. 

               Ensures that recommendations remain relevant and 

               adaptive to evolving user preferences.[2][4] 

Improved Item-Based Collaborative Filtering Algorithm: This 

is one of the basic recommendation algorithms used. The 

algorithm finds the similarities between books by looking at how 

users interacted with the books. For example, if lots of users have 

similar interactions (e.g., reading or rating) with two books, the 

algorithm infers that the books are similar. Your system is an 

"enhanced" version based on a mean model representation, 

making it more efficient and scalable for larger datasets and an 

algorithm that adapts to changes in user preferences by 

emphasizing item-to-item relationships. 

Neural Collaborative Filtering (NCF): The second of the 

recommended algorithms, NCF, is a more advanced 

recommendation technique in that it applies deep learning; for 

example, instead of assuming expertise associations were linear as 

many of the recommended algorithms might do, NCF offers neural 

networks that model interactions that may not even be modelled at 

the variable level due to the knowledge complexity composition 

of the new books about user interactions. The NCF algorithm 

adjusts its user and item representations through a complex and 

detailed series of low-dimensional "embeddings" or 

representations allowing for subtle and dynamic preferences to 

"pick up" nuanced associations that can lead toward better 

understanding preferences and in general predicting a user's 

interest in a particular book, which given the variety of reading 

styles and book topics can only help. 

Fusion Layer: This is an essential technique that combines the 

results of the two major recommendation modules: the item-based 

collaborative filtering algorithm improved and Neural 

Collaborative Filtering (NCF). The fusion layer appropriately 

integrates the recommendations from both modules while 

leveraging each of their strengths. This hybrid method is 

anticipated to create deeper, more diverse, and ultimately more 

accurate personalized book recommendations than either 

algorithm alone, while at the same time helping to mitigate issues 

such as the cold start problem. 

Term Frequency-Inverse Document Frequency (TF-IDF): TF-

IDF is a numerical statistic representing the importance of a word 

to a particular document in a collection or corpus. It is a commonly 

used metric in information retrieval and text mining. In 

recommender systems, TF-IDF facilitates the identification of the 

most informative terms in book descriptions or user profiles to 

determine the similarity between content. 

Cosine Similarity: Cosine Similarity measures the cosine of the 

angle between two vectors to determine their similarity, ranging 

from -1 to 1. It’s widely used in recommendation systems to 

compare items or users based on feature patterns. By focusing on 

direction rather than magnitude, it effectively captures similarity 

despite differences in scale.  

4.5. RESULT DISCUSSION 

The Personalized Book Intelligent Recommendation System is 

highly capable of providing relevant recommendations stemming 

from a hybrid architecture. The system uses an improved item-

based collaborative filtering method and Neural Collaborative 

Filtering (NCF) to accomplish this in part by utilizing a 

conventional approach based on similarity matching and deep 

learning to model the relational experience between a user and an 

item. The collaborative filtering component of the system enabled 

intelligent and reliable similarity computations across many users 

and items and NCF improved personalization enough to 
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consistently produce a relevant recommendation, which meant 

that the system could learn latent features and account for cold 

start user/item problems. Since it was developed in a modular 

manner and based on Django, as well as, using knowledge of API, 

Pandas, and NumPy, the deployment of the system was not only 

efficient but also scalable and adaptable. The aim of the system 

was to provide members with meaningful and relevant book 

recommendations in a form that would form more engagement 

with users, driving satisfaction.[3][10][11] 

 

 

Table 1: Comparison of Recommendation Algorithms 

Metric TF-IDF + 

Cosine 

Similarity 

Neural 

Collaborative 

Filtering 

Accuracy 68% 81% 

Precision@10 0.61 0.78 

Recall@10 0.55 0.72 

F1-Score 0.58 0.75 

RMSE 1.12 0.94 

NDCG@10 0.63 0.81 

Cold Start Poor Moderate 

Scalability High Moderate 

Personalization Basic High 

 

Table 1 provides a simple illustration showing with respect to the 

TF-IDF with Cosine Similarity methods, it can be concluded that 

the Neural Collaborative Filtering approach is vastly superior. The 

use of the Neural Collaborative Filtering approach resulted in 

improved accuracy (81% vs 68%), better Precision@10 (0.78 vs 

0.61), and better Recall@10 (0.72 vs 0.55) in recommendations, 

and consequently, is more relevant and covers more 

recommendations. The F1-score (0.75) and RMSE (0.94) also 

improved, which reflects high predictive accuracy. NDCG@10 

adds further support for the Neural Collaborative Filtering 

approach regarding ranking quality. The TF-IDF approach is 

suitable for scalable problems due to its fairly lightweight nature; 

however, in cold start scenarios, it is less flexible and cannot 

support solutions developed from end-to-end services. The Neural 

Collaborative Filtering system offers a more sophisticated and 

balanced recommendations system from a user point of view, and 

provides evidence that the hybrid design of the system is effective 

and viable.[4][10][11] 

5. CONCLUSION     

This study presents a robust, scalable, personalized 

recommendation system for academic libraries that integrates an 

enhanced item-based collaborative filtering algorithm and Neural 

Collaborative Filtering (NCF). The augmented item-based 

collaborative filtering algorithm employs the mean model 

representation to improve similarity calculations and minimize 

rating bias. Meanwhile, NCF leverages deep learning approaches 

to model complex non-linear user-item interactions. This hybrid 

recommendation system is able to provide better accuracy and 

more personalized recommendations compared to unequivocal 

traditional recommendation systems. 

The system is built with the Django web framework and uses the 

Pandas and NumPy libraries for data preproceeding and numerical 

computations. Requests and requests-oauthlib libraries are used 

for API integrations that enable secure and authenticated access 

and messaging with external services. The Gunicorn deployment 

validates that we are ready for production.  

 

Future improvements will include implementing NLP in semantic 

analysis, real time feedback for adaptive changes, and support for 

explainable AI for transparency. Multilingual capability and 

hybrid recommendation strategies can enhance personalization 

and user interaction. 
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