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Abstract— The detection of pesticide residues in agricultural 

products has become a critical concern for food safety and public 

health worldwide. Traditional analytical methods, while 

accurate, are time-consuming, expensive, and require specialized 

laboratory infrastructure, making them unsuitable for real-time 

monitoring. This paper presents a comprehensive review and 

analysis of machine learning approaches for pesticide residue 

detection in crops and fruits. We systematically examine various 

detection methodologies including spectroscopic techniques 

(Raman, NIR, hyperspectral imaging), chromatographic 

methods (GC-MS, HPLC), electrochemical sensors, and IoT-

based systems integrated with machine learning algorithms. Our 

analysis reveals that machine learning models, particularly 

Support Vector Machines, Convolutional Neural Networks, and 

Random Forest algorithms, significantly enhance detection 

accuracy and reduce analysis time. Hyperspectral imaging 

combined with deep learning achieved the highest accuracy rates 

(>97%) for multi-pesticide detection, while IoT-sensor networks 

demonstrated excellent potential for real-time field monitoring 

with 96% accuracy. The integration of artificial intelligence with 

traditional detection methods offers promising solutions for 

rapid, cost-effective, and accessible pesticide monitoring systems. 

This comprehensive analysis provides insights into current 

technological gaps and future research directions for developing 

intelligent pesticide detection systems suitable for modern 

agricultural practices. 
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I. Introduction 

The widespread use of pesticides in modern agriculture has 
revolutionized crop protection and significantly increased 
agricultural productivity to meet the demands of a growing 
global population . However, the excessive and improper 
application of these chemical compounds has led to serious 
concerns regarding food safety and environmental 
contamination . Pesticide residues remaining on fruits and 
vegetables after harvest pose significant health risks to 
consumers, including neurological disorders, endocrine 
disruption, reproductive issues, and increased cancer risk. 
[4][10] 

Traditional methods for pesticide residue detection, including 
gas chromatography-mass spectrometry (GC-MS) and high-
performance liquid chromatography (HPLC), provide high 
accuracy and sensitivity but suffer from several limitations . 
These conventional approaches require expensive 
instrumentation, skilled personnel, complex sample 
preparation procedures, and extended analysis times, making 
them unsuitable for rapid screening and real-time monitoring 

applications . The need for on-site, rapid, and cost-effective 
detection methods has driven  

researchers to explore innovative approaches combining 
advanced sensing technologies with artificial intelligence. 
[8][9] 

Machine learning has emerged as a transformative technology 
in agricultural applications, offering unprecedented 
capabilities for pattern recognition, data analysis, and 
predictive modeling . The integration of machine learning 
algorithms with various detection techniques, including 
spectroscopic methods, electrochemical sensors, and imaging 
systems, has shown remarkable potential for developing 
intelligent pesticide detection systems . These hybrid 
approaches not only enhance detection accuracy and 
sensitivity but also enable real-time monitoring, automated 
decision-making, and accessible field deployment. [1]  

The primary objective of this research is to provide a 
comprehensive analysis of machine learning applications in 
pesticide residue detection, examining various technological 
approaches, their performance characteristics, and practical 
implementation considerations . This paper systematically 
reviews current methodologies, identifies technological gaps, 
and proposes future research directions for developing next-
generation intelligent pesticide monitoring systems suitable for 
modern agricultural practices. 

 

 II. Literature Review 

 
After reviewing various reference papers, authors have 

proposed multiple solutions to enhance the accuracy and 

efficiency of pesticide residue detection in crops and fruits 

using machine learning. These solutions primarily focus on 

hyperspectral imaging integrated with deep learning, IoT-

enabled sensor fusion, spectroscopic data augmentation, 

transfer learning for limited datasets, and multi-sensor real-

time monitoring platforms. 

 

A. Traditional Detection Methods: 

 

Conventional pesticide detection methods have primarily 

relied on chromatographic and spectroscopic techniques that, 

while highly accurate, present significant limitations for 

practical field applications . Gas chromatography-mass 

spectrometry remains the gold standard for pesticide analysis, 

capable of detecting multiple residues simultaneously with 

detection limits as low as 0.001 mg/kg. However, these 

methods require extensive sample preparation, expensive 

equipment maintenance, and specialized laboratory 
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environments. [4] 

 

Recent studies have demonstrated the application of various 

chromatographic methods across different agricultural 

products . Ultra-performance liquid chromatography coupled 

with mass spectrometry (UPLC-MS/MS) has shown excellent 

performance for detecting multiclass pesticides in fruits and 

vegetables, achieving detection limits ranging from 0.002 to 

2.5 mg/kg . Despite their accuracy, these traditional methods 

typically require 2-4 hours for complete analysis, making them 

unsuitable for rapid screening applications. [8][9] 

 

B. Spectroscopic Approaches with Machine Learning: 

 

Spectroscopic techniques combined with machine learning 

have emerged as promising alternatives for rapid pesticide 

detection. Raman spectroscopy, particularly surface-

enhanced Raman spectroscopy (SERS), has shown 

remarkable sensitivity for trace pesticide detection with limits 

as low as 10⁻⁹ M. 

 

Hyperspectral imaging represents one of the most advanced 

spectroscopic approaches, combining spatial and spectral 

information for comprehensive pesticide analysis . Recent 

research has demonstrated that hyperspectral imaging coupled 

with convolutional neural networks and residual neural 

networks can achieve over 97% accuracy for pesticide residue 

level identification in grapes . The technology enables 

simultaneous detection of multiple pesticides while providing 

spatial distribution maps of contamination. [5][7] 

 

C. IoT and Sensor-Based Systems: 

The integration of Internet of effects( IoT) technology with 

chemical detectors has opened new possibilities for real- time 

fungicide monitoring. Electronic nose systems utilizing metal 

oxide gas sensors combined with machine learning algorithms 

have achieved 89.58% accuracy for detecting pesticide 

residues in chili samples . These systems offer significant 

advantages including rapid response times, portability, and 

cost-effectiveness compared to traditional laboratory 

methods. 

Recent developments in IoT-based pesticide detection 

systems have incorporated multiple sensor types including gas 

sensors, pH sensors, and spectroscopic sensors . Machine 

learning algorithms, particularly Random Forest and Support 

Vector Machines, have been successfully implemented to 

analyze sensor data and provide real-time contamination 

alerts. These systems demonstrate excellent potential for field 

deployment and continuous monitoring applications.[2][3] 

 

D. Computer Vision and Image Processing: 

 
Computer vision approaches combined with machine learning 
have shown promising results for pesticide residue detection 
based on visual characteristics of contaminated produce . 
Mask Region-Based Convolutional Neural Networks have 
been successfully applied for pesticide coverage estimation on 
citrus leaves, achieving high accuracy in identifying 
contaminated areas.Deep learning models, including 
ResNet50 and EfficientNetV2, have demonstrated over 96% 
accuracy for plant disease and contamination detection.[6] 

 
E. Electrochemical Sensors and Machine Learning 

Integration : 

 
Electrochemical sensing platforms have emerged as highly 
promising alternatives for pesticide detection due to their 
portability, cost-effectiveness, and rapid response capabilities 
. Recent advances demonstrate the integration of machine 
learning algorithms with electrochemical techniques to 
enhance detection accuracy and overcome traditional 
limitations of selectivity and interference . Differential pulse 
voltammetry combined with Partial Least Squares (PLS) 
algorithms has achieved detection limits as low as 1 ppb for 
malathion with 96-106% recovery rates . Artificial neural 
networks have been  
successfully implemented to improve selectivity in 
electrochemical detection, particularly for distinguishing 
between compounds with similar redox potentials. The 
development of molecularly ingrained polymer- grounded 
electrochemical detectors enhanced with ensemble machine 
literacy models has demonstrated superior prophetic 
performance, achieving R- squared values of 0.993 while 
significantly reducing root- mean-square crimes. Screen-
printed electrodes coupled with various machine learning 
approaches, including enzymatic inhibition and catalytic 
detection methods, have shown excellent potential for field-
deployable pesticide monitoring systems.[9][12] 

 
F. Data Fusion and Ensemble Learning Methods: 

 
Multi-sensor data fusion represents a critical advancement in 
pesticide detection accuracy, leveraging complementary 
information from diverse sensing modalities . Dual-mode 
spectroscopic data fusion combining fluorescence and near-
infrared absorbance spectroscopy has achieved near-perfect 
accuracies of 99.5% compared to single-mode analyses with 
only 77.1% mean accuracy. Ensemble learning methods, 
particularly stacking classifiers and voting techniques, have 
shown superior performance over individual algorithms, with 
weighted average ensemble approaches achieving accuracy 
improvements of up to 96.10% . Feature-layer fusion 
techniques combining Near Infrared Spectroscopy (NIR) and 
Surface Enhanced Raman Spectroscopy (SERS) have 
demonstrated significant advantages in detecting pesticide 
residues in complex food matrices, with correlation 
coefficients exceeding 0.988 . Multi-sensor fusion platforms 
integrating gas sensors, pH sensors, and spectroscopic sensors 
with Random Forest algorithms have achieved 96% accuracy 
for pesticide detection.[9] 

 
G. Edge Computing and Real-time Processing: 

 
Edge computing technologies have revolutionized 
agricultural monitoring by enabling real-time pesticide 
detection and decision-making at the point of data collection . 
Lightweight deep neural network architectures, such as Ag-
YOLO, have been specifically designed for agricultural 
applications, achieving F1 scores of 0.9205 at 36.5 frames per 
second while consuming only 1.5 watts of energy . Mobile-
based pest detection systems utilizing YOLO architectures 
(YOLOv8n, YOLOv9t, YOLOv10-N) have achieved 
mAP@0.5 values of 89.8% with inference times of 250.6ms, 
enabling real-time smartphone applications.The integration of 
edge computing with IoT sensor networks enables continuous 
monitoring of environmental parameters, supporting 
precision agriculture practices while reducing latency and 
improving response times for pest management. Furthermore, 
distributed edge computing architectures have enabled the 
deployment of autonomous agricultural vehicles equipped 
with real-time pesticide detection capabilities, allowing for 
precision application with spatial accuracy of less than 10 
centimeters.[13][17]
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III. Methodology 

This paper employs a systematic review methodology, 

examining 30 research articles that focus on privacy- 

preserving mechanisms in blockchain for healthcare. The 

review categorizes these mechanisms into four primary 

areas like: 

 

A. Data Collection and Sample Preparation: 

 

The methodology for pesticide residue detection using 

machine learning involves systematic data collection from 

various agricultural products under controlled conditions . 

Sample preparation typically includes the application of 

known pesticide concentrations to create calibrated datasets 

for training machine learning models . For spectroscopic 

applications, samples are prepared with different pesticide 

levels ranging from 0 ppm (control) to concentrations 

exceeding maximum residue limits.[9] 

 

Hyperspectral imaging systems require specific sample 

positioning and illumination conditions to ensure consistent 

data quality . Samples are typically placed on neutral 

backgrounds with controlled lighting to minimize 

environmental interference . For electrochemical sensor 

applications, sample surfaces are directly analyzed without 

extensive preparation, offering advantages for rapid field 

testing.[7] 

 

B. Feature Extraction and Data Preprocessing: 

 

Spectroscopic data preprocessing involves several critical 

steps including noise reduction, baseline correction, and 

normalization . Savitzky-Golay smoothing filters are 

commonly applied to reduce noise while preserving spectral 

features relevant to pesticide detection . Standard Normal 

Variate (SNV) transformation helps eliminate variations due 

to surface scattering and optical path differences.[7] 

 

For machine literacy operations, point selection plays a 

pivotal part in model performance. Principal Component 

Analysis (PCA) is frequently used for dimensionality 

reduction, typically retaining 95-99% of spectral variance 

while reducing computational complexity . Competitive 

Adaptive Reweighted Sampling (CARS) and Successive 

Projections Algorithm (SPA) have shown effectiveness for 

selecting optimal wavelengths for pesticide detection.[11] 

 

C. Machine Learning Model Development: 

 

Various machine learning algorithms have been 

implemented for pesticide detection applications, each 

offering distinct advantages . Support Vector Machines 

demonstrate excellent performance for binary classification 

tasks, effectively distinguishing between contaminated and 

clean samples . Random Forest algorithms show particular 

strength in handling complex datasets with multiple 

pesticide types.Deep learning approaches, including 

Convolutional Neural Networks and Residual Networks, 

have proven effective for hyperspectral image analysis . 

These models automatically prize applicable features from 

spectral data, barring the need for homemade point selection. 

Training procedures typically involve 70% of data for model 

training, 20% for validation, and 10% for independent 

testing.[2] 

 

 

 

D. IoT System Integration: 

IoT-based pesticide detection systems integrate multiple 

sensor types with cloud-based processing platforms . 

Sensor arrays typically include gas sensors for volatile 

organic compound detection, pH sensors for chemical 

property monitoring, and optical sensors for reflectance 

measurements. Data transmission utilizes wireless 

protocols including Wi-Fi, Bluetooth, and cellular 

networks for real-time monitoring capabilities.[13] 

Machine learning models are deployed either on edge 

computing devices for immediate local processing or on 

cloud platforms for comprehensive analysis . Real-time 

alerts are generated when pesticide levels exceed 

predetermined thresholds, enabling immediate response to 

contamination events. 

    IV. Results 

 

 

A. Spectroscopic Detection Performance 

Hyperspectral imaging combined with machine learning 

has demonstrated exceptional performance across multiple 

studies. For grape fungicide discovery, Convolutional 

Neural Networks achieved over 93 delicacy with Vis- NIR 

gamuts and over 97 delicacy with NIR spectra. Residual 

Neural Networks showed comparable performance with 

training accuracies exceeding 99% and validation 

accuracies over 94%[7] 

Near-infrared spectroscopy coupled with machine 

learning algorithms has shown excellent results for 

vegetable contamination detection . Support Vector 

Machines and Principal Component-Artificial Neural 
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Networks achieved 100% classification accuracy for 

chlorpyrifos detection in bok choi using portable NIR 

spectrometers . The system demonstrated robust 

performance with F1-scores of 100% on independent test 

datasets.[5] 

Surface-Enhanced Raman Spectroscopy has achieved 

remarkable sensitivity levels for pesticide detection . 

Detection limits as low as 10⁻⁹ M have been reported for 

various pesticides including thiram and carbendazim . 

Machine learning integration, particularly with Partial Least 

Squares regression and Support Vector Machines, has 

improved quantitative accuracy with correlation coefficients 

exceeding 0.97.[11] 

B. IoT and Sensor System Performance: 

IoT-based pesticide detection systems have demonstrated 

practical viability for real-time monitoring applications . 

Electronic nose systems utilizing metal oxide gas sensors 

achieved 89.58% accuracy for pesticide residue detection in 

chili samples . The system successfully distinguished 

between different pesticide concentration levels with 

detection limits suitable for food safety applications.[1] 

Multi-sensor IoT platforms integrating gas, pH, and spectral 

sensors have shown enhanced performance through sensor 

fusion approaches . Random Forest algorithms applied to 

multi-sensor data achieved 96% accuracy for pesticide 

detection with excellent reproduce.[3] 

C. Computer Vision and Image Processing Results: 

Computer vision approaches have demonstrated 

effectiveness for pesticide coverage assessment and 

contamination detection . Mask Region-Based 

Convolutional Neural Networks achieved high accuracy for 

pesticide residue coverage estimation on citrus leaves with 

correlation coefficients exceeding 0.95 . The system 

successfully identified contaminated areas and quantified 

pesticide distribution patterns.[6] 

Deep learning models for plant disease and contamination 

detection have shown excellent performance across multiple 

crop types . EfficientNetV2 achieved 96.08 delicacy for 

factory complaint identification, while Random Forest 

algorithms reached 99.30 delicacy for crop recommendation 

systems. These approaches offer potential for integrated pest 

and pesticide management systems.[16] 

 

D. Comparative Performance Analysis: 

Comparative analysis across different detection methods 

reveals distinct performance characteristics and application 

suitabilities . Hyperspectral imaging with deep learning 

consistently achieved the highest accuracy rates (>97%) but 

requires specialized equipment and controlled conditions . 

IoT sensor systems demonstrated excellent practical viability 

with 89-96% accuracy and superior portability for field 

applications.[9] 

 

Traditional chromatographic methods maintain the highest 

sensitivity and specificity but suffer from extended analysis 

times and high operational costs . Machine learning 

integration with spectroscopic techniques offers an optimal 

balance between accuracy, speed, and practical 

implementation for most agricultural applications.[8] 

 

 
 

 

V. Discussion 

A. Technological Advantages and Limitations: 

The integration of machine learning with pesticide 

detection technologies has fundamentally transformed the 

landscape of food safety monitoring . Machine learning 

algorithms demonstrate superior capability in handling 

complex spectral data, identifying subtle patterns invisible 

to traditional analytical approaches, and providing real-

time decision-making capabilities. 

However, the effectiveness of these systems heavily 

depends on the quality and diversity of training datasets, 

which remain challenging to establish for the vast array of 

pesticide-crop combinations encountered in practice.[7]  

Spectroscopic techniques combined with machine 

learning offer non-destructive testing capabilities that 

preserve sample integrity while providing rapid results . 

The ability to detect multiple pesticides simultaneously 

through hyperspectral imaging represents a significant 

advancement over traditional single-analyte methods . 

Nevertheless, environmental factors including 

temperature, humidity, and ambient light can significantly 

affect measurement accuracy, requiring robust calibration 

procedures and environmental compensation 

algorithms.[9] 

B. Practical Implementation Challenges: 

Field deployment of machine learning-based pesticide 

detection systems faces several practical challenges that 

must be addressed for widespread adoption . IoT sensor 

systems, while offering excellent portability and real-time 

monitoring capabilities, require regular calibration and 

maintenance to ensure measurement accuracy . The harsh 

agricultural environment poses additional challenges 

including dust, moisture, and temperature variations that 

can affect sensor performance . 

Cost considerations remain a significant barrier for small-

scale farmers and developing regions . While machine 

learning integration has reduced analysis times and 

operational complexity, initial investment costs for 
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advanced sensing equipment remain substantial .  

 

 

The development of low-cost, portable systems using 

simplified sensor arrays and edge computing represents a 

promising direction for improving accessibility.[13] 

C. Accuracy and Reliability Considerations: 

 

Machine learning models demonstrate excellent 

performance under controlled laboratory conditions but may 

experience reduced accuracy when deployed in real-world 

agricultural environments . Model robustness becomes 

critical when facing variations in crop varieties, growing 

conditions, and pesticide formulations not represented in 

training datasets . Cross-validation studies and independent 

testing with diverse datasets are essential for establishing 

true system reliability.[15] 

 

The interpretability of machine learning models remains a 

concern for regulatory applications where decision rationale 

must be clearly documented . While deep learning 

approaches achieve high accuracy, their "black box" nature 

complicates validation and troubleshooting procedures . 

Ensemble methods and explainable AI techniques offer 

potential solutions for improving model transparency while 

maintaining performance.[12] 

 

D. Future Research Directions: 

 

The convergence of multiple technologies including 

hyperspectral imaging, IoT sensors, and artificial 

intelligence presents opportunities for developing next-

generation pesticide monitoring systems. Integration of 

blockchain technology could provide immutable records of 

pesticide testing results, enhancing traceability and 

consumer confidence . Edge computing implementations 

will enable real-time processing capabilities while reducing 

dependence on network connectivity.[17] 

 

Advanced machine learning techniques including transfer 

learning and federated learning could address the challenge 

of developing robust models with limited training data . 

These approaches enable knowledge sharing across different 

agricultural regions and crop types while preserving data 

privacy . The development of standardized datasets and 

benchmarking protocols will facilitate comparative 

evaluation and accelerate technological advancement.[14] 

VI. Conclusion 
This comprehensive analysis of machine learning 

applications in pesticide residue detection reveals significant 

technological progress and promising future directions for 

food safety monitoring . The integration of artificial 

intelligence with various detection methodologies has 

demonstrated substantial improvements in accuracy, speed, 

and practical applicability compared to traditional 

approaches. Hyperspectral imaging combined with deep 

learning achieved the highest accuracy rates exceeding 97%, 

while IoT sensor networks demonstrated excellent potential 

for real-time field monitoring with 96% accuracy.[7] 

 

The emergence of portable, cost-effective detection systems 

utilizing machine learning algorithms addresses critical gaps 

in current pesticide monitoring capabilities . These systems 

enable rapid screening, real-time monitoring, and automated 

decision-making that are essential for modern agricultural 

practices and food safety assurance .[2] 

 

Future research should focus on developing standardized 

datasets, improving model interpretability, and creating 

integrated platforms that combine multiple detection 

technologies . The continued advancement of edge 

computing, IoT connectivity, and artificial intelligence 

will likely produce increasingly sophisticated and 

accessible pesticide detection systems . These 

developments will contribute significantly to global food 

safety, environmental protection, and sustainable 

agricultural practices.[3] 

 

The successful implementation of machine learning-based 

pesticide detection systems requires continued 

collaboration between researchers, technology developers, 

regulatory agencies, and agricultural stakeholders . With 

proper development and deployment, these intelligent 

monitoring systems have the potential to revolutionize 

food safety practices and provide consumers with greater 

confidence in the safety and quality of agricultural 

products.[9] 
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