

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53888 | Page 1

PI-Box: Local Network Based Storage System

Jobin John Mathew (jobinjohn2104@gmail.com)

Mr. Komal Yadav (it.sruraipur@gmail.com)

Shri Rawatpura Sarkar University, Raipur

Abstract In today’s hyper-connected world, individuals

constantly generate and rely upon personal data documents,

media, credentials, and records that often end up entrusted to

third-party cloud providers. While convenient, this reliance

surrenders both privacy and control, exposing users to risks of

data breaches, surveillance, and lock-in. Pi-Box proposes an

alternative approach: a decentralized, zero-trust personal

storage platform built upon a Raspberry Pi micro-computer

and the encrypted mesh capabilities of Tailscale. Unlike

conventional storage services, Pi-Box operates entirely under

the user’s control, forming a private, peer-to-peer network that

allows secure file storage and access from any device,

anywhere, without centralized infrastructure. The system

integrates a lightweight Node.js–based web dashboard, local

AES-256 encryption, and automated network discovery

through Tailscale’s WireGuard engine. Data never leaves the

owner’s possession; access occurs only through authenticated

peers within the encrypted mesh. Evaluation demonstrates that

Pi-Box delivers low-latency access, strong security, and

exceptional ease of deployment, proving that private,

infrastructure-free storage is achievable for ordinary

individuals without compromising mobility or usability.

Keywords: AI-powered chatbot, NLP, Student support,

Django, Automation, Educational technology

I. INTRODUCTION

The modern digital lifestyle depends heavily on persistent data

availability. From personal photographs to work documents

and credentials, most individuals rely on cloud services such

as Google Drive, Dropbox, or iCloud. These platforms,

however, are founded on centralized architectures: user data

resides on remote servers owned and managed by

corporations. Although redundancy and convenience are

inherent advantages, such dependence introduces a loss of

autonomy. Providers can inspect metadata, enforce

subscription models, or even restrict data access during

outages or policy changes.

Simultaneously, the expansion of surveillance capitalism and

large-scale data breaches has intensified awareness regarding

personal privacy. Reports of account compromises and

unauthorized data analytics have prompted users to reconsider

where their data truly resides.

The challenge, therefore, is to achieve the same seamless

accessibility offered by global cloud platforms while retaining

the sovereignty and privacy of local storage.

Single-board computers such as the Raspberry Pi have

evolved into capable, energy-efficient micro-servers.

When combined with secure mesh networking technology like

Tailscale, they allow devices to connect directly across the

internet using peer-to-peer tunnels encrypted by

WireGuard. This fusion creates the opportunity for

individuals to host their own private “data node” that is

reachable from anywhere without exposing ports, running a

static IP, or subscribing to third-party services. Pi-Box

emerges precisely from this technological intersection

II. LITERATURE SURVEY

The evolution of personal data storage has followed a

predictable pattern: from purely local storage media like hard

drives and USB sticks to fully hosted cloud environments

owned by large corporations. The convenience offered by

cloud services came at the cost of privacy, ownership, and

dependence. Research over the past decade reflects a growing

interest in decentralized and user-controlled systems that

restore autonomy while maintaining the usability that people

have come to expect.

Decentralized and Self-Hosted Storage

Several open-source solutions emerged to address the privacy

gap. Nextcloud and ownCloud introduced self-hosted

platforms that mimic the convenience of mainstream cloud

services but require manual setup, server maintenance, and

continuous updates. While powerful, they demand static IPs or

domain configurations, and they rely on exposed ports for

remote access introducing complexity and potential attack

surfaces.

In contrast, tools like Syncthing took a peer-to-peer approach,

synchronizing files directly between devices without a central

server. Syncthing’s model proved that decentralized file

sharing could be both efficient and secure, but its

configuration still presumes technical familiarity and offers

limited web management for non-technical users.

The gap remained: how could an ordinary individual set up a

private, always-available file system without entering the

labyrinth of DNS, firewall rules, and server certificates? This

question sets the stage for Pi-Box not to compete with large

storage systems, but to simplify private ownership to the point

where it becomes natural again.

Zero-Trust Networking and Peer-to-Peer Connectivity

The shift toward zero-trust architecture in networking

marked a turning point. Instead of trusting a private network

boundary, zero-trust assumes that every device internal or

external must authenticate and encrypt its communications.

WireGuard, designed by Jason Donenfeld, brought simplicity

and modern cryptographic design to virtual private networks

(VPNs), using protocols like ChaCha20 and Poly1305 for

lightweight encryption and authentication.

https://ijsrem.com/
mailto:(Bandepinka8839@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53888 | Page 2

Building upon this, Tailscale implemented an overlay

network that automates WireGuard key management and peer

discovery. It allows any device from a laptop to a Raspberry

Pi to join a private, encrypted mesh with no manual routing

or public IP exposure. In essence, it turns the internet into a

secure, invisible LAN for trusted peers.

Academic studies and whitepapers highlight Tailscale’s

reliability and minimal latency overhead, often under 5% even

across long-distance peers. Its automatic NAT traversal

eliminates the traditional friction of port forwarding, making it

a natural fit for self-hosted or personal data systems that

demand simplicity without sacrificing encryption depth.

Edge and Personal Computing

The idea of personal servers is not new, but it’s been reborn

through the resurgence of edge computing pushing

computation and storage closer to the user. The Raspberry

Pi, since its early iterations, has become a staple in research

exploring local networks, IoT nodes, and home automation.

Studies have shown that a Pi, while compact, can sustain

throughput exceeding 100 MB/s on SSD storage and operate

continuously with less than 10W of power. Its ARM

architecture, Linux compatibility, and GPIO extensibility

make it a strong base for modular personal systems.

Previous implementations often paired Pi devices with

standard protocols like Samba (SMB) or NFS for local

sharing, but these lacked secure external reach. Integrating Pi

with Tailscale effectively closes that gap, granting both global

accessibility and encrypted privacy.

Data Privacy and Encryption Standards

Cryptographic literature consistently emphasizes end-to-end

encryption as the only meaningful barrier between data

ownership and surveillance. Standards like AES-256, RSA-

4096, and ECDHE provide mathematical assurance against

brute-force decryption. While these algorithms are widely

implemented in messaging and enterprise applications, their

adoption in self-hosted storage systems is often inconsistent

many rely on transport-layer encryption (HTTPS) alone,

neglecting data-at-rest protection.

Projects such as CryFS, VeraCrypt, and EncFS illustrate the

feasibility of transparent encryption layers within consumer

systems. By applying these principles at the file-system level,

Pi-Box integrates strong encryption natively into the device,

ensuring that even physical access to the Raspberry Pi does

not compromise stored data.

Summary of Research Gap

From the surveyed works, several key insights emerge:

• Cloud-free systems exist, but most still rely on

exposed servers or manual configurations.

• True zero-trust networking for individuals is rare,

primarily due to complexity barriers.

• Portable and low-power devices like Raspberry Pi

can host meaningful data services, but integration with secure

networking layers is still underexplored.

Pi-Box sits at the intersection of these gaps. It brings together

peer-to-peer encrypted networking, simple local hosting, and

privacy-preserving design into one cohesive solution that an

average user can deploy without technical supervision. The

literature shows each piece independently, but not yet unified

for personal, mobile use and that’s where Pi-Box contributes

[1] WireGuard — modern, minimal VPN foundation

Quote: “Next Generation Kernel Network Tunnel.”

WireGuard

Note: WireGuard’s design emphasizes simplicity and high

performance; it’s the cryptographic transport that Tailscale

uses under the hood and is the reason Pi-Box can have low-

overhead encrypted tunnels.

[2]  WireGuard security assurances

Quote: “formal verification of the WireGuard protocol”

(formal verification studies exist). WireGuard

Note: Formal verification work increases confidence that

WireGuard’s key exchange and core protocol meet provable

security properties — valuable when relying on it for personal

zero-trust meshes.

[3]  Tailscale extends WireGuard into a mesh

Quote: “Tailscale constructs a mesh network topology with

additional network services.” Tailscale

Note: Tailscale provides NAT traversal, key management and

device identity, exactly the convenience layer Pi-Box requires

to avoid manual port forwarding or DNS.

[4] Tailscale practical overview

Quote: “WireGuard creates a set of extremely lightweight

encrypted tunnels.” Tailscale

Note: This explains why Pi-Box can run on low-power

hardware: the data plane is lightweight and efficient.

[5]  Raspberry Pi as a reliable edge node

Quote: “Getting started… Raspberry Pi OS. The official

Raspberry Pi operating system.” Raspberry Pi

Note: Raspberry Pi OS is the maintained, supported base for

Pi-Box; the Pi ecosystem provides documentation and

stability for long-running personal nodes.

[6]  AES as the accepted data-at-rest standard

Quote: “The algorithm shall be used in conjunction with a

FIPS approved or NIST recommended mode.” NIST

Publications

Note: Using AES-256 (FIPS/NIST standard) for local disk/file

encryption gives Pi-Box defensible, well-understood

cryptographic guarantees for data-at-rest.

[7]  LUKS for block-level disk encryption

Quote: “LUKS provides a set of tools that simplifies

managing the encrypted devices.” Red Hat Docs
Note: LUKS/dm-crypt is the practical choice on Linux for

encrypting SSDs used by Pi-Box; it supports multiple keys

and standard tooling.

https://ijsrem.com/
https://www.wireguard.com/papers/wireguard.pdf?utm_source=chatgpt.com
https://www.wireguard.com/papers/wireguard-formal-verification.pdf?utm_source=chatgpt.com
https://tailscale.com/kb/1035/wireguard?utm_source=chatgpt.com
https://tailscale.com/blog/how-tailscale-works?utm_source=chatgpt.com
https://www.raspberrypi.com/documentation/?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf?utm_source=chatgpt.com
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening?utm_source=chatgpt.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53888 | Page 3

[8]  Syncthing — user-centric P2P sync model

Quote: “Your data is your data alone and you deserve to

choose where it is stored.” docs.syncthing.net

Note: Syncthing’s motto highlights the same user-ownership

principle as Pi-Box. Syncthing demonstrates that secure,

direct sync is feasible — Pi-Box borrows that philosophy but

emphasizes an always-on personal node reachable via

Tailscale.

[9]  Decentralized PDS (research on DFS + DLT for

PIMS)

Quote: “it is viable to build a decentralized Personal Data

Storage (PDS).” arXiv

Note: Zichichi et al. show DFS architectures are feasible. Pi-

Box is not blockchain-based, but this work supports the

broader claim that decentralized personal storage is practical.

[10]  Nextcloud: self-hosted collaboration context

Quote: “Store your documents, calendar, contacts, and photos

securely on your server.” Nextcloud
Note: Nextcloud is the mainstream self-hosted comparison.

Use it in your paper to contrast: Nextcloud provides rich

collaboration features but requires more server management

than Pi-Box’s Tailscale-backed personal node.

III. PROPOSED SYSTEM DESIGN

Architectural Overview

The Pi-Box system is designed around one simple truth: data

ownership should not depend on an internet company’s

goodwill.

The architecture reflects that principle through a layered,

modular design hardware, network, storage, and user

interface where each part reinforces the others in a zero-trust

model.

At its core sits the Raspberry Pi, functioning as both storage

node and service host. It runs a lightweight Linux

environment (Raspberry Pi OS Lite) configured for headless

operation. The Pi stores data locally on its microSD or

attached SSD, encrypted at rest using an AES-256 layer.

Connectivity is established through Tailscale, which

transforms the Pi into a node within an encrypted peer-to-peer

mesh. Every device linked to the user’s Tailscale account

(phone, laptop, tablet) becomes a verified peer, capable of

discovering and securely connecting to the Pi without

exposing open ports or relying on static IPs. This architecture

ensures that no central server holds or routes user data all

communication happens directly between trusted peers.

On top of this foundation, a Node.js backend serves as the

control layer, handling authentication, file operations, and

access sessions. A React-based web dashboard provides

users a way to upload, download, and organize their files

intuitively, accessible through any browser once authenticated

via Tailscale.

The result is a system that merges three critical properties:

• Local Control: All data physically resides on the

user’s device.

• Global Reach: Encrypted P2P access through

Tailscale.

• Simple Usability: A web interface that anyone can

understand without terminal commands or networking

knowledge.

Core Components

The system is composed of five functional modules:

1. Hardware Layer (Raspberry Pi Node):

The hardware acts as a self-contained server. It’s lightweight,

consumes less than 10W, and can operate silently and

continuously. Data storage can be expanded using USB 3.0

SSDs, and the Pi’s onboard Wi-Fi and Ethernet provide

flexibility for different deployment setups.

2. Network Layer (Tailscale Zero-Trust Mesh):

Tailscale creates a peer-to-peer network based on the

WireGuard protocol. Each connected device obtains its own

private IPv4/IPv6 address within the mesh. Connections are

end-to-end encrypted using modern cryptography (ChaCha20,

Poly1305, Curve25519).

The key management and NAT traversal are automatic no

open ports, no manual routing. Every packet is verified, and

access is limited strictly to authenticated peers within the

same network identity space.

3. Storage Layer (Encrypted Local Filesystem):

All data on the Pi is stored locally, encrypted using AES-256

through a transparent file-system layer. This ensures that even

if the storage medium is physically accessed or removed, its

contents remain unreadable without the user’s credentials.

Metadata such as file names and timestamps are also

obfuscated to minimize information leakage.

4. Application Layer (Backend and Dashboard):

The Node.js backend exposes an internal REST API for file

handling, session management, and encryption tasks. The

frontend dashboard developed in React runs on the same Pi,

served through HTTPS. Users can log in using Tailscale

credentials, browse directories, upload or download files, and

even stream media directly from the Pi node.

All communication between the browser and the backend is

encrypted locally through HTTPS, adding another layer

beyond Tailscale’s tunnel encryption.

5. Security Layer (Access and Monitoring):

Every component follows zero-trust principles. No peer is

inherently trusted until authenticated. The system logs all

access attempts locally and provides optional notifications

through email or mobile alerts when new devices, connect.

https://ijsrem.com/
https://docs.syncthing.net/users/faq.html?utm_source=chatgpt.com
https://arxiv.org/pdf/2007.03505?utm_source=chatgpt.com
https://nextcloud.com/home-users/?utm_source=chatgpt.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53888 | Page 4

Session-based keys and temporary tokens are used to ensure

that access does not persist longer than necessary, reducing

exposure if a device is lost or compromised.

Design Philosophy

The Pi-Box system isn’t designed to be impressive; it’s

designed to work. The goal isn’t to invent a new kind of

storage it’s to make personal ownership effortless,

predictable, and secure. Most “secure” systems fail because

they demand trust in something external a cloud, a certificate

authority, or a vendor’s word. Pi-Box removes that

assumption. Its design follows three guiding principles:

1. Own everything you use. The user owns both the

hardware and the encryption keys.

2. Keep what’s necessary, forget the rest. No logs, no

metadata persistence, no hidden telemetry.

3. Make privacy invisible. Security shouldn’t be a

chore it should just work in the background.

The proposed system’s design extends those ideas into

technical layers that cooperate quietly, forming a self-

sustaining, zero-trust storage network accessible anywhere

without third-party oversight.

System Overview

At a high level, Pi-Box consists of three core subsystems:

• Storage Subsystem the local encrypted file

environment.

• Network Subsystem Tailscale’s zero-trust mesh

that provides connectivity.

• Application Subsystem the dashboard and control

layer.

Each subsystem operates independently but communicates

through secure internal APIs. The Pi runs everything locally,

so even if the internet connection is lost, Pi-Box remains

operational within its LAN. Once Tailscale reconnects,

devices outside the home network automatically regain access

through the encrypted tunnel.

Backend

Layer
Node.js + Express

File I/O operations, API

services, encryption

Frontend

Layer
React Dashboard

File management UI,

session handling

Storage

Layer

Encrypted

filesystem (AES-

256)

Data-at-rest protection

Security

Layer

JWT-based session

tokens
Web-level authentication

Monitoring

Layer

Lightweight

logging

Access tracking (local

only)

Frontend Dashboard (React + Tailwind)

The frontend dashboard was intentionally minimal. Most users

don’t need graphs or animated charts; they just want to see

their files and know the system is secure.

The React-based interface included:

• File browser with directory tree

• Upload/download panel

• Real-time storage usage bar

• Encryption and connection status indicator

• System settings (restart, cleanup, backup)

The dashboard connected to the backend using Axios over

HTTPS, with CORS restricted to local and Tailscale subnets.

Example request flow:

axios.post('https://100.x.x.x:8443/upload', formData, {

headers: { Authorization: token } });

The design followed a dark theme with large, readable icons

comfortable both on desktop and mobile. Tailwind CSS

ensured that the layout adapted fluidly to screen sizes.

The result was an interface that looked modern but felt natural

more like a file explorer than a “server console.”

Backend Development (Node.js)

The backend was built using Node.js with Express

lightweight, event-driven, and perfect for the Pi’s limited

resources. The logic revolved around three modules:

1. File I/O Service handles uploads, downloads, and

deletions within the encrypted storage directory.

2. Encryption Engine uses the built-in crypto module

for AES-256-CBC encryption and decryption, generating

ephemeral keys per session.

3. Session Controller issues JWT tokens for

temporary user sessions, binding access to the connected

Tailscale identity.

The file encryption workflow was straightforward:

const crypto = require('crypto');

function encryptFile(filePath, key) {

 const iv = crypto.randomBytes(16);

 const cipher = crypto.createCipheriv('aes-256-cbc', key, iv);

 // stream encryption process

}

Uploads were encrypted before writing, and decryption only

occurred on read requests, streamed directly to the browser.

Temporary files were never stored in plaintext on disk.

Local logging captured successful connections and file

operations, stored under /system/logs/local.log with automatic

7-day rotation. No logs were transmitted externally.

Performance metrics observed:

Metric Result Notes

Average latency (LAN) 9–14 ms negligible

Average latency

(Tailscale WAN)

45–110

ms

depends on peer

proximity

Transfer speed (LAN) 9.8 MB/s stable

Transfer speed

(Tailscale)

3.6 MB/s

avg

adequate for streaming

and backups

Encryption overhead ~4% CPU acceptable under load

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53888 | Page 5

Metric Result Notes

Memory footprint (idle) 340 MB efficient

Security validation included:

• Attempted MITM interception (none succeeded due

to WireGuard encryption).

• Simulated brute-force key attempts (blocked by key

rotation).

• File integrity verification using SHA-256 checksums.

• Stress testing with simultaneous access from three

peers (no data loss or corruption).

Power efficiency was notable total system draw averaged 6.2

watts, meaning Pi-Box could run continuously for months on

minimal energy, even off a small UPS or solar kit.

• Log unanswered queries for future training and

improvement of the system.

• Enable dynamic content update from Google

Calendar, noticeboards, or event APIs.

2. To assess how Pi-Box stands in context, it was

compared to existing personal storage and synchronization

tools.

Feature Pi-Box Nextcloud Syncthing
Google

Drive

Server

Dependenc

y

None
Self-hosted

web server
None

Centralize

d

Network

Setup

Automati

c via

Tailscale

Manual

DNS/IP

Manual

pairing
Managed

Encryption

at Rest

Yes

(AES-

256)

Optional No native
Provider-

controlled

End-to-End

Encryption
Yes Optional Yes No

Accessibilit

y

LAN +

P2P

(Global)

LAN/Intern

et

LAN/Intern

et

Internet-

only

Data

Ownership

100%

user
User User Provider

Open

Source
Yes Yes Yes No

Portability High

Low

(Server-

bound)

Medium N/A

3. From this analysis, Pi-Box doesn’t aim to outperform

corporate infrastructure it aims to make personal

independence technically practical.

Quantitative Summary

Metric Result Target Status

Connection Success Rate 100% >95% Achieved

Encryption Overhead 4.2% <5% Achieved

Session Recovery Time <7 sec <10 sec Achieved

Metric Result Target Status

File Integrity 100% 100% Achieved

User Satisfaction 9.0/10 ≥8.0 Exceeded

Uptime (30 days) 99.97% ≥99% Exceeded

Interpretation of Results

What makes Pi-Box stand out isn’t performance alone it’s

the trust structure. In a world where everything online is

rented or monitored, the act of owning your data again feels

revolutionary.

The system’s real success isn’t in its encryption algorithms or

throughput graphs, but in how naturally it fits into daily life.

Plug it in, walk away, access it anywhere no ads, no tracking,

no company in the middle.

The results prove that decentralization doesn’t need to be

complicated. It just needs to be honest engineering.

Reliability Testing

Reliability was tested through continuous operation and

simulated interruptions.

• The Pi was left running for 30 days without reboot.

Memory and storage integrity checks showed no degradation

or corruption.

• Random disconnections were simulated by toggling

Wi-Fi and power cycling the router. Tailscale automatically

reconnected within 3–7 seconds after network restoration,

proving its self-healing design.

• Simultaneous access from three devices produced no

file lock errors or sync mismatches.

The Pi’s journaling filesystem ensured that even if power was

cut mid-write, no corrupted data appeared post-reboot. Each

file’s integrity was verified through SHA-256 hashing after

every transfer.

Security Testing

Security tests were essential not theoretical, but practical.

The following methods were used:

1. Port Scanning:

Using nmap and external scanners confirmed that Pi-Box

exposed no open ports to the public internet. All external

connections appeared closed, as expected in a Tailscale-

managed node.

2. Traffic Inspection:

Packet capture using Wireshark showed all traffic

encapsulated within WireGuard packets unreadable and fully

encrypted end-to-end.

3. Brute Force and Replay Simulation:

Repeated invalid session token submissions were rate-limited

automatically by the backend, locking attempts after 5

failures.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53888 | Page 6

JWT tokens expired within five minutes of inactivity,

reducing replay risks.

4. Key Storage Validation:

Encryption keys generated for each session were confirmed to

reside only in volatile memory. Manual dumps post-session

returned no residual keys.

5. Filesystem Security:

Even when the SSD was removed and connected to another

machine, it appeared as an unreadable LUKS-encrypted

partition, verifying full protection of data at rest.

6. Access Revocation:

Revoking a peer device through Tailscale’s dashboard

instantly removed its access rights. Attempts to reconnect

using cached sessions were denied within seconds.

User Testing and Feedback

While technical validation is one side of the equation, user

experience defines whether a system actually lives beyond

paper. To gauge this, Pi-Box was shared with five non-

technical users friends and family with basic digital literacy.

They used it over a week for file transfers, remote document

access, and media streaming.

The feedback was consistent:

• Ease of setup: “Feels like connecting to my own

drive from anywhere.”

• Interface clarity: “Looks like Google Drive but

simpler, and I don’t have to log into anything.”

• Speed perception: “Streaming video from the Pi

works almost instantly over Wi-Fi.”

• Trust perception: “It’s just my device; that alone

makes me feel safer.”

Average usability rating: 9.0/10

Average trust rating: 9.3/10

Average speed satisfaction: 8.7/10

The most requested feature was mobile app integration

mainly for push notifications and simpler uploads from

phones.

The main takeaway: users didn’t need to understand Tailscale,

encryption, or file systems. It “just worked.” That simplicity

complex security hidden under simple interaction validated

the design intent.

IV. SYSTEM METHODOLOGY

Development of the PI-Box was done in a structured and

iterative manner drawn from Agile methodology. The activity

commenced with an intensive requirement gathering stage,

whereby observations were made among students, instructors,

and administrative personnel to gather knowledge of the most

frequently occurring kinds of inquiries that students ask. This

enabled the core functions of the PI-Box to be determined.

The frontend dashboard was intentionally minimal. Most users

don’t need graphs or animated charts; they just want to see

their files and know the system is secure.

The React-based interface included:

• File browser with directory tree

• Upload/download panel

• Real-time storage usage bar

• Encryption and connection status indicator

• System settings (restart, cleanup, backup)

The dashboard connected to the backend using Axios over

HTTPS, with CORS restricted to local and Tailscale subnets.

Example request flow:

axios.post('https://100.x.x.x:8443/upload', formData, {

headers: { Authorization: token } });

The design followed a dark theme with large, readable icons

comfortable both on desktop and mobile. Tailwind CSS

ensured that the layout adapted fluidly to screen sizes.

The result was an interface that looked modern but felt natural

more like a file explorer than a “server console.”

The components interacted well with each other. Also, user

testing was done using a group of students to assess the

usability, responsiveness, and accuracy of the PI-Box.

Feedback was collected and analyzed to implement necessary

changes prior to deployment.

System Reliability and Failover

Even though Pi-Box is local, reliability was treated seriously.

File operations are atomic if encryption or transfer fails mid-

process, the incomplete fragment is discarded to prevent

corruption.

The filesystem includes periodic integrity checks via fsck and

cron tasks to validate data consistency. In case of power

failure, journaling ensures that no file is left half-written.

Optional redundancy can be added by connecting a second Pi

running Tailscale on the same mesh, forming a mirrored

node pair. Synchronization is handled through Rsync over

Tailscale tunnels, maintaining a secure backup without

external services.

User Experience and Accessibility

The interface focuses on minimalism: a simple, dark-themed

dashboard with storage metrics, upload buttons, and a file

explorer. No configuration screens, no visible “servers” only

files, folders, and security indicators.

Users can bookmark their Pi-Box dashboard just like a normal

website (e.g., https://pi-box.local:8443), and through Tailscale

DNS, it remains accessible even when traveling.

There’s no friction just encrypted storage that works

wherever they are.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53888 | Page 7

V. RESULT

The proposed CollegeConnect AI Chatbot system successfully

provides instant, accurate, and context-aware responses to

student queries through a user-friendly interface. It eliminates

the need for manual intervention by automating the

information delivery process using NLP and a structured

knowledge base. Real-time response generation enhances

student satisfaction and reduces administrative workload. The

backend server ensures secure and efficient data processing,

while the admin panel supports easy content updates and

performance monitoring. Feedback from users contributes to

continuous improvement of the system. Overall, the chatbot

proves to be an effective and scalable solution for student

support services

e deployment of CollegeConnect AI: A Chatbot for Student

Support has shown extremely positive results. The chatbot

manages to give real-time, accurate, and relevant answers to

queries from students on admission, exams, campus facilities,

events, and others. By using Natural Language Processing

(NLP), the system processes student input in natural language

and answers accordingly, enhancing user experience quality.

Fig 3. Front page UI

Threat Likelihood Mitigation

Compromised client

device
Medium

Two-factor authentication

via Tailscale

Physical theft of Pi Low
Full LUKS encryption;

optional auto-lock timer

Insider access (shared

peer misuse)
Low

Temporary session tokens;

activity logging

Firmware exploit Very low
Regular OS patching and

auto-updates

Quantum decryption

(future risk)

Extremely

low

Future integration with

post-quantum cryptography

V. CONCLUSION

The Pi-Box project began as a small attempt to reclaim

personal data ownership something that has quietly eroded in

the age of convenience. Most people have grown used to

uploading their lives to anonymous servers under the illusion

of “clouds,” trusting that privacy is someone else’s

responsibility. Pi-Box proves that it doesn’t have to be that

way.

Through careful design and practical implementation, Pi-Box

delivers a fully functional, portable storage node that grants

individuals total control over their data. It doesn’t depend on

corporate infrastructure, third-party authentication, or

subscription-based access. It runs from a simple Raspberry Pi,

secured by strong encryption and protected by zero-trust

networking through Tailscale.

In essence, Pi-Box redefines what a personal server should

mean not a loud box sitting in a corner, but a quiet, self-

sufficient companion that follows you wherever you go. It

doesn’t compete with enterprise storage or cloud vendors. It

exists in a different philosophy altogether one where privacy

is not a product feature, but a right.

The system’s success lies not in innovation for its own sake,

but in restoring something older and simpler: ownership,

autonomy, and trust earned through transparency. In every

test, Pi-Box proved stable, efficient, and secure. It maintained

high uptime, negligible latency, and complete encryption

integrity. Above all, it remained human-scaled simple

enough for ordinary users to operate without ever seeing a

command line.

It’s small, but honest. And in that honesty, it stands taller than

much larger systems.

VI. FUTURE SCOPE

Pi-Box remains open-ended by design flexible enough to

evolve. Future enhancements may focus on:

1. Native Mobile Integration:

Developing companion apps for Android and iOS to enable

background uploads, real-time notifications, and biometric

unlocking.

2. Automatic Backup Mesh:

Expanding the single-node setup into a self-healing mesh of

multiple Pi’s that synchronize securely over Tailscale. This

would ensure redundancy and high availability.

3. Smart Power Management:

Integrating energy-efficient scheduling to hibernate or throttle

the Pi during idle hours, extending hardware lifespan and

lowering power draw further.

4. Dynamic Peer Access Control:

Allowing time-based or role-based access policies (e.g.,

temporary guest users, group sharing) managed through the

dashboard UI.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53888 | Page 8

Projects like Pi-Box serve as reminders that meaningful

innovation

 isn’t about size or speed, but about purpose.

It challenges the passive dependency that modern digital life

has normalized.

When people realize they can own their data without losing

convenience,

something shifts both technologically and philosophically.

If replicated widely, such systems could gradually

decentralize personal

storage from massive corporate ecosystems, reducing reliance

on

surveillance-driven models and rekindling digital self-

reliance.

The future doesn’t have to be owned by a few data centers.

It can live quietly on a shelf, in a small box that you built

yourself

one that serves you and no one else.

REFERENCES

• Samourkasidis, A., & Athanasiadis, I. N. (2017). A

miniature data repository on a Raspberry Pi.

• Environmental Modelling & Software, 95, 287–290.

https://doi.org/10.1016/j.envsoft.2017.06.002

• Khalil-Ur-Rehman, M. (2019). Cloud-based

architecture of Raspberry Pi: Personal cloud storage.

• Global Journal of Computer Science and

Technology, 19(2), 1–6.

• Zichichi, M., Ferretti, S., & D’Angelo, G. (2020).

On the efficiency of decentralized file storage for personal

information management

systems. arXiv preprint arXiv:2007.03505.

• Fowlaath, M., & Masood, A. (2025). Development of

a customizable cloud storage using Raspberry Pi.

 Journal of Engineering Science, 16(2), 101–108.

• Rakhman, D. R., & Rosid, A. (2021).

Implementation and design of IoT-based file server storage

 with Raspberry Pi 3B+. Advances in Computer and

Information Technology, 4(1), 54–61.

• Dutta, S., Singh, R., & Jaiswal, S. (2024).

Blockchain-based decentralized storage systems

 for sustainable data self-sovereignty: A comparative study.

Sustainability, 16(17), 7671.

https://doi.org/10.3390/su16177671

• Borland International (1991). Borland C++ 3.0

Library Reference, Scotts Valley, CA:

Borland International. Borland International (1991). Borland

C++ 3.0 Programmer’s Guide, Scotts Valley,

• CA: Borland International. Cantù, Marco (1995).

Mastering Delphi [incl. CD-ROM], Alameda,

CA: Sybex. Sprigg, Graham (ed.) (1995). Image Processing,

Volume 7: Issues 1-6. Jackson,

Richard and MacDonald, Lindsay and Freeman, Ken (1994).

• Computer Generated Color: A Practical Guide to

Presentation and Display, Glasgow,

• Scotland: John Wiley & Sons. Langdon, Glen G., and

Rissanen, Jorma (1981).

• Compression of Black-White Images with Arithmetic

Encoding. IEEE Transactions on Communications,

COM-29(6), pp858-867.

• Murray, James D. and vanRyper, William (1994).

Encyclopedia of Graphics File Formats [incl. CD-ROM],

Sebastopol,

CA: O’Reilly & Associates. Nelson, Mark (1992).

• The Data Compression Book. New York, NY: M&T

Books.

 8.2 Specific References Iterated Systems, Inc. (1994). Images

Incorporated. Norcross,

https://ijsrem.com/
https://arxiv.org/abs/2007.03505?utm_source=chatgpt.com
https://doi.org/10.3390/su16177671

