
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35376 | Page 1

PlanLLM: Planning based Large Language Agents to Address

Data Manipulation Queries, Using Local Large Language Models

Abdu Rehaman Pasha Syed
Department of ISE

R. V. College of Engineering®

Bengaluru, India

Dr. Kavitha S.N
Department of ISE

R. V. College of Engineering®

Bengaluru, India

Srivathsan Varadharajan
Data Scientist

Philips

Bengaluru, India

Abstract—Planning architecture are a powerful set of tools
utilised to realise step wise execution of queries. These execution
steps are often arranged in a topological order, with a fixed
execution cycle. Generation and creation of a consistent set of
plans for execution of a query, require several calls to Large
Language engine, and can turn out to be highly uneconomical
for industry use case. In this proposed system, a planning
architecture that utilises local Large Language instances through
Ollama client and Kubernetes pods to generate instruct model
based responses, as well as a code generator and executor engine
relying on coding based Large Language Models, including
CodeGemma and CodeLlama are studied as an alternative to
API based cloud solutions. This can increase the overall control
of data flow for several use cases, as well as provide an exhaustive
tool for data visualisation and manipulation tasks. This setup also
provides a general architecture for using planning based agents
for other such sequential use cases.

Index Terms—Large Language Models, Kubernetes, Ollama,
CodeGemma, CodeLlama, Planning agents.

I. INTRODUCTION

Data visualisation and manipulation tasks are cumbersome

to be handled by an Large Language Model(LLM) agent. It

requires understanding of the data schema, processing of user

query, intermediate action required by the user as well as a set

of guided steps to aid in building complex queries. Planning

agents prove to be a very powerful tool for such use cases.

These agents rely on Reason and Act(ReAct) based steps and

produce an understanding of queries at multiple levels based

on complexities. This produces the basic understanding of a

plan in these agents.

Through construction of a well connected plan, the agents

can always follow a guided step for level based execution.

This involves steps that deconstruct the data schema, produce a

series of steps for execution of manipulation operations and fi-

nally visualise the data for quicker insights. Usual architectures

involve utilising a single LLM agent, that can produce quicker

and efficient responses of textual queries, however queries

requiring data manipulation and visualisation are difficult due

to the inherent requirement of generating code and executing

the entire query. To address this different multi-agent options

are possible, which reduce high level tasks into lower sub

tasks, that can be executed more efficiently. In this system,

an architecture to produce efficient data retrieval operations,

along with utilising local LLM instances are introduced, that

provides a much higher data security implementation, and can

be extended to produce results on a consistent basis.

II. LITERATURE REVIEW

The paper titled ”Leveraging Pre-trained Large Language

Models to Construct and Utilize World Models for Model-

based Task Planning” [1] presents a method for few-shot

grounded planning for embodied agents using a large language

model (LLM), specifically focusing on the ALFRED dataset.

The authors introduce the LLM-Planner, which, despite using

less than 0.5% of paired training data, achieves competitive

performance with recent baselines that are trained using the

full training data. Existing methods struggle to complete

any task under the same few-shot setting. The LLM-Planner

can generate high-quality, high-level plans grounded in the

current environment with minimal labeled data. The work has

significant implications for the development of versatile and

sample-efficient embodied agents capable of quickly learning

many tasks [1]. The authors acknowledge the limitations of

existing work, which may hinder larger-scale applications be-

yond their narrow evaluation setting. They suggest enhancing

the ability to learn new tasks with a few training examples

and emphasize the importance of careful prompt design and

other techniques for better in-context learning introducing an

innovative approach with the LLM-Planner that utilizes pre-

trained LLMs for grounded planning[1]. This demonstrates the

potential for LLMs to drastically reduce the data requirements

for training effective planning systems. Complementing this

work, Singh et al.,[3] proposed TWOSTEP, a multi-agent

task planning system that combines classical planners with

LLMs to efficiently handle two-agent tasks [2]. The evaluation

across various domains showed that TWOSTEP outperformed

single-agent and multi-agent PDDL formulations in both plan-

ning time and execution efficiency, particularly when dealing

with partially independent subgoals. These studies suggest

that incorporating LLMs into the planning process could

significantly enhance the capabilities of embodied agents,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35376 | Page 2

facilitating more efficient learning and planning in complex

environments. Continued research in this area may focus

on optimizing planning time efficiency and execution length

variability, further refining the integration of LLMs with

task planning methodologies. Developing RAG based models

over traditional fine-tuning approaches, a pivotal advance-

ment in integrating user provided documents with LLMs.

The document outlines three successive paradigms—Naive,

Advanced, and Modular RAG—each representing an evo-

lutionary step in refining the RAG framework. The results

from this study underscore how RAG, when combined with

other AI methodologies such as fine-tuning and reinforce-

ment learning, extends the capabilities of LLMs, enabling

them to leverage both parameterized and non-parameterized

knowledge sources effectively [4]. The convergence of RAG

and fine-tuning methodologies has shown promising outcomes,

particularly in tasks where context understanding and external

knowledge retrieval are crucial. However relying on fine-

tuning is an expensive undertaking that can be avoided for

general purpose structured documents related tasks. The RAG

framework enhances the LLM’s ability to dynamically retrieve

and generate information from extensive databases, providing

a more nuanced and informed output than could be achieved

through fine-tuning alone, but with a much lesser cost. This

has significant practical implications, as it allows for more

adaptable and contextually aware AI systems [4,5]. Despite its

progress, there is room for improvement in terms of robustness

and handling extended contexts. Moreover, the future scope

of RAG is expanding into multimodal domains, paving the

way for its principles to be adapted for interpreting and

processing various forms of data, such as images, videos, and

code. This anticipated evolution of RAG points to its vast

applicability and potential in creating more sophisticated and

versatile AI deployments [4]. The recent development of the

Forward-Looking Active REtrieval (FLARE) method marks a

significant stride in the field of generative language models

(LMs). FLARE is designed to enhance content generation

by anticipating future content through an innovative retrieval-

augmented generation process. By generating a temporary next

sentence and using it as a query, FLARE retrieves relevant

documents to inform and refine the subsequent generation

of text [4,5]. In a comprehensive evaluation spanning four

long-form knowledge-intensive generation tasks and datasets,

FLARE has demonstrated its capability to outperform baseline

models across all measured metrics. The robustness of FLARE

is evidenced by its superior or competitive performance,

underscoring the method’s effectiveness in leveraging retrieved

information to improve content generation [5]. Despite the

successes of FLARE, the document identifies a clear direc-

tion for future research. Improving the generation of search

queries by LMs, utilizing task-generic retrieval instructions,

and exemplars remains a challenging frontier. The substantial

gap between FLARE’s current capabilities and the complexity

of question decomposition suggests a rich potential for further

advancements in retrieval-augmented generation techniques

[5,6]. Through these attempts, developing of a robust system

Fig. 1. Architecture of the Proposed System

capable of handling document extraction through RAG and a

planner architecture to address query response for structured

relational data will address shortcomings as well as provide

an economical system for the industry [7,8].

III. PROPOSED SYSTEM

A. Architecture

The architecture can be seen in Figure 1. In the overall archi-

tecture, the system components and the flow between them is

shown. The system kernel provides the necessary computation

and backend assistance for the entire system to be used on.

The user pushes the structured data to a data-store, while

providing the query to the planning agent. The planning agent

then creates an initial plan to follow through and complete the

query [9]. Based on the type of document, the planning agent

is provided with a choice of using the retrieval augmented

generation module for contract extraction. To create the plan

an LLM instance is required, which is provided in two ways,

one through the cloud infrastructure using their APIs, and a

local instance through Ollama Client. If the plan requires data

manipulation or visualisation, the planner contacts the code

executor/interpreter. The executor then creates a code instance

and runs it on the kernel. The response is then stored in a

response data-store that is accessible by the user and the agent

[10].

B. Methodology

The aim of the proposed architecture is to avail the use

of local LLM models within the scope of planning and code

execution, making it secure and cost effective for industry wide

usage.

1) Setting up the planner: The planner agent is the crux of

the entire architecture, and as such needs adequate framework

support to run. Initially, Ollama client is used to setup local

Llama 3 70 billion parameters model, and it is used as an

instruct model. The LLM is provided with examples as a

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35376 | Page 3

source of generation json format based plans. These plans

are to be strictly followed as per the example json file,

failing to notice could cause json parser errors. Through

the instruct model, the provided user queries are setup and

different prompt engineering techniques such as few shot

queries, self reflection and ReAct were used to setup the

planner. ReAct proved to be a better choice for the planner

as it provided a simple and less computationally expensive

prompt example engineering, compared to the others. Through

the ReAct prompting example json formats were provided to

the planner.

Fig. 2. Ollama client used to setup LLM instance.

2) Setting up the code generator: The planner agent com-

municates a series of steps that are required to be executed

part by part, sequentially, to realise the entire execution of

the query. This was addressed through setting up another

LLM which was specialised in code generation. The choice of

programming language was chosen as Python, as it provided

easier access to libraries that can visualise data. CodeGemma

and CodeLlama were used as the code generator LLMs for

the code generator agent. CodeGemma was chosen based on

better outputs for the example problem set. An example query

is provided, that gives the python code and that is fed to the

kernel for execution. Based on the execution result, the output

is stored in a session location.

3) Linking the planner and the code generator: The setup

of the planner provides a sequential step based plan, that can

provide instructions to the code generator. If a step requires

a specific code for manipulation of the data, then it raises a

call to the code generator. The code generator then proceeds

to generate a python code to address the step requirements.

Once the step is addressed the execution is begun. The output

is saved in a file location, and the result of the code generator

step is closed. The planner again begins its execution.

C. Understanding the flow of data

The data flow diagrams describe the proposed data flow

architecture to produce a simple and robust planning system.

It is divided here into two levels. Level-0 gives the entire

component and its interaction with the external entity, i.e., the

user. Level-1 provides the breakdown of the entire compo-

Fig. 3. Frontend to load the files and query

nent into individual modules that will provide the necessary

response to the user.

Fig. 4. DFD Level-0

Level-0 provides the entire component as structured data

handler. This component accepts structured data and user

query as input. Structured data includes contracts and

csv,excel,json files etc., and it finally provides with a query

response. Based on the query requirements, the user is also

provided with the visualisation of the data if required.

Level-1 splits the structured data handler component into

5 major components. The Planner agent forms the most

important component, that can plan and execute the user

query. It sends the contract file to be indexed by the vector

database, which will be utilised by the RAG module. A

data parser module is provided to the entire system, to aid

in parsing information and sending it in readable format to

the user. Execution agent accepts the data manipulation plan

from the planner agent, and performs the code execution. The

executed response is then provided to the data parser module.

Finally, for the planner agent and execution agent to work, the

LLM instance is provided by the LLM/Ollama instance setup

module.

IV. RESULT & DISCUSSION

To realise the system a simple plotting query for an incident

dummy data was used. The dummy data consisted of incident

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35376 | Page 4

Fig. 5. DFD Level-1

name, occurrence, time limit, date and department the incident

belonged to. Sample queries, requesting the plot of top 5

services based on number of incidents were sent to the

planning agent.

The sample file, is then loaded into the planner. The base

step involves differentiating the file into contract or data

based file. This is done through a document loader read, and

searching for xlsx or csv content. If the planner fails to obtain

any xlsx or csv content it loads the plan for RAG extraction

of the contract summary and source metadata. However, in

the proposed system this data is loaded as a xlsx data and

the planning steps proceed through the call to local llm agent.

Based on the requirement of the step, the agent proceeds with

call to judge whether the step requires code while generating

the plan itself. The field, ”requires code” is set to trigger on

as seen in Figure 7, and the step, query and the file with its

metadata is passed on to the code agent.

Along with explaining the steps to the user, the planner

agent produces json snippets that are loaded as steps into a

steps list. This list is tentative, and based on results the agent

can be called again to refine it’s plan. Now the first step is

passed onto the code generator agent.

The code generator is provided with filler query, were the

json ”step” field of the step is loaded and appended in the

query. This query is then passed to the CodeGemma model.

In the backend, the code is then parsed and saved as a

.py file ready to be executed. Then within the kernel it is

loaded and executed, and the session is saved in a local folder

accessible by the planner.

Fig. 6. Generating plan for the sample incident file

Fig. 7. The planner agent explaining the steps to the user

Fig. 8. The code generator generates the code in the backend

Running through all the steps, provides a final plot output.

Based on the complexity of the task, the agent can be tuned to

provide better examples. If any query is executed improperly,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35376 | Page 5

an example can be made out of the prompt and the expected

response, which creates a refined few-shot learning process for

the LLM.

essential in execution of the queries, as providing high level

tasks to the code generator can result in highly complex coding

requirements, which the code generator might fail to address

consistently.

Fig. 9. Plot of the top 5 frequent models of cars

This proposed system proves to be more secure in terms

of data handling for industrial usage, as it relies on executing

queries based on local large language models, which provides

much more control over the data flow [12]. It is possible

to horizontally scale the system by utilising more powerful

infrastructure, providing industries with flexible cost manage-

ment options [13].

Through a simpler instruct model, the code generator agent

is able to handle most of the data manipulation and visualisa-

tion queries. This system is more robust, and reduces halluci-

nation, compared to single agent models, that do provide the

necessary execution of data manipulation, and often exceed

rate limits set due to excessive calls. By splitting the work of

code generation to a second agent, it provides more flexibility

to produce plans and well structured steps.

V. CONCLUSION

Data manipulation and visualisation is a difficult task to

handle for many LLMs. By utilising 2 agent model, that

involves a planning agent and a code generation agent, it

provides higher flexibility and a more robust system to address

data manipulation queries. Furthermore use of local LLMs,

through Ollama client, it provides local llm instances that are

isolated and can be setup for industrial usage. This provides

much stronger data security and efficient data flow handling.

Through instruct based LLMs, producing plans are much sim-

pler. These plans can be extended to include other step based

querying attempts to address generic queries at a larger scale

[14]. Code generator agent is specialised in producing python

snippets that address the step query. This provides a lower

level breakdown of the task requirement. This breakdown is

REFERENCES

[1] Guan, Lin, Karthik Valmeekam, Sarath Sreedharan, and Subbarao
Kambhampati. ”Leveraging Pre-trained Large Language Models to
Construct and Utilize World Models for Model-based Task Planning.” In
Advances in Neural Information Processing Systems, pp. 79081-79094.
Curran Associates, Inc., 2023.

[2] Song, Chan Hee, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-
Lun Chao, and Yu Su. ”LLM-Planner: Few-Shot Grounded Planning
for Embodied Agents with Large Language Models.” Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 2998-3009, October 2023.

[3] Singh, Ishika, David Traum, and Jesse Thomason. ”TwoStep: Multi-
agent Task Planning using Classical Planners and Large Language
Models.” arXiv preprint arXiv:2403.17246 (2024).

[4] Gao, Yunfan, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi
Bi, Yi Dai, Jiawei Sun, Meng Wang, and Haofen Wang. “Retrieval-
Augmented Generation for Large Language Models: A Survey.” arXiv
preprint arXiv:2312.10997, 2024.

[5] Jiang, Zhengbao, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane
Dwivedi-Yu, Yiming Yang, Jamie Callan, and Graham Neubig. “Active
Retrieval Augmented Generation.” arXiv preprint arXiv:2305.06983,
2023.

[6] Zhao, A., Huang, D., Xu, Q., Lin, M., Liu, Y.-J., & Huang, G. (2024).

ExpeL: LLM Agents Are Experiential Learners. *Proceedings of the
AAAI Conference on Artificial Intelligence*, 38(17), 19632-19642.
DOI: 10.1609/aaai.v38i17.29936.

[7] Zhu, Yuqi, Shuofei Qiao, Yixin Ou, Shumin Deng, Ningyu Zhang,
Shiwei Lyu, Yue Shen, Lei Liang, Jinjie Gu, and Huajun Chen. ”KnowA-
gent: Knowledge-Augmented Planning for LLM-Based Agents.” arXiv
preprint arXiv:2403.03101, 2024.

[8] Ji, Zhenlan, Daoyuan Wu, Pingchuan Ma, Zongjie Li, and Shuai Wang.
”Testing and Understanding Erroneous Planning in LLM Agents through
Synthesized User Inputs.” arXiv preprint arXiv:2404.17833, 2024.

[9] Dagan, Gautier, Frank Keller, and Alex Lascarides. ”Dynamic Planning
with a LLM.” arXiv preprint arXiv:2308.06391, 2023.

[10] Mei, Kai, Zelong Li, Shuyuan Xu, Ruosong Ye, Yingqiang Ge, and
Yongfeng Zhang. ”LLM Agent Operating System.” arXiv preprint
arXiv:2403.16971, 2024.

[11] Wang, Zihao, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Shawn
Ma, and Yitao Liang. ”Describe, Explain, Plan and Select: Interactive
Planning with LLMs Enables Open-World Multi-Task Agents.” In Ad-
vances in Neural Information Processing Systems, vol. 36, 2024.

[12] Pan, Bo, Jiaying Lu, Ke Wang, Li Zheng, Zhen Wen, Yingchaojie Feng,
Minfeng Zhu, and Wei Chen. ”AgentCoord: Visually Exploring Co-
ordination Strategy for LLM-Based Multi-Agent Collaboration.” arXiv
preprint arXiv:2404.11943, 2024.

[13] Huang, Xu, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang,
Defu Lian, Yasheng Wang, Ruiming Tang, and Enhong Chen. ”Un-
derstanding the Planning of LLM Agents: A Survey.” arXiv preprint
arXiv:2402.02716, 2024.

[14] Zhang, Zheying, Maruf Rayhan, Tomas Herda, Manuel Goisauf, and
Pekka Abrahamsson. ”LLM-Based Agents for Automating the En-
hancement of User Story Quality: An Early Report.” arXiv preprint
arXiv:2403.09442, 2024.

http://www.ijsrem.com/

