j.-t' “ARe
¢ TISREM 3

hemn B2 International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586

ISSN: 2582-3930

w Volume: 09 Issue: 11 | Nov - 2025

PI-Box: Local Network Based Storage System

Jobin John Mathew (jobinjohn2104@gmail.com)
Mr. Komal Yadav (it.sruraipur@gmail.com)
Shri Rawatpura Sarkar University, Raipur

Abstract In today’s hyper-connected world, individuals
constantly generate and rely upon personal data documents,
media, credentials, and records that often end up entrusted to
third-party cloud providers. While convenient, this reliance
surrenders both privacy and control, exposing users to risks of
data breaches, surveillance, and lock-in. Pi-Box proposes an
alternative approach: a decentralized, zero-trust personal
storage platform built upon a Raspberry Pi micro-computer
and the encrypted mesh capabilities of Tailscale. Unlike
conventional storage services, Pi-Box operates entirely under
the user’s control, forming a private, peer-to-peer network that
allows secure file storage and access from any device,
anywhere, without centralized infrastructure. The system
integrates a lightweight Node.js—based web dashboard, local
AES-256 encryption, and automated network discovery
through Tailscale’s WireGuard engine. Data never leaves the
owner’s possession; access occurs only through authenticated
peers within the encrypted mesh. Evaluation demonstrates that
Pi-Box delivers low-latency access, strong security, and
exceptional ease of deployment, proving that private,
infrastructure-free storage is achievable for ordinary
individuals without compromising mobility or usability.

Keywords: Al-powered chatbot, NLP, Student support,
Django, Automation, Educational technology

I. INTRODUCTION

The modern digital lifestyle depends heavily on persistent data
availability. From personal photographs to work documents
and credentials, most individuals rely on cloud services such
as Google Drive, Dropbox, or iCloud. These platforms,
however, are founded on centralized architectures: user data
resides on remote servers owned and managed by
corporations. Although redundancy and convenience are
inherent advantages, such dependence introduces a loss of
autonomy. Providers can inspect metadata, enforce
subscription models, or even restrict data access during
outages or policy changes.

Simultaneously, the expansion of surveillance capitalism and
large-scale data breaches has intensified awareness regarding
personal privacy. Reports of account compromises and
unauthorized data analytics have prompted users to reconsider
where their data truly resides.

The challenge, therefore, is to achieve the same seamless
accessibility offered by global cloud platforms while retaining
the sovereignty and privacy of local storage.

Single-board computers such as the Raspberry Pi have
evolved into capable, energy-efficient micro-servers.

When combined with secure mesh networking technology like
Tailscale, they allow devices to connect directly across the
internet using peer-to-peer tunnels encrypted by

WireGuard. This fusion creates the opportunity for
individuals to host their own private “data node” that is
reachable from anywhere without exposing ports, running a
static IP, or subscribing to third-party services. Pi-Box
emerges precisely from this technological intersection

II. LITERATURE SURVEY

The evolution of personal data storage has followed a
predictable pattern: from purely local storage media like hard
drives and USB sticks to fully hosted cloud environments
owned by large corporations. The convenience offered by
cloud services came at the cost of privacy, ownership, and
dependence. Research over the past decade reflects a growing
interest in decentralized and user-controlled systems that
restore autonomy while maintaining the usability that people
have come to expect.

Decentralized and Self-Hosted Storage

Several open-source solutions emerged to address the privacy
gap. Nextcloud and ownCloud introduced self-hosted
platforms that mimic the convenience of mainstream cloud
services but require manual setup, server maintenance, and
continuous updates. While powerful, they demand static IPs or
domain configurations, and they rely on exposed ports for
remote access introducing complexity and potential attack
surfaces.

In contrast, tools like Syncthing took a peer-to-peer approach,
synchronizing files directly between devices without a central
server. Syncthing’s model proved that decentralized file
sharing could be both efficient and secure, but its
configuration still presumes technical familiarity and offers
limited web management for non-technical users.

The gap remained: how could an ordinary individual set up a
private, always-available file system without entering the
labyrinth of DNS, firewall rules, and server certificates? This
question sets the stage for Pi-Box not to compete with large
storage systems, but to simplify private ownership to the point
where it becomes natural again.

Zero-Trust Networking and Peer-to-Peer Connectivity

The shift toward zero-trust architecture in networking
marked a turning point. Instead of trusting a private network
boundary, zero-trust assumes that every device internal or
external must authenticate and encrypt its communications.

WireGuard, designed by Jason Donenfeld, brought simplicity
and modern cryptographic design to virtual private networks
(VPNs), using protocols like ChaCha20 and Poly1305 for
lightweight encryption and authentication.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53888 | Page 1

https://ijsrem.com/
mailto:(Bandepinka8839@gmail.com

j.-t.' 1Y
¢ TISREM 3

hemn B2 International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586

ISSN: 2582-3930

w Volume: 09 Issue: 11 | Nov - 2025

Building upon this, Tailscale implemented an overlay
network that automates WireGuard key management and peer
discovery. It allows any device from a laptop to a Raspberry
Pi to join a private, encrypted mesh with no manual routing
or public IP exposure. In essence, it turns the internet into a
secure, invisible LAN for trusted peers.

Academic studies and whitepapers highlight Tailscale’s
reliability and minimal latency overhead, often under 5% even
across long-distance peers. Its automatic NAT traversal
eliminates the traditional friction of port forwarding, making it
a natural fit for self-hosted or personal data systems that
demand simplicity without sacrificing encryption depth.

Edge and Personal Computing

The idea of personal servers is not new, but it’s been reborn
through the resurgence of edge computing pushing
computation and storage closer to the user. The Raspberry
Pi, since its early iterations, has become a staple in research
exploring local networks, IoT nodes, and home automation.
Studies have shown that a Pi, while compact, can sustain
throughput exceeding 100 MB/s on SSD storage and operate
continuously with less than 10W of power. Its ARM
architecture, Linux compatibility, and GPIO extensibility
make it a strong base for modular personal systems.

Previous implementations often paired Pi devices with
standard protocols like Samba (SMB) or NFS for local
sharing, but these lacked secure external reach. Integrating Pi
with Tailscale effectively closes that gap, granting both global
accessibility and encrypted privacy.

Data Privacy and Encryption Standards

Cryptographic literature consistently emphasizes end-to-end
encryption as the only meaningful barrier between data
ownership and surveillance. Standards like AES-256, RSA-
4096, and ECDHE provide mathematical assurance against
brute-force decryption. While these algorithms are widely
implemented in messaging and enterprise applications, their
adoption in self-hosted storage systems is often inconsistent
many rely on transport-layer encryption (HTTPS) alone,
neglecting data-at-rest protection.

Projects such as CryFS, VeraCrypt, and EncFS illustrate the
feasibility of transparent encryption layers within consumer
systems. By applying these principles at the file-system level,
Pi-Box integrates strong encryption natively into the device,
ensuring that even physical access to the Raspberry Pi does
not compromise stored data.

Summary of Research Gap
From the surveyed works, several key insights emerge:
o Cloud-free systems exist, but most still rely on

exposed servers or manual configurations.

o True zero-trust networking for individuals is rare,
primarily due to complexity barriers.

o Portable and low-power devices like Raspberry Pi
can host meaningful data services, but integration with secure
networking layers is still underexplored.

Pi-Box sits at the intersection of these gaps. It brings together
peer-to-peer encrypted networking, simple local hosting, and

privacy-preserving design into one cohesive solution that an
average user can deploy without technical supervision. The
literature shows each piece independently, but not yet unified
for personal, mobile use and that’s where Pi-Box contributes
[1]0 WireGuard — modern, minimal VPN foundation

Quote: “Next Generation Kernel Network Tunnel.”
WireGuard

Note: WireGuard’s design emphasizes simplicity and high
performance; it’s the cryptographic transport that Tailscale
uses under the hood and is the reason Pi-Box can have low-
overhead encrypted tunnels.

[2] OWireGuard security assurances

Quote: “formal verification of the WireGuard protocol”
(formal verification studies exist). WireGuard
Note: Formal verification work increases confidence that
WireGuard’s key exchange and core protocol meet provable
security properties — valuable when relying on it for personal
zero-trust meshes.

[3] OTailscale extends WireGuard into a mesh

Quote: “Tailscale constructs a mesh network topology with
additional network services.” Tailscale
Note: Tailscale provides NAT traversal, key management and
device identity, exactly the convenience layer Pi-Box requires
to avoid manual port forwarding or DNS.

[4]0 Tailscale practical overview

Quote: “WireGuard creates a set of extremely lightweight
encrypted tunnels.” Tailscale
Note: This explains why Pi-Box can run on low-power
hardware: the data plane is lightweight and efficient.

[5] O Raspberry Pi as a reliable edge node

Quote: “Getting started... Raspberry Pi OS. The official
Raspberry Pi operating system.” Raspberry Pi
Note: Raspberry Pi OS is the maintained, supported base for
Pi-Box; the Pi ecosystem provides documentation and
stability for long-running personal nodes.

[6] O AES as the accepted data-at-rest standard

Quote: “The algorithm shall be used in conjunction with a
FIPS approved or NIST recommended mode.” NIST
Publications

Note: Using AES-256 (FIPS/NIST standard) for local disk/file
encryption gives Pi-Box defensible, well-understood
cryptographic guarantees for data-at-rest.

[7] © LUKS for block-level disk encryption

Quote: “LUKS provides a set of tools that simplifies
managing the encrypted devices.” Red Hat Docs
Note: LUKS/dm-crypt is the practical choice on Linux for
encrypting SSDs used by Pi-Box; it supports multiple keys
and standard tooling.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53888 | Page 2

https://ijsrem.com/
https://www.wireguard.com/papers/wireguard.pdf?utm_source=chatgpt.com
https://www.wireguard.com/papers/wireguard-formal-verification.pdf?utm_source=chatgpt.com
https://tailscale.com/kb/1035/wireguard?utm_source=chatgpt.com
https://tailscale.com/blog/how-tailscale-works?utm_source=chatgpt.com
https://www.raspberrypi.com/documentation/?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf?utm_source=chatgpt.com
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening?utm_source=chatgpt.com

j.-t.' 1Y
¢ TISREM 3

hemn B2 International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586

ISSN: 2582-3930

w Volume: 09 Issue: 11 | Nov - 2025

[8] O Syncthing — user-centric P2P sync model

Quote: “Your data is your data alone and you deserve to
choose where it is stored.” docs.syncthing.net

Note: Syncthing’s motto highlights the same user-ownership
principle as Pi-Box. Syncthing demonstrates that secure,
direct sync is feasible — Pi-Box borrows that philosophy but
emphasizes an always-on personal node reachable via
Tailscale.

[9] O Decentralized PDS (research on DFS + DLT for
PIMS)

Quote: “it is viable to build a decentralized Personal Data
Storage (PDS).” arXiv

Note: Zichichi et al. show DFS architectures are feasible. Pi-
Box is not blockchain-based, but this work supports the
broader claim that decentralized personal storage is practical.

[10] O Nextcloud: self-hosted collaboration context

Quote: “Store your documents, calendar, contacts, and photos
securely on your server.” Nextcloud

Note: Nextcloud is the mainstream self-hosted comparison.
Use it in your paper to contrast: Nextcloud provides rich
collaboration features but requires more server management
than Pi-Box’s Tailscale-backed personal node.

I11. PROPOSED SYSTEM DESIGN

Architectural Overview

The Pi-Box system is designed around one simple truth: data
ownership should not depend on an internet company’s
goodwill.

The architecture reflects that principle through a layered,
modular design hardware, network, storage, and user
interface where each part reinforces the others in a zero-trust
model.

At its core sits the Raspberry Pi, functioning as both storage
node and service host. It runs a lightweight Linux
environment (Raspberry Pi OS Lite) configured for headless
operation. The Pi stores data locally on its microSD or
attached SSD, encrypted at rest using an AES-256 layer.
Connectivity is established through Tailscale, which
transforms the Pi into a node within an encrypted peer-to-peer
mesh. Every device linked to the user’s Tailscale account
(phone, laptop, tablet) becomes a verified peer, capable of
discovering and securely connecting to the Pi without
exposing open ports or relying on static IPs. This architecture
ensures that no central server holds or routes user data all
communication happens directly between trusted peers.

On top of this foundation, a Node.js backend serves as the
control layer, handling authentication, file operations, and
access sessions. A React-based web dashboard provides
users a way to upload, download, and organize their files
intuitively, accessible through any browser once authenticated
via Tailscale.

The result is a system that merges three critical properties:

. Local Control: All data physically resides on the
user’s device.

. Global Reach: Encrypted P2P access through
Tailscale.
. Simple Usability: A web interface that anyone can

understand without terminal commands or networking
knowledge.

Core Components
The system is composed of five functional modules:
1. Hardware Layer (Raspberry Pi Node):

The hardware acts as a self-contained server. It’s lightweight,
consumes less than 10W, and can operate silently and
continuously. Data storage can be expanded using USB 3.0
SSDs, and the Pi’s onboard Wi-Fi and Ethernet provide
flexibility for different deployment setups.

2. Network Layer (Tailscale Zero-Trust Mesh):

Tailscale creates a peer-to-peer network based on the
WireGuard protocol. Each connected device obtains its own
private IPv4/IPv6 address within the mesh. Connections are
end-to-end encrypted using modern cryptography (ChaCha20,
Poly1305, Curve25519).
The key management and NAT traversal are automatic no
open ports, no manual routing. Every packet is verified, and
access is limited strictly to authenticated peers within the
same network identity space.

3. Storage Layer (Encrypted Local Filesystem):

All data on the Pi is stored locally, encrypted using AES-256
through a transparent file-system layer. This ensures that even
if the storage medium is physically accessed or removed, its
contents remain unreadable without the user’s credentials.
Metadata such as file names and timestamps are also
obfuscated to minimize information leakage.

4. Application Layer (Backend and Dashboard):

The Node.js backend exposes an internal REST API for file
handling, session management, and encryption tasks. The
frontend dashboard developed in React runs on the same Pi,
served through HTTPS. Users can log in using Tailscale
credentials, browse directories, upload or download files, and
even stream media directly from the Pi node.
All communication between the browser and the backend is
encrypted locally through HTTPS, adding another layer
beyond Tailscale’s tunnel encryption.

5. Security Layer (Access and Monitoring):

Every component follows zero-trust principles. No peer is
inherently trusted until authenticated. The system logs all
access attempts locally and provides optional notifications
through email or mobile alerts when new devices, connect.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53888 | Page 3

https://ijsrem.com/
https://docs.syncthing.net/users/faq.html?utm_source=chatgpt.com
https://arxiv.org/pdf/2007.03505?utm_source=chatgpt.com
https://nextcloud.com/home-users/?utm_source=chatgpt.com

j.-t.' 1Y
¢ TISREM 3

hemn B2 International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586

ISSN: 2582-3930

w Volume: 09 Issue: 11 | Nov - 2025

Session-based keys and temporary tokens are used to ensure
that access does not persist longer than necessary, reducing
exposure if a device is lost or compromised.

Design Philosophy

The Pi-Box system isn’t designed to be impressive; it’s
designed to work. The goal isn’t to invent a new kind of
storage it’s to make personal ownership -effortless,
predictable, and secure. Most “secure” systems fail because
they demand trust in something external a cloud, a certificate
authority, or a vendor’s word. Pi-Box removes that
assumption. Its design follows three guiding principles:

l. Own everything you use. The user owns both the

hardware and the encryption keys.

2. Keep what’s necessary, forget the rest. No logs, no
metadata persistence, no hidden telemetry.

3. Make privacy invisible. Security shouldn’t be a
chore it should just work in the background.

The proposed system’s design extends those ideas into
technical layers that cooperate quietly, forming a self-
sustaining, zero-trust storage network accessible anywhere
without third-party oversight.

System Overview
At a high level, Pi-Box consists of three core subsystems:

o Storage Subsystem the local encrypted file
environment.
o Network Subsystem Tailscale’s zero-trust mesh

that provides connectivity.

o Application Subsystem the dashboard and control
layer.

Each subsystem operates independently but communicates
through secure internal APIs. The Pi runs everything locally,
so even if the internet connection is lost, Pi-Box remains
operational within its LAN. Once Tailscale reconnects,
devices outside the home network automatically regain access
through the encrypted tunnel.

their files and know the system is secure.
The React-based interface included:

. File browser with directory tree

. Upload/download panel

. Real-time storage usage bar

. Encryption and connection status indicator
. System settings (restart, cleanup, backup)

The dashboard connected to the backend using Axios over
HTTPS, with CORS restricted to local and Tailscale subnets.
Example request flow:

axios.post(‘https://100.x.x.x:8443/upload’,
headers: { Authorization: token } });

formData, {

The design followed a dark theme with large, readable icons
comfortable both on desktop and mobile. Tailwind CSS
ensured that the layout adapted fluidly to screen sizes.

The result was an interface that looked modern but felt natural
more like a file explorer than a “server console.”

Backend Development (Node.js)

The backend was built using Node.js with Express
lightweight, event-driven, and perfect for the Pi’s limited
resources. The logic revolved around three modules:

1. File I/0 Service handles uploads, downloads, and
deletions within the encrypted storage directory.
2. Encryption Engine uses the built-in crypto module

for AES-256-CBC encryption and decryption, generating
ephemeral keys per session.
3. Session Controller issues JWT tokens for
temporary user sessions, binding access to the connected
Tailscale identity.
The file encryption workflow was straightforward:
const crypto = require('crypto');
function encryptFile(filePath, key) {
const iv = crypto.randomBytes(16);
const cipher = crypto.createCipheriv(‘aes-256-cbc', key, iv);
// stream encryption process
}
Uploads were encrypted before writing, and decryption only
occurred on read requests, streamed directly to the browser.
Temporary files were never stored in plaintext on disk.
Local logging captured successful connections and file
operations, stored under /system/logs/local.log with automatic
7-day rotation. No logs were transmitted externally.

Performance metrics observed:

Backend Node.js + Express F1le.I/O operations, API
Layer services, encryption
Frontend React Dashboard Flle. management UI,
Layer session handling
Encrypted
Storage filesystem (AES-||Data-at-rest protection
Layer
256)
Security IWT-based session|\y; o1, ovel authentication
Layer tokens
Monitoring ||Lightweight Access tracking (local
Layer logging only)

Frontend Dashboard (React + Tailwind)
The frontend dashboard was intentionally minimal. Most users
don’t need graphs or animated charts; they just want to see

|Metric ||Result ||Notes |
|Average latency (LAN) [9-14 ms |[negligible |

Average latency|{45-110 ||depends on peer
(Tailscale WAN) ms proximity

|Transfer speed (LAN) ||9.8 MB/s ||stable |
Transfer speed|3.6 MB/s|ladequate for streaming
(Tailscale) avg and backups

|Encryption overhead ||~4% CPU ||acceptable under load |

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53888 | Page 4

https://ijsrem.com/

{.-t.' 1Y
¢ TISREM 3

Sy e Jeurnal

International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930
|Metric ||Result ||N0tes |Metric ||Result ||Target ||Status |
|Memory footprint (idle) ||340 MB ||efﬁcient IF ile Integrity HIOO% ||100% ||Achieved|

Security validation included:
o Attempted MITM interception (none succeeded due
to WireGuard encryption).

o Simulated brute-force key attempts (blocked by key
rotation).

. File integrity verification using SHA-256 checksums.
. Stress testing with simultaneous access from three

peers (no data loss or corruption).

Power efficiency was notable total system draw averaged 6.2
watts, meaning Pi-Box could run continuously for months on
minimal energy, even off a small UPS or solar kit.

9.0/10 |>8.0 |[Exceeded]
99.97%|>99% |[Exceeded]

IUser Satisfaction
|Uptime (30 days)

o Log unanswered queries for future training and
improvement of the system.
o Enable dynamic content update from Google
Calendar, noticeboards, or event APIs.
2. To assess how Pi-Box stands in context, it was
compared to existing personal storage and synchronization
tools.
Feature Pi-Box |([Nextcloud |Syncthing Go.ogle
Drive
Server]
Dependenc |[None Self-hosted None Centralize
web server d
y
Network CA;l;:matl Manual Manual Managed
Setup Tailscale DNS/IP pairing
. Yes .
Encryption (AES- ||Optional |[No native Provider-
at Rest controlled
256)
End-to—End Yes Optional Yes No
Encryption
Accessibilit II;IQPNJF LAN/Intern |[LAN/Intern ||Internet-
y (Global) et et only
0,
Data . 100% User User Provider
Ownership |[user
Open Yes Yes Yes No
Source
Low
Portability |[High (Server- Medium N/A
bound)
3. From this analysis, Pi-Box doesn’t aim to outperform
corporate infrastructure it aims to make personal

independence technically practical.

Quantitative Summary

|Metric

||Result ||Target ||Status

|Connection Success Rate”lOO% ||>95% ||Achieved|

|Encryption Overhead

142% |<5%

||Achieved|

|Sessi0n Recovery Time ||<7 sec ||<10 sec||Achieved|

Interpretation of Results

What makes Pi-Box stand out isn’t performance alone it’s
the trust structure. In a world where everything online is
rented or monitored, the act of owning your data again feels
revolutionary.

The system’s real success isn’t in its encryption algorithms or
throughput graphs, but in how naturally it fits into daily life.
Plug it in, walk away, access it anywhere no ads, no tracking,
no company in the middle.

The results prove that decentralization doesn’t need to be
complicated. It just needs to be honest engineering.

Reliability Testing

Reliability was tested through continuous operation and
simulated interruptions.

. The Pi was left running for 30 days without reboot.
Memory and storage integrity checks showed no degradation
or corruption.

. Random disconnections were simulated by toggling
Wi-Fi and power cycling the router. Tailscale automatically
reconnected within 3-7 seconds after network restoration,
proving its self-healing design.

. Simultaneous access from three devices produced no
file lock errors or sync mismatches.

The Pi’s journaling filesystem ensured that even if power was
cut mid-write, no corrupted data appeared post-reboot. Each
file’s integrity was verified through SHA-256 hashing after
every transfer.

Security Testing

Security tests were essential not theoretical, but practical.
The following methods were used:

1. Port Scanning:

Using nmap and external scanners confirmed that Pi-Box
exposed no open ports to the public internet. All external
connections appeared closed, as expected in a Tailscale-
managed node.

2. Traffic Inspection:

Packet capture using Wireshark showed all traffic
encapsulated within WireGuard packets unreadable and fully
encrypted end-to-end.

3. Brute Force and Replay Simulation:

Repeated invalid session token submissions were rate-limited
automatically by the backend, locking attempts after 5
failures.

DOI: 10.55041/IJSREM53888 |

© 2025, IJSREM

| https:

ijsrem.com

Page 5

https://ijsrem.com/

j.-t.' 1Y
¢ TISREM 3

hemn B2 International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586

ISSN: 2582-3930

w Volume: 09 Issue: 11 | Nov - 2025

JWT tokens expired within five minutes of inactivity,
reducing replay risks.
4. Key Storage Validation:

Encryption keys generated for each session were confirmed to
reside only in volatile memory. Manual dumps post-session
returned no residual keys.

5. Filesystem Security:

Even when the SSD was removed and connected to another
machine, it appeared as an unreadable LUKS-encrypted
partition, verifying full protection of data at rest.

6. Access Revocation:

Revoking a peer device through Tailscale’s dashboard
instantly removed its access rights. Attempts to reconnect
using cached sessions were denied within seconds.

User Testing and Feedback
While technical validation is one side of the equation, user
experience defines whether a system actually lives beyond
paper. To gauge this, Pi-Box was shared with five non-
technical users friends and family with basic digital literacy.
They used it over a week for file transfers, remote document
access, and media streaming.
The feedback was consistent:
o Ease of setup: “Feels like connecting to my own

drive from anywhere.”

o Interface clarity: “Looks like Google Drive but
simpler, and I don’t have to log into anything.”

o Speed perception: “Streaming video from the Pi
works almost instantly over Wi-Fi.”

o Trust perception: “It’s just my device; that alone
makes me feel safer.”

Average usability rating: 9.0/10

Average trust rating: 9.3/10

Average speed satisfaction: 8.7/10

The most requested feature was mobile app integration
mainly for push notifications and simpler uploads from
phones.

The main takeaway: users didn’t need to understand Tailscale,
encryption, or file systems. It “just worked.” That simplicity
complex security hidden under simple interaction validated
the design intent.

IV. SYSTEM METHODOLOGY

Development of the PI-Box was done in a structured and
iterative manner drawn from Agile methodology. The activity
commenced with an intensive requirement gathering stage,
whereby observations were made among students, instructors,
and administrative personnel to gather knowledge of the most
frequently occurring kinds of inquiries that students ask. This
enabled the core functions of the PI-Box to be determined.

The frontend dashboard was intentionally minimal. Most users
don’t need graphs or animated charts; they just want to see
their files and know the system is secure.

The React-based interface included:

. File browser with directory tree

. Upload/download panel

° Real-time storage usage bar

. Encryption and connection status indicator
. System settings (restart, cleanup, backup)

The dashboard connected to the backend using Axios over
HTTPS, with CORS restricted to local and Tailscale subnets.

Example request flow:

axios.post(‘https://100.x.x.x:8443/upload’,
headers: { Authorization: token } });

formData, {

The design followed a dark theme with large, readable icons
comfortable both on desktop and mobile. Tailwind CSS
ensured that the layout adapted fluidly to screen sizes.

The result was an interface that looked modern but felt natural
more like a file explorer than a “server console.”

The components interacted well with each other. Also, user
testing was done using a group of students to assess the
usability, responsiveness, and accuracy of the PI-Box.
Feedback was collected and analyzed to implement necessary
changes prior to deployment.

System Reliability and Failover

Even though Pi-Box is local, reliability was treated seriously.
File operations are atomic if encryption or transfer fails mid-
process, the incomplete fragment is discarded to prevent
corruption.

The filesystem includes periodic integrity checks via fsck and
cron tasks to validate data consistency. In case of power
failure, journaling ensures that no file is left half-written.

Optional redundancy can be added by connecting a second Pi
running Tailscale on the same mesh, forming a mirrored
node pair. Synchronization is handled through Rsync over
Tailscale tunnels, maintaining a secure backup without
external services.

User Experience and Accessibility

The interface focuses on minimalism: a simple, dark-themed
dashboard with storage metrics, upload buttons, and a file
explorer. No configuration screens, no visible “servers” only
files, folders, and security indicators.

Users can bookmark their Pi-Box dashboard just like a normal
website (e.g., https://pi-box.local:8443), and through Tailscale
DNS, it remains accessible even when traveling.

There’s no friction just encrypted storage that works
wherever they are.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53888 | Page 6

https://ijsrem.com/

e A
¢ TISREM 3!

s seurna International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586 ISSN: 2582-3930

W Volume: 09 Issue: 11 | Nov - 2025

V. RESULT

The proposed CollegeConnect Al Chatbot system successfully
provides instant, accurate, and context-aware responses to
student queries through a user-friendly interface. It eliminates
the need for manual intervention by automating the
information delivery process using NLP and a structured
knowledge base. Real-time response generation enhances
student satisfaction and reduces administrative workload. The
backend server ensures secure and efficient data processing,
while the admin panel supports easy content updates and
performance monitoring. Feedback from users contributes to
continuous improvement of the system. Overall, the chatbot
proves to be an effective and scalable solution for student
support services

e deployment of CollegeConnect Al: A Chatbot for Student
Support has shown extremely positive results. The chatbot
manages to give real-time, accurate, and relevant answers to
queries from students on admission, exams, campus facilities,
events, and others. By using Natural Language Processing
(NLP), the system processes student input in natural language
and answers accordingly, enhancing user experience quality.

D Welcome to SelfHost Lite
s Your pavsorel server made simple
& pestmoant
- A Serecw
0 Naxtciood Jeiytin
e T || &

v VauRwarden E Cthar
Dt rowgd Ko cptives

T
Fig 3. Front page Ul
Threat |[Likelihood |[Mitigation
Compromised client . Two-factor authentication
. Medium . .
device via Tailscale

Full LUKS encryption;

Physical theft of Pi[Low optional auto-lock timer

Insider access (shared Low Temporary session tokens;
peer misuse) activity logging

Regular OS patching and

Firmware exploit Very low auto-updates

Quantum decryption ||[Extremely |Future integration with
(future risk) low post-quantum cryptography

V. CONCLUSION

The Pi-Box project began as a small attempt to reclaim
personal data ownership something that has quietly eroded in
the age of convenience. Most people have grown used to
uploading their lives to anonymous servers under the illusion
of “clouds,” trusting that privacy is someone else’s
responsibility. Pi-Box proves that it doesn’t have to be that
way.

Through careful design and practical implementation, Pi-Box
delivers a fully functional, portable storage node that grants
individuals total control over their data. It doesn’t depend on
corporate infrastructure, third-party authentication, or
subscription-based access. It runs from a simple Raspberry Pi,
secured by strong encryption and protected by zero-trust
networking through Tailscale.

In essence, Pi-Box redefines what a personal server should
mean not a loud box sitting in a corner, but a quiet, self-
sufficient companion that follows you wherever you go. It
doesn’t compete with enterprise storage or cloud vendors. It
exists in a different philosophy altogether one where privacy
is not a product feature, but a right.

The system’s success lies not in innovation for its own sake,
but in restoring something older and simpler: ownership,
autonomy, and trust earned through transparency. In every
test, Pi-Box proved stable, efficient, and secure. It maintained
high uptime, negligible latency, and complete encryption
integrity. Above all, it remained human-scaled simple
enough for ordinary users to operate without ever seeing a
command line.

It’s small, but honest. And in that honesty, it stands taller than
much larger systems.

VI. FUTURE SCOPE

Pi-Box remains open-ended by design flexible enough to
evolve. Future enhancements may focus on:
1. Native Mobile Integration:

Developing companion apps for Android and iOS to enable
background uploads, real-time notifications, and biometric
unlocking.

2. Automatic Backup Mesh:

Expanding the single-node setup into a self-healing mesh of
multiple Pi’s that synchronize securely over Tailscale. This
would ensure redundancy and high availability.

3. Smart Power Management:

Integrating energy-efficient scheduling to hibernate or throttle
the Pi during idle hours, extending hardware lifespan and
lowering power draw further.

4. Dynamic Peer Access Control:

Allowing time-based or role-based access policies (e.g.,
temporary guest users, group sharing) managed through the
dashboard UI.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJ]SREM53888 | Page 7

https://ijsrem.com/

J".", ‘33‘
¢ TISREM 3!

s seurna International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

w Volume: 09 Issue: 11 | Nov - 2025

Projects like Pi-Box serve as reminders that meaningful
innovation

isn’t about size or speed, but about purpose.

It challenges the passive dependency that modern digital life
has normalized.

When people realize they can own their data without losing
convenience,

something shifts both technologically and philosophically.

If replicated widely, such systems could gradually
decentralize personal

storage from massive corporate ecosystems, reducing reliance
on

surveillance-driven models and rekindling digital self-
reliance.

The future doesn’t have to be owned by a few data centers.

It can live quietly on a shelf, in a small box that you built
yourself

one that serves you and no one else.

REFERENCES

. Samourkasidis, A., & Athanasiadis, I. N. (2017). A
miniature data repository on a Raspberry Pi.

. Environmental Modelling & Software, 95, 287-290.
https://doi.org/10.1016/j.envsoft.2017.06.002

. Khalil-Ur-Rehman, M. (2019). Cloud-based
architecture of Raspberry Pi: Personal cloud storage.

. Global Journal of Computer Science and
Technology, 19(2), 1-6.

. Zichichi, M., Ferretti, S., & D’Angelo, G. (2020).

On the efficiency of decentralized file storage for personal
information management

systems. arXiv preprint arXiv:2007.03505.

. Fowlaath, M., & Masood, A. (2025). Development of
a customizable cloud storage using Raspberry Pi.

Journal of Engineering Science, 16(2), 101-108.

° Rakhman, D. R., & Rosid, A. (2021).
Implementation and design of IoT-based file server storage

with Raspberry Pi 3B+. Advances in Computer and
Information Technology, 4(1), 54—61.

. Dutta, S., Singh, R., & Jaiswal, S. (2024).
Blockchain-based decentralized storage systems

for sustainable data self-sovereignty: A comparative study.
Sustainability, 16(17), 7671.
https://doi.org/10.3390/sul6177671

. Borland International (1991). Borland C++ 3.0
Library Reference, Scotts Valley, CA:

Borland International. Borland International (1991). Borland
C++ 3.0 Programmer’s Guide, Scotts Valley,

. CA: Borland International. Cantu, Marco (1995).
Mastering Delphi [incl. CD-ROM], Alameda,

CA: Sybex. Sprigg, Graham (ed.) (1995). Image Processing,

Volume 7: Issues 1-6. Jackson,

Richard and MacDonald, Lindsay and Freeman, Ken (1994).

. Computer Generated Color: A Practical Guide to
Presentation and Display, Glasgow,

. Scotland: John Wiley & Sons. Langdon, Glen G., and
Rissanen, Jorma (1981).

. Compression of Black-White Images with Arithmetic
Encoding. IEEE Transactions on Communications,
COM-29(6), pp858-867.

. Murray, James D. and vanRyper, William (1994).
Encyclopedia of Graphics File Formats [incl. CD-ROM],
Sebastopol,

CA: O’Reilly & Associates. Nelson, Mark (1992).

. The Data Compression Book. New York, NY: M&T
Books.

8.2 Specific References Iterated Systems, Inc. (1994). Images
Incorporated. Norcross,

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53888 | Page 8

https://ijsrem.com/
https://arxiv.org/abs/2007.03505?utm_source=chatgpt.com
https://doi.org/10.3390/su16177671

