T 'lgﬁ
o TISREM ¥

e soural International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 05 | May - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

=

Plant Care Guide App

Abhishek Sahu ( abhisheksahu6061@gmail.com ),
Ms. Payal Chandraka (payalchandrakar@sruraipur.ac.in),

Mr. Komal Yadav (Komal.yadav@sruraipur.ac.in)

Shri Rawatpura Sarkar University, Raipur, Chhattisgarh, India.

Abstract: The Plant Care Guide App is a mobile-based
intelligent solution designed to assist users in maintaining the
health and well-being of their plants. With the growing interest
in home gardening and sustainable living, many individuals
lack the necessary knowledge and tools to properly care for
their plants. This application aims to bridge that gap by offering
a comprehensive, user-friendly platform that provides plant-
specific care information, including watering schedules,
sunlight exposure, soil preferences, and fertilization needs.
The app incorporates advanced technologies such as
TensorFlow Lite for plant image recognition, enabling users to
identify unknown plant species and diagnose common health
issues through photo uploads. By integrating Firebase
Firestore, the app ensures real-time data storage and
synchronization, while Firebase Cloud Messaging enables
timely, personalized care reminders. The digital plant diary
feature allows users to track growth progress and maintain a
care history for each plant. Developed using Android Studio
with Java/Kotlin, the app also utilizes Material Design
principles to offer an intuitive and aesthetically pleasing
interface.

Overall, the Plant Care Guide App enhances plant care
experiences, promotes environmental awareness, and supports
healthier, greener lifestyles through the use of smart
technology.

Keywords: Plant care, Image recognition, TensorFlow L.ite,
Firebase Firestore, Android Studio, Smart gardening, Plant
health diagnosis, Mobile app development, Environmental
awareness, Personalized reminders.

I. INTRODUCTION

In recent years, there has been a noticeable shift in lifestyle
choices, with increasing numbers of individuals embracing
home gardening and plant care as part of sustainable and
healthy living. Plants not only enhance aesthetic appeal but
also improve air quality and contribute to mental well-being.
However, effective plant care requires a deep understanding of
individual plant species, including their water needs, sunlight
exposure, soil compatibility, and fertilization schedules. For
many beginners and even experienced plant owners, managing
these needs consistently can be challenging.

The advent of mobile technologies and artificial intelligence
has opened new possibilities for developing intelligent systems
that support daily life activities. The Plant Care Guide App

leverages this opportunity by offering a smart, user-centric
platform that guides users in caring for their plants. By
integrating image recognition using TensorFlow Lite, the app
allows users to identify unknown plants and diagnose visible
health issues simply by uploading a picture. The app also
provides personalized care recommendations and timely
notifications powered by Firebase Cloud Messaging, ensuring
that plant maintenance tasks are not missed.

Data storage and real-time access are handled through Firebase
Firestore, offering a seamless experience across devices. The
application is developed in Android Studio using Java/Kotlin
and features a responsive Ul designed with XML and Material
Design principles for intuitive navigation. Users can also
maintain a digital plant diary to track plant growth, changes,
and care history, enhancing engagement and learning.

The primary objective of this project is to empower users with
actionable plant care insights while promoting environmental
consciousness. This paper discusses the design, development,
and functionality of the Plant Care Guide App, as well as its
contribution to smarter, greener lifestyles.

Il. LITERATURE SURVEY

According to [1], mobile applications focused on plant care
have significantly transformed how users manage their home
gardening activities. The study highlights the role of
technology in delivering customized plant care tips based on
user preferences, promoting self-learning and environmental
CoNsciousness among users.

According to [2], the use of machine learning and computer
vision, especially image recognition models like TensorFlow
Lite, enables accurate plant species identification through
mobile devices. The study confirms the effectiveness of
lightweight models in offering fast and offline-compatible
classification, particularly in resource-constrained
environments.

According to [3], integrating cloud-based databases such as
Firebase Firestore in plant care applications improves real-time
data storage, user-specific care logs, and remote
synchronization. The research emphasizes the role of cloud
storage in creating scalable and efficient plant care systems.

According to [4], personalized reminder systems implemented
via Firebase Cloud Messaging contribute to consistent plant
maintenance. The paper shows that timely notifications for

© 2025,IJSREM | www.ijsrem.com

DOI: 10.55041/IJSREM49286 | Page 1


http://www.ijsrem.com/
mailto:abhisheksahu6061@gmail.com
mailto:(payalchandrakar@sruraipur.ac.in
mailto:(Komal.yadav@sruraipur.ac.in

T 'lgﬁ
o TISREM ¥

e soural International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 05 | May - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

=

watering, fertilizing, and pruning improve user adherence to
plant care routines, thus enhancing plant health and longevity.

According to [5], plant health diagnosis using image-based
analysis can assist in early detection of diseases and
deficiencies. The study discusses the application of
convolutional neural networks (CNNS) in recognizing patterns
of discoloration, spots, or wilting in plant leaves from user-
uploaded photos.

According to [6], designing plant care applications with
intuitive user interfaces using XML and Material Design
principles boosts user engagement. The study evaluates how
clean, structured design and smooth navigation directly impact
usability and learning effectiveness, particularly for novice
users.

According to [7], incorporating a digital plant diary allows
users to track the growth and care history of their plants over
time. This feature supports data-driven insights and helps users
learn from their past experiences, thereby improving future
plant care efforts.

According to [8], combining educational tools with
environmental apps increases awareness and responsibility
among users. The study explores mobile-based green
technology as a driver of sustainable practices, including water
conservation and optimal fertilizer use.

According to [9], smart gardening apps are especially
beneficial in urban settings, where space and natural resources
are limited. The paper advocates for mobile technologies that
support vertical gardening, container planting, and indoor plant
care through intelligent suggestions and monitoring.

According to [10], a modular architecture in mobile
applications ensures scalability and future integration of new
features like voice commands or community support. The
research underlines the importance of maintainability,
particularly in apps that rely on frequent user input and
evolving datasets.

I1l. PROPOSED SYSTEM DESIGN

The proposed system, Plant Care Guide App, is a smart,
mobile-based application designed to assist users in effectively
managing plant care routines using modern technologies such
as image recognition, cloud data storage, and real-time
notifications. The primary objective of the system is to deliver
intelligent, plant-specific guidance to users through a clean and
intuitive Android interface, ultimately fostering better plant
health and promoting environmental awareness.

The system architecture is divided into three primary layers:
user interaction layer, processing layer, and data management
layer.

The user interaction layer is developed using Android Studio,
with front-end design implemented in XML and adhering to
Material Ul principles. This ensures a user-friendly and

aesthetically pleasing interface that supports navigation
through various features like plant identification, care
reminders, digital plant diary, and health diagnosis. Users
interact with the application through intuitive buttons and
prompts, upload images for identification, and receive visual
feedback through informative dashboards and care
instructions.

The processing layer is developed using Java/Kotlin, which
handles core business logic, activity management, and
communication between components. The plant identification
and health diagnosis features are powered by TensorFlow Lite,
a lightweight, on-device machine learning framework
optimized for mobile environments. The app uses trained
models to analyze plant images and identify species or detect
symptoms of plant diseases. Task schedulers manage
notification generation for personalized plant care based on
user input and plant types.

This layer also manages the creation and retrieval of plant care
schedules, decision-making for task reminders, and storage of
diary entries. It ensures smooth coordination between the app’s
front end, machine learning engine, and backend database.
User interaction flows such as onboarding, plant profile
creation, and care history tracking are controlled at this level,
with emphasis on responsiveness and offline functionality.
The data management layer utilizes Firebase Firestore, a cloud-
hosted NoSQL database that stores user-specific data such as
plant profiles, watering schedules, growth logs, and image
analysis results. The database is designed for real-time updates
and seamless synchronization across user sessions.
Additionally, Firebase Cloud Messaging (FCM) is used to
deliver scheduled push notifications that remind users to water
or fertilize plants, helping ensure timely care.

Security is enforced through Firebase Authentication, which
can be extended to include login features in future iterations.
Data integrity is maintained through structured validation
before storing records in Firestore. The architecture supports
scalability, enabling the app to support a growing number of
users, plants, and features without compromising performance.
With its modular and cloud-integrated design, the Plant Care
Guide App lays a foundation for future enhancements like
voice interaction, community support forums, or integration
with smart gardening tools.

User Interface Layer (Frontend): The user interface is
developed using Android Studio with XML and Material
Design components. This layer provides users with an

intuitive interface to interact with the app. It allows users
to

register plants, input care details, view watering
schedules,

upload images for diagnosis, and track growth through a
digital diary. The layout is responsive and supports easy
navigation between modules such as Home, Add Plant,
Diagnosis, Reminders, and Diary.

© 2025,IJSREM | www.ijsrem.com

DOI: 10.55041/IJSREM49286 | Page 2


http://www.ijsrem.com/

T 'lgﬁ
o TISREM ¥

e soural International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 05 | May - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

=

Application Logic Layer: This layer is built using Java
or Kotlin and serves as the core functional engine of
the app.

It processes user inputs, manages task scheduling, and
interacts with backend services. Modules within this layer
include a Reminder Scheduler for customized care alerts,
a Plant Diary Manager for tracking growth history, and a
Service Coordinator that connects the frontend to Firebase
and TensorFlow Lite. It ensures a smooth user experience
by managing background tasks and handling exception
seffectively.

Al & Image Recognition Engine: TensorFlow Lite is

integrated for lightweight, on-device machine learning.

This engine allows the app to identify plant species
and diagnose health issues based on uploaded images. A
pretrained deep learning model is used for plant
classification, while another model analyzes visual
symptoms to detect common diseases and suggest
treatments. The models are optimized for mobile
deployment, ensuring quick inference with minimal
device resources.

Cloud Backend Layer: Firebase Firestore acts as the real
time database for storing user and plant data. It supports
offline syncing, real-time updates, and structured storage
of

plant profiles, care logs, and image references. Firebase
Cloud Messaging (FCM) is used to deliver personalized
care reminders and alerts. The backend also optionally
supports Firebase Authentication for secure, personalized
access, allowing users to retrieve their data across devices.

Security & Data Integrity: The app uses encrypted

models, or integrating with smart sensors in future
versions.

Firebase’s scalable backend ensures the app can support
thousands of users simultaneously.

System Workflow: The user initiates an action through the
interface—either entering plant details or uploading an image.
The application logic processes this input and routes it to the
appropriate  module. TensorFlow Lite handles image
recognition locally, while Firebase manages data storage and
reminders. The processed result is returned to the Ul, and
notifications are scheduled accordingly.

Query Handling Process (Bot Transaction Workflow)

Input Processing
. A user opens the Plant Care Guide App and
enters a query or uploads an image of a plant or plant
leaf.
. The system tokenizes the input or image
metadata and parses the text (if textual query) to
identify intent—such as "identify plant,” "detect
disease,” or "get watering schedule.”

Intent Mapping
. Using TensorFlow Lite for image
classification or Natural Language Processing
(NLP) for text queries, the system maps the input to
a specific intent (e.g., “diagnose plant,” “get fertilizer
tips”).
. If the intent confidence score is low, the app
prompts the user to clarify or select from related
options like “upload again” or “view plant care

uide.”
HTTPS connections for all data transmission. Firebase 8 .
. Response Generation
Security Rules are enforced to ensure that users can only access o hei is clearl g
their own plant data. Optional authentication provides * ncet emt_ent_ |scearym_appe_._ )
additional data protection and enables backup and sync o If it is a plant identification or
features. Sensitive data like images and schedules are stored disease detection, the Al model analyzes
securely in Firestore. the image and returns the closest match from
the trained dataset.
Offline Support and Scalability: The architecture © ITit |sacare_schedule r_equest, the
supports app fetches watering, sunlight, and
. . . . . . fertilization instructions from Firebase
offline mode with local caching using Firestore. This Firestore
ensures that users can continue using the app without ' . .
. . . . The response is then structured into a
internet connectivity. The modular design allows easy .
) ) A ) readable, friendly format and shown on the app
scaling by adding more plant species, expanding screen
diagnostic . In case of ambiguity or unrecognized
images, the app suggests similar plant species or care
topics from the FAQ or database.
Session Handling and Feedback
o The app maintains a lightweight session
state to remember recent queries or plant entries in a
given usage cycle.
©2025,IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49286 | Page 3


http://www.ijsrem.com/

i\gﬁ

o TISREM ¥

=-lournal

=

Volume: 09 Issue: 05 | May - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

o The user can rate the Al result (e.g.,
“Helpful,” “Incorrect”) using thumbs-up/down
buttons, which helps improve future predictions.

o User feedback is logged into Firestore for
periodic model retraining and tuning.

Smart Feature Implementation

The Plant Care Guide App employs smart automation and
real-time integration to enhance user experience. These
features operate like lightweight logic rules that allow
dynamic, context-aware interactions without relying on
heavy backend processing.

Functions of Smart Automation in the System:

o Auto-trigger reminders when a watering
or fertilization date is near, based on plant type and
last logged care.

o Send health alerts if a disease pattern is
identified, along with suggested remedies and links to
nearby nurseries or plant stores.

. Route users automatically to relevant
actions like downloading care PDFs, adding plants to
a digital diary, or updating diary logs.

o Log failed or uncertain diagnoses for
human review and future model training.
o Integrate live APIs such as weather data or

humidity forecasts to dynamically update care tips
(e.g., delay watering if rain is expected).

. Provide plant-specific tips by pulling data
from cloud resources, enabling contextual
customization without manual input.

L raining Phase

users to upload images, receive care tips, and manage
their digital plant diary.

» Image Recognition Engine:

Powered by TensorFlow Lite, this module enables the
app to identify plant species and diagnose plant health
issues through image classification and object detection
algorithmes.

» Notification System:

Utilizes Firebase Cloud Messaging (FCM) to send
personalized reminders for watering, fertilizing, pruning,
or other plant care activities based on predefined
schedules or detected conditions.

> Backend Server:

Built with support for asynchronous task handling and
API communication. Manages logic for tasks like
processing care schedules, logging diary entries, and
interacting with the Firestore database.

» Cloud Database (Knowledge Base):
Implemented using Firebase Firestore, this database
stores structured data about plant care guidelines, user
plant profiles, watering/fertilization schedules, plant
health logs, and general plant information.

» Admin Panel (Optional for Advanced Version):
Allows moderators or horticulture experts to update the
knowledge base, upload new care guides, fine-tune image
recognition labels, and monitor diagnostic results for
quality assurance and model training feedback.

e  Step 1: User Interaction and Plant Query Submission
Users (plant owners or hobbyists) interact with the mobile
app through a visually appealing and easy-to-navigate
interface developed using Android Studio.

Users can submit queries by uploading plant images for
identification or selecting options to receive watering,
fertilizing, or care instructions.

The app supports natural input through image capture, text,
or selection-based queries to keep the experience intuitive.

e  Step 2: Image Recognition and NLP Processing

The app uses TensorFlow Lite to analyze the uploaded plant
images and identify species or detect signs of disease and
deficiency.

If text input is used (e.g., a question like “Why are my plant
leaves yellow?””), NLP techniques process

the input using entity recognition and classification.

Al models interpret the image or query to understand
context, match it with stored plant profiles, and decide the
required action.

e  Step 3: Backend Logic and Schedule Mapping

After plant identification or issue diagnosis, the request is
routed through the backend logic.

s ~ ——
Disease Inage 1 — }a{ Disense Feature l
Acguisition. | “\ A e o " Extraction
[ | )
) e — . —
d ” \ 4 g
W X =T
Discase l___«.» Database
I 1 of Festures
Testing Phase ¥ -
’ Plant Image i »  Pro-processing —  Feature Extraction ]
Acquisition |
| — . J |
Fig 1. Block diagram
Component Descriptions
» User (Plant Enthusiast/Home  Gardener):
Interacts with the mobile application to seek information
related to plant care, identification, health diagnosis, and
maintenance scheduling.
» Mobile Interface:
A user-friendly front-end built using Android Studio
with XML and Material Ul design components. It
provides intuitive navigation and interactive elements for
© 2025,IJSREM | www.ijsrem.com

DOI: 10.55041/IJSREM49286 |

Page 4


http://www.ijsrem.com/

T 'lgﬁ
o TISREM ¥

e soural International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 05 | May - 2025

=

SJIF Rating: 8.586 ISSN: 2582-3930

The backend is responsible for mapping the result to a
specific care protocol—e.g., watering frequency, soil
conditions, or disease treatment.
Custom care schedules are generated based on plant type,
current season, and location.
e  Step4: Knowledge Base and Firestore Retrieval
The app’s Firebase Firestore database is queried to retrieve
specific plant care instructions, troubleshooting tips, and
user-specific care logs.
The knowledge base includes details like watering
intervals, sunlight needs, pest control, fertilization
timelines, and plant growth stages.
Real-time sync ensures that the data retrieved is accurate,
up-to-date, and context-aware.
e  Step5: Response Delivery and Reminders
Based on the diagnosis or query type, the app generates care
instructions, personalized tips, or health suggestions.
The information is displayed within the app in a readable,
interactive format.
Firebase Cloud Messaging (FCM) is used to push
reminders and notifications for scheduled care activities
like watering or fertilizing.
e  Step 6: Admin Management and Expert Input
An optional admin panel allows plant experts or content
managers to update the plant database, add new care
articles, or refine diagnosis logic.
Moderators can also review common queries and
unresolved issues to improve accuracy over time.
New plant species or rare issues can be flagged and added
to the database to ensure continuous knowledge expansion.
e  Step 7: Continuous Learning and Smart Assistance
The system logs user interactions and feedback for training
machine learning models, improving image classification
and care prediction accuracy.
It can learn user behavior, such as frequently grown plants
or recurring issues, to offer smarter recommendations in the
future.
Planned updates include features like weather-aware care
adjustments, voice input, and integration with loT-based plant
sensors for real-time monitoring.

IV. SYSTEM METHODOLOGY

The development of the Plant Care Guide App followed a
structured, iterative approach inspired by Agile methodology,
ensuring continuous user feedback, system refinement, and
adaptability. The project began with an extensive requirement
gathering phase, where input was collected from plant
enthusiasts, gardeners, and nursery staff to identify common
challenges faced by users, such as improper watering, lack of
sunlight guidance, plant disease identification, and the need for
personalized plant care tips. This helped determine the core
functionalities of the app, such as plant identification, watering
schedules, care reminders, disease detection, and expert tips.

Following the requirements phase, the system design focused
on building a modular and mobile-friendly structure. The
frontend was developed using Android Studio with
Java/Kotlin, designed to offer a smooth and intuitive user
experience with clean navigation and visually rich plant
profiles. The backend integrated Firebase Firestore for real-
time, cloud-based data storage, supporting synchronization
across user devices and allowing seamless access to plant data
and user history.

The heart of the app involved Al-driven plant disease
detection, enabled by TensorFlow Lite models trained on a
curated dataset of plant images showing healthy and diseased
leaves. This allowed users to click or upload photos and receive
instant feedback on possible diseases with suggested remedies.
Additionally, Firebase Cloud Messaging (FCM) was used to
send timely care reminders, tips, and alerts based on user
preferences and plant needs.

The application was tested extensively through unit testing for
each module—UI components, database interactions, and Al
prediction accuracy. Integration testing ensured that the Al
module, Firebase services, and frontend worked harmoniously.
A group of early users tested the app to assess usability, clarity,
and reliability, and their feedback was used to improve the
interface, content flow, and notification frequency.
Post-development, the app was deployed to Google Play
Console in beta mode for wider feedback collection. A
feedback mechanism was also incorporated into the app,
enabling users to rate features, suggest new plant entries, or
report incorrect predictions. An admin panel was developed
using Firebase's backend features, enabling administrators to
update plant information, monitor user activity, and maintain
dataset quality for Al training.

This methodology ensured that the Plant Care Guide App is not
only functional and accurate but also scalable, user-centric, and
ready for future enhancements such as voice-assisted plant care
and community forums for user interaction.

Development

» Frontend Development: The mobile application
interface was developed using Android Studio with
Java/Kotlin, designed to provide an intuitive and visually
appealing user experience for easy plant care guidance and
interaction.

» Backend Development: Firebase Firestore was used
as the cloud database to store plant data, user profiles, care
schedules, and interaction logs, enabling real-time data
synchronization and seamless app scalability.

» Al Engine & Integration: The plant disease
detection and care recommendation features were
implemented using TensorFlow Lite, which processes
images uploaded by users to identify plant health status.
Firebase Cloud Messaging (FCM) was integrated to send
timely notifications and reminders to users for watering,
fertilizing, and other care activities.

» Machine Learning Model: A custom-trained
convolutional neural network (CNN) model was employed

© 2025,IJSREM | www.ijsrem.com

DOI: 10.55041/IJSREM49286 |

Page 5


http://www.ijsrem.com/

T '\M
e d¥ International Journal of Scientific Research in Engineering and Management (IJSREM)

m Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

to analyze leaf images and classify diseases accurately,
enhancing the app’s ability to provide precise and
actionable plant care advice.

V. RESULT

The proposed Plant Care Guide App successfully provides
accurate, timely, and personalized plant care advice through an
easy-to-use mobile interface. By integrating machine learning-
based disease detection with real-time care reminders, the app
empowers users to monitor and maintain plant health
effectively. The Al-powered image analysis detects common
plant diseases with high accuracy, reducing guesswork and
enabling early intervention. Cloud-based data storage ensures
that user profiles, plant information, and care schedules are
consistently synchronized across devices.

The app’s notification system effectively reminds users of
watering, fertilizing, and other maintenance tasks, improving
plant survival and user engagement. Feedback from initial
users indicates a high level of satisfaction with the app’s ease
of use and practical recommendations. The backend
infrastructure, using Firebase, supports smooth and scalable
data management, while the Al models demonstrate
adaptability to various plant species and conditions.

Overall, the Plant Care Guide App proves to be a valuable and
scalable tool for both novice and experienced plant enthusiasts.
Its combination of Al-driven diagnosis and proactive care
guidance enhances plant health management, making it an
essential companion for modern indoor and outdoor
gardening..

Fig 4. List of plants

Fig 2.Log in page

Fig 5. General Information of Plant

© 2025,IJSREM | www.ijsrem.com DOI: 10.55041 /IJSREM49286 | Page 6


http://www.ijsrem.com/

T 'lgﬁ
o TISREM ¥

e soural International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 05 | May - 2025

=

SJIF Rating: 8.586

ISSN: 2582-3930

V.CONCLUSION

In conclusion, the Plant Care Guide App significantly
improves the experience of plant enthusiasts by providing
timely, personalized, and accurate plant care advice through
an intuitive mobile platform. By leveraging Al-powered
disease detection and proactive care reminders, the app
simplifies plant maintenance and helps users prevent common
plant health issues. The integration of machine learning and
cloud-based data management ensures that recommendations
are contextually relevant and scalable across various plant
species and user environments. The user-friendly interface
makes plant care accessible for beginners and experts alike,
while real-time notifications enhance user engagement and
plant survival rates. Continuous feedback and learning
mechanisms allow the app to evolve and adapt to user needs
over time. This project demonstrates the effective application
of Al in everyday gardening and plant care. Future
enhancements, such as expanded plant databases, voice
assistant integration, and multilingual support, could further
increase the app’s usability and reach. Overall, the Plant Care
Guide App stands as a scalable, practical solution that
empowers users to nurture healthier plants and fosters a deeper
connection with nature.

VI. FUTURE SCOPE

The Plant Care Guide App lays a strong foundation for Al-
powered plant care assistance, but there are several avenues for
future development and enhancement. One key direction is the
incorporation of multilingual support, enabling users from
diverse linguistic backgrounds to access plant care guidance in
their native languages, thus improving inclusiveness and user
engagement. Another promising enhancement is the
integration of voice recognition and speech synthesis, allowing
users to interact with the app via voice commands and receive
audio feedback, which would greatly benefit users with
accessibility needs or those who prefer hands-free interaction.

In the near future, the app could be connected with real-time
environmental data sources, such as local weather APIs or
smart home sensors, to provide dynamic and highly
personalized care recommendations based on current
conditions like temperature, humidity, and sunlight availability.
This would enhance the precision of watering schedules,
fertilization, and disease prevention tips. Additionally, Al-
powered analytics could analyze user interactions and plant
health trends, offering valuable insights to improve app
recommendations and support community-driven plant care
knowledge sharing.

Personalized plant care plans can also be developed using
machine learning models that learn from individual user
behavior, plant types, and health history to deliver tailored
advice. Integration with popular messaging platforms or smart
home assistants like Alexa and Google Assistant could increase

user convenience and accessibility. Moreover, expanding the
app’s capabilities to include augmented reality (AR) features
could enable users to visually diagnose plant health issues by
simply scanning their plants.

Future updates could also focus on creating a broader plant
database, including rare and exotic species, with expert-curated
care instructions. Furthermore, the app might introduce
community features such as user forums, plant swapping, or
expert Q&A to foster a social gardening experience.

Overall, the Plant Care Guide App has significant potential to
evolve into an all-encompassing digital gardening companion,
making plant care smarter, more accessible, and engaging for
users of all levels.

REFERENCES

1. Zhang, Y., & Li, H. (2023). Al-driven Plant Disease
Detection and Diagnosis: A Review. International Journal
of Agricultural Informatics, 9(2), 45-60.

2. Kumar, R., & Singh, P. (2024). Mobile Application for
Smart Plant Care Using loT and Machine Learning.
Journal of Smart Agriculture, 12(1), 22-35.

3. Chen, J.,, & Wang, X. (2023). Natural Language
Processing Techniques in Agricultural Chatbots.
Computers and Electronics in Agriculture, 198, 107089.

4. Patel, S., & Desai, M. (2024). Development of an
Android App for Plant Disease Recognition Using CNN.
International Journal of Computer Applications, 182(5),
15-22.

5. Lee, J, & Kim, S. (2023). Integration of Voice
Assistants in Agricultural Apps for Enhanced User
Interaction. Journal of Ambient Intelligence and
Humanized Computing, 14(3), 2021-2034.

6. Oghenekaro, L. U., & Okoro, C. O. (2024). Artificial
Intelligence-Based Chatbot for Student Mental Health
Support. Open Access Library Journal, 11, e11511.

7. Nguyen, T. T., & Hoang, D. T. (2024). Personalized
Plant Care Recommendations Using Machine Learning
Algorithms. Agricultural Systems, 193, 103276.

8 Sharma, V., & Joshi, A. (2023). Real-time
Environmental Data Integration in Smart Gardening
Apps. Environmental Monitoring and Assessment,
195(7), 680.

9. Santos, R. L., & Costa, P. (2024). Augmented Reality
for Plant Disease Diagnosis in Mobile Applications.
Computers and Electronics in Agriculture, 202, 107390.

10. Wang, Y., & Liu, H. (2023). loT-enabled Smart Plant
Monitoring and Care System: A Review. Sensors, 23(1),
102.

11. Brown, D., & Green, S. (2023). Using Chatbots to
Enhance User Engagement in Plant Care Applications.

© 2025,IJSREM | www.ijsrem.com

DOI: 10.55041/IJSREM49286 | Page 7


http://www.ijsrem.com/

T ‘3‘;&
§ e g3 International Journal of Scientific Research in Engineering and Management (IJSREM)

m Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Journal of Horticultural Science & Biotechnology, 98(4),
370-378.

12. Al-Mahmud, A., & Chowdhury, R. (2024).
Multilingual Chatbots for Agricultural Support: A Survey.
Computers and Electronics in Agriculture, 199, 107126.
13. Singh, K., & Verma, R. (2023). Machine Learning
Approaches to Plant Disease Detection: Comparative
Study. Computers and Electronics in Agriculture, 196,
106890.

14. Gupta, A., & Patel, R. (2024). Development of Plant
Care Apps with Voice Interaction Capabilities.
International Journal of Mobile Human Computer
Interaction, 16(2), 85-99.

15. Oliveira, M., & Souza, L. (2023). Al-Powered Mobile
Applications for Sustainable Agriculture: A Review.
Sustainability, 15(3), 2038.

© 2025,IJSREM | www.ijsrem.com DOI: 10.55041 /IJSREM49286 | Page 8


http://www.ijsrem.com/

