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Abstract—Planning architecture are a powerful set of tools 
utilised to realise step wise execution of queries. These execution 
steps are often arranged in a topological order, with a fixed 
execution cycle. Generation and creation of a consistent set of 
plans for execution of a query, require several calls to Large 
Language engine, and can turn out to be highly uneconomical 
for industry use case. In this proposed system, a planning 
architecture that utilises local Large Language instances through 
Ollama client and Kubernetes pods to generate instruct model 
based responses, as well as a code generator and executor engine 
relying on coding based Large Language Models, including 
CodeGemma and CodeLlama are studied as an alternative to 
API based cloud solutions. This can increase the overall control 
of data flow for several use cases, as well as provide an exhaustive 
tool for data visualisation and manipulation tasks. This setup also 
provides a general architecture for using planning based agents 
for other such sequential use cases. 

 

Index Terms—Large Language Models, Kubernetes, Ollama, 
CodeGemma, CodeLlama, Planning agents. 

 

I. INTRODUCTION 

Data visualisation and manipulation tasks are cumbersome 

to be handled by an Large Language Model(LLM) agent. It 

requires understanding of the data schema, processing of user 

query, intermediate action required by the user as well as a set 

of guided steps to aid in building complex queries. Planning 

agents prove to be a very powerful tool for such use cases. 

These agents rely on Reason and Act(ReAct) based steps and 

produce an understanding of queries at multiple levels based 

on complexities. This produces the basic understanding of a 

plan in these agents. 

Through construction of a well connected plan, the agents 

can always follow a guided step for level based execution. 

This involves steps that deconstruct the data schema, produce a 

series of steps for execution of manipulation operations and fi- 

nally visualise the data for quicker insights. Usual architectures 

involve utilising a single LLM agent, that can produce quicker 

and efficient responses of textual queries, however queries 

requiring data manipulation and visualisation are difficult due 

to the inherent requirement of generating code and executing 

the entire query. To address this different multi-agent options 

are possible, which reduce high level tasks into lower sub 

tasks, that can be executed more efficiently. In this system, 

an architecture to produce efficient data retrieval operations, 

along with utilising local LLM instances are introduced, that 

provides a much higher data security implementation, and can 

be extended to produce results on a consistent basis. 

II. LITERATURE REVIEW 

The paper titled ”Leveraging Pre-trained Large Language 

Models to Construct and Utilize World Models for Model- 

based Task Planning” [1] presents a method for few-shot 

grounded planning for embodied agents using a large language 

model (LLM), specifically focusing on the ALFRED dataset. 

The authors introduce the LLM-Planner, which, despite using 

less than 0.5% of paired training data, achieves competitive 

performance with recent baselines that are trained using the 

full training data. Existing methods struggle to complete 

any task under the same few-shot setting. The LLM-Planner 

can generate high-quality, high-level plans grounded in the 

current environment with minimal labeled data. The work has 

significant implications for the development of versatile and 

sample-efficient embodied agents capable of quickly learning 

many tasks [1]. The authors acknowledge the limitations of 

existing work, which may hinder larger-scale applications be- 

yond their narrow evaluation setting. They suggest enhancing 

the ability to learn new tasks with a few training examples 

and emphasize the importance of careful prompt design and 

other techniques for better in-context learning introducing an 

innovative approach with the LLM-Planner that utilizes pre- 

trained LLMs for grounded planning[1]. This demonstrates the 

potential for LLMs to drastically reduce the data requirements 

for training effective planning systems. Complementing this 

work, Singh et al.,[3] proposed TWOSTEP, a multi-agent 

task planning system that combines classical planners with 

LLMs to efficiently handle two-agent tasks [2]. The evaluation 

across various domains showed that TWOSTEP outperformed 

single-agent and multi-agent PDDL formulations in both plan- 

ning time and execution efficiency, particularly when dealing 

with partially independent subgoals. These studies suggest 

that incorporating LLMs into the planning process could 

significantly enhance the capabilities of embodied agents, 
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facilitating more efficient learning and planning in complex 

environments. Continued research in this area may focus 

on optimizing planning time efficiency and execution length 

variability, further refining the integration of LLMs with 

task planning methodologies. Developing RAG based models 

over traditional fine-tuning approaches, a pivotal advance- 

ment in integrating user provided documents with LLMs. 

The document outlines three successive paradigms—Naive, 

Advanced, and Modular RAG—each representing an evo- 

lutionary step in refining the RAG framework. The results 

from this study underscore how RAG, when combined with 

other AI methodologies such as fine-tuning and reinforce- 

ment learning, extends the capabilities of LLMs, enabling 

them to leverage both parameterized and non-parameterized 

knowledge sources effectively [4]. The convergence of RAG 

and fine-tuning methodologies has shown promising outcomes, 

particularly in tasks where context understanding and external 

knowledge retrieval are crucial. However relying on fine- 

tuning is an expensive undertaking that can be avoided for 

general purpose structured documents related tasks. The RAG 

framework enhances the LLM’s ability to dynamically retrieve 

and generate information from extensive databases, providing 

a more nuanced and informed output than could be achieved 

through fine-tuning alone, but with a much lesser cost. This 

has significant practical implications, as it allows for more 

adaptable and contextually aware AI systems [4,5]. Despite its 

progress, there is room for improvement in terms of robustness 

and handling extended contexts. Moreover, the future scope 

of RAG is expanding into multimodal domains, paving the 

way for its principles to be adapted for interpreting and 

processing various forms of data, such as images, videos, and 

code. This anticipated evolution of RAG points to its vast 

applicability and potential in creating more sophisticated and 

versatile AI deployments [4]. The recent development of the 

Forward-Looking Active REtrieval (FLARE) method marks a 

significant stride in the field of generative language models 

(LMs). FLARE is designed to enhance content generation 

by anticipating future content through an innovative retrieval- 

augmented generation process. By generating a temporary next 

sentence and using it as a query, FLARE retrieves relevant 

documents to inform and refine the subsequent generation 

of text [4,5]. In a comprehensive evaluation spanning four 

long-form knowledge-intensive generation tasks and datasets, 

FLARE has demonstrated its capability to outperform baseline 

models across all measured metrics. The robustness of FLARE 

is evidenced by its superior or competitive performance, 

underscoring the method’s effectiveness in leveraging retrieved 

information to improve content generation [5]. Despite the 

successes of FLARE, the document identifies a clear direc- 

tion for future research. Improving the generation of search 

queries by LMs, utilizing task-generic retrieval instructions, 

and exemplars remains a challenging frontier. The substantial 

gap between FLARE’s current capabilities and the complexity 

of question decomposition suggests a rich potential for further 

advancements in retrieval-augmented generation techniques 

[5,6]. Through these attempts, developing of a robust system 

 

 
 

Fig. 1. Architecture of the Proposed System 
 

 

capable of handling document extraction through RAG and a 

planner architecture to address query response for structured 

relational data will address shortcomings as well as provide 

an economical system for the industry [7,8]. 

III. PROPOSED SYSTEM 

A. Architecture 

The architecture can be seen in Figure 1. In the overall archi- 

tecture, the system components and the flow between them is 

shown. The system kernel provides the necessary computation 

and backend assistance for the entire system to be used on. 

The user pushes the structured data to a data-store, while 

providing the query to the planning agent. The planning agent 

then creates an initial plan to follow through and complete the 

query [9]. Based on the type of document, the planning agent 

is provided with a choice of using the retrieval augmented 

generation module for contract extraction. To create the plan 

an LLM instance is required, which is provided in two ways, 

one through the cloud infrastructure using their APIs, and a 

local instance through Ollama Client. If the plan requires data 

manipulation or visualisation, the planner contacts the code 

executor/interpreter. The executor then creates a code instance 

and runs it on the kernel. The response is then stored in a 

response data-store that is accessible by the user and the agent 

[10]. 

B. Methodology 

The aim of the proposed architecture is to avail the use 

of local LLM models within the scope of planning and code 

execution, making it secure and cost effective for industry wide 

usage. 

1) Setting up the planner: The planner agent is the crux of 

the entire architecture, and as such needs adequate framework 

support to run. Initially, Ollama client is used to setup local 

Llama 3 70 billion parameters model, and it is used as an 

instruct model. The LLM is provided with examples as a 
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source of generation json format based plans. These plans 

are to be strictly followed as per the example json file, 

failing to notice could cause json parser errors. Through 

the instruct model, the provided user queries are setup and 

different prompt engineering techniques such as few shot 

queries, self reflection and ReAct were used to setup the 

planner. ReAct proved to be a better choice for the planner 

as it provided a simple and less computationally expensive 

prompt example engineering, compared to the others. Through 

the ReAct prompting example json formats were provided to 

the planner. 

 

Fig. 2. Ollama client used to setup LLM instance. 

 

2) Setting up the code generator: The planner agent com- 

municates a series of steps that are required to be executed 

part by part, sequentially, to realise the entire execution of 

the query. This was addressed through setting up another 

LLM which was specialised in code generation. The choice of 

programming language was chosen as Python, as it provided 

easier access to libraries that can visualise data. CodeGemma 

and CodeLlama were used as the code generator LLMs for 

the code generator agent. CodeGemma was chosen based on 

better outputs for the example problem set. An example query 

is provided, that gives the python code and that is fed to the 

kernel for execution. Based on the execution result, the output 

is stored in a session location. 

3) Linking the planner and the code generator: The setup 

of the planner provides a sequential step based plan, that can 

provide instructions to the code generator. If a step requires 

a specific code for manipulation of the data, then it raises a 

call to the code generator. The code generator then proceeds 

to generate a python code to address the step requirements. 

Once the step is addressed the execution is begun. The output 

is saved in a file location, and the result of the code generator 

step is closed. The planner again begins its execution. 

 

C. Understanding the flow of data 

The data flow diagrams describe the proposed data flow 

architecture to produce a simple and robust planning system. 

It is divided here into two levels. Level-0 gives the entire 

component and its interaction with the external entity, i.e., the 

user. Level-1 provides the breakdown of the entire compo- 

 

 
 

Fig. 3. Frontend to load the files and query 

 

 

nent into individual modules that will provide the necessary 

response to the user. 

 

 
Fig. 4. DFD Level-0 

 

Level-0 provides the entire component as structured data 

handler. This component accepts structured data and user 

query as input. Structured data includes contracts and 

csv,excel,json files etc., and it finally provides with a query 

response. Based on the query requirements, the user is also 

provided with the visualisation of the data if required. 

Level-1 splits the structured data handler component into 

5 major components. The Planner agent forms the most 

important component, that can plan and execute the user 

query. It sends the contract file to be indexed by the vector 

database, which will be utilised by the RAG module. A 

data parser module is provided to the entire system, to aid 

in parsing information and sending it in readable format to 

the user. Execution agent accepts the data manipulation plan 

from the planner agent, and performs the code execution. The 

executed response is then provided to the data parser module. 

Finally, for the planner agent and execution agent to work, the 

LLM instance is provided by the LLM/Ollama instance setup 

module. 

IV. RESULT & DISCUSSION 

To realise the system a simple plotting query for an incident 

dummy data was used. The dummy data consisted of incident 
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Fig. 5. DFD Level-1 
 

 

 
 

 

name, occurrence, time limit, date and department the incident 

belonged to. Sample queries, requesting the plot of top 5 

services based on number of incidents were sent to the 

planning agent. 

 

The sample file, is then loaded into the planner. The base 

step involves differentiating the file into contract or data 

based file. This is done through a document loader read, and 

searching for xlsx or csv content. If the planner fails to obtain 

any xlsx or csv content it loads the plan for RAG extraction 

of the contract summary and source metadata. However, in 

the proposed system this data is loaded as a xlsx data and 

the planning steps proceed through the call to local llm agent. 

Based on the requirement of the step, the agent proceeds with 

call to judge whether the step requires code while generating 

the plan itself. The field, ”requires code” is set to trigger on 

as seen in Figure 7, and the step, query and the file with its 

metadata is passed on to the code agent. 

 

Along with explaining the steps to the user, the planner 

agent produces json snippets that are loaded as steps into a 

steps list. This list is tentative, and based on results the agent 

can be called again to refine it’s plan. Now the first step is 

passed onto the code generator agent. 

 

The code generator is provided with filler query, were the 

json ”step” field of the step is loaded and appended in the 

query. This query is then passed to the CodeGemma model. 

 

In the backend, the code is then parsed and saved as a 

.py file ready to be executed. Then within the kernel it is 

loaded and executed, and the session is saved in a local folder 

accessible by the planner. 

 

 

 
 

 

Fig. 6. Generating plan for the sample incident file 

 

 
Fig. 7. The planner agent explaining the steps to the user 

 

 

Fig. 8. The code generator generates the code in the backend 

 

Running through all the steps, provides a final plot output. 

Based on the complexity of the task, the agent can be tuned to 

provide better examples. If any query is executed improperly, 
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an example can be made out of the prompt and the expected 

response, which creates a refined few-shot learning process for 

the LLM. 

essential in execution of the queries, as providing high level 

tasks to the code generator can result in highly complex coding 

requirements, which the code generator might fail to address 

consistently. 
 

 

 

Fig. 9. Plot of the top 5 frequent models of cars 

 

This proposed system proves to be more secure in terms 

of data handling for industrial usage, as it relies on executing 

queries based on local large language models, which provides 

much more control over the data flow [12]. It is possible 

to horizontally scale the system by utilising more powerful 

infrastructure, providing industries with flexible cost manage- 

ment options [13]. 

Through a simpler instruct model, the code generator agent 

is able to handle most of the data manipulation and visualisa- 

tion queries. This system is more robust, and reduces halluci- 

nation, compared to single agent models, that do provide the 

necessary execution of data manipulation, and often exceed 

rate limits set due to excessive calls. By splitting the work of 

code generation to a second agent, it provides more flexibility 

to produce plans and well structured steps. 

V. CONCLUSION 

Data manipulation and visualisation is a difficult task to 

handle for many LLMs. By utilising 2 agent model, that 

involves a planning agent and a code generation agent, it 

provides higher flexibility and a more robust system to address 

data manipulation queries. Furthermore use of local LLMs, 

through Ollama client, it provides local llm instances that are 

isolated and can be setup for industrial usage. This provides 

much stronger data security and efficient data flow handling. 

Through instruct based LLMs, producing plans are much sim- 

pler. These plans can be extended to include other step based 

querying attempts to address generic queries at a larger scale 

[14]. Code generator agent is specialised in producing python 

snippets that address the step query. This provides a lower 

level breakdown of the task requirement. This breakdown is 
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