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Abstract - The global agricultural sector faces significant challenges due to plant diseases that threaten food
security and sustainable agriculture. Traditional methods of disease detection are often labour-intensive, time-
consuming, and require specialized expertise. This research presents a comprehensive machine learning
framework for automated plant disease detection, leveraging both traditional machine learning and deep
learning approaches. We implemented and evaluated multiple models including VGGI19, Inception v3,
Support Vector Machines (SVM), and k-Nearest Neighbors (kNN) on four distinct datasets: Banana Leaf,
Custard Apple Leaf and Fruit, Fig Leaf, and Potato Leaf. Our experimental results demonstrate remarkable
performance variations across different crops, with the highest achievement of 99.1% accuracy using VGG19
with kNN on the Custard Apple dataset, while the Potato Leaf dataset presented the greatest challenges with
62.6% accuracy using Inception v3 with SVM. The study provides valuable insights into model selection for
specific agricultural applications and highlights the importance of customized solutions based on crop-specific
characteristics. We also address critical challenges including dataset limitations, computational requirements,
and implementation barriers in real-world agricultural settings.

Keywords - Plant disease detection, machine learning, deep learning, convolutional neural networks,
agricultural technology, precision agriculture.

1 Introduction

Plant diseases present a formidable threat to global food security, potentially causing substantial crop yield
reductions and economic losses worldwide. The conventional approach to disease identification relies
heavily on manual inspection by agricultural experts, which is not only time-consuming and labor-intensive
but also prone to human error and subjectivity. This method becomes particularly impractical for large-scale
farming operations and developing regions with limited access to agricultural specialists. The urgent need for
efficient, accurate, and scalable solutions has driven research into automated approaches leveraging artificial
intelligence, particularly machine learning (ML) and deep learning (DL) techniques.

The integration of technology into agricultural practices has gained significant momentum in recent years,
with ML and DL emerging as transformative tools in plant pathology. These advanced computational methods
can analyse complex patterns in visual data, potentially identifying subtle disease symptoms that might escape
human detection. The significance of this technological shift lies in its capacity to enable early intervention,
thereby minimizing crop losses and reducing unnecessary pesticide use through targeted treatment
applications. This approach aligns with the growing emphasis on sustainable agricultural practices and
precision farming.

Despite promising advancements, the application of ML in plant disease detection faces several substantial
challenges. These include the limited availability of large, well-annotated datasets encompassing various plant
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species and disease categories; difficulties in handling variations in leaf morphology and intraspecies disease
manifestations; computational complexity of deep learning models; and practical implementation barriers in
real-world agricultural environments with constraints on power and connectivity. Furthermore,
the performance variability across different crops and disease types necessitates crop-specific model
optimization rather than a universal solution.

This research makes several key contributions to the field of automated plant disease detection: (1)
presenting a comprehensive performance analysis of multiple ML and DL architectures across four distinct
crop types; (2) demonstrating the effectiveness of hybrid approaches combining deep feature extraction with
traditional classifiers; (3) providing insights into model selection based on specific crop characteristics and
resource constraints; and (4) identifying critical research gaps and future directions for the domain.
The practical implications of this work extend to farmers, agricultural technicians, and precision agriculture
technology developers seeking reliable, automated solutions for plant health monitoring.

2 Literature Review
2.1 Traditional Machine Learning Approaches

Traditional machine learning techniques have been extensively applied to plant disease detection, typically
relying on handcrafted feature extraction followed by classification algorithms. Early approaches focused
on extracting colour, texture, and shape features from leaf images, which were then fed into classifiers such
as Support Vector Machines (SVM), k-Nearest Neighbors (kNN), and decision trees. These methods
demonstrated reasonable performance in controlled environments with clear differentiation between
diseased and healthy regions and minimal background interference. However, their effectiveness significantly
declined in complex field conditions with variations in lighting, orientation, and background clutter.

The limitations of traditional approaches became increasingly apparent as research advanced. These
methods struggled with accurately identifying subtle disease symptoms, early-stage infections, and required
extensive preprocessing and domain expertise for feature engineering. Additionally, they exhibited limited
adaptability to new disease categories or plant species, as feature representations needed to be redesigned for
different contexts. Despite these constraints, traditional ML approaches remain relevant for applications with
limited computational resources or where interpretability is prioritized over maximum accuracy.

2.2 Deep Learning Advancements

The advent of deep learning, particularly Convolutional Neural Networks (CNNs), has revolutionized the
field of plant disease detection. CNNs automatically learn hierarchical feature representations directly from
raw images, eliminating the need for manual feature engineering and demonstrating superior performance in
handling complex visual patterns. Liu et al. (2017) and Karthik et al. (2020) were among the pioneers
applying CNNs to plant disease identification, reporting significant accuracy improvements compared to
traditional methods.

Several advanced architectures have been explored for this domain. Mohanty et al. (2016) achieved
landmark results using AlexNet and GoogleNet on the Plant Village dataset, bringing widespread attention to
deep learning applications in agriculture. Subsequent research has investigated more sophisticated
architectures including VGG variants, Inception networks, ResNet, and DenseNet. For instance, a study by
Chen et al. (2021) integrated MobileNet with Squeeze-and-Excitation (SE) blocks, achieving remarkable
accuracy rates of 99.78% on clear background datasets and 99.33% on heterogeneous background datasets.
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Table 1: Summary of Key Deep Learning Approaches in Plant Disease Detection

Reference Model Dataset Key Findings Limitations
Mohanty et al. | AlexNet, PlantVillage Pioneered deep | Controlled
(2016) GoogleNet learning environment
application: only
high accuracy
Chen et al. | SE-MobileNet | Multiple crops | 99.78% Computational
(2021) accuracy; robust | complexity
to background
variations
R et al. (2020) CNN with | Plant Village 98% accuracy | Risk of
attention with 5-fold | overfitting with
cross-validation | limited data
Al-Gaashani et | SANet Rice diseases 98.71% test | Resource-
al. (2023) (ResNet50) intensive
accuracy
Current Study Multiple Four  distinct | Comparative Variable
architectures datasets analysis; hybrid | performance
approaches across crops

2.3 Hybrid Approaches and Emerging Trends

Hybrid methodologies that combine deep feature extraction with traditional classifiers have shown promising
results. Our research builds on this concept by implementing architectures where CNN models such as
VGG19 and Inception v3 serve as feature extractors, with classifiers like SVM making final predictions. This
approach leverages strengths of both methodologies: the powerful representation learning of deep networks
and the efficiency and robustness of traditional classifiers, particularly beneficial with limited training data.

Recent trends indicate growing interest in lightweight architectures suitable for mobile deployment,
attention mechanisms for improved feature representation, and multi-modal approaches combining visual data
with environmental parameters. Tang et al. (2020) developed a mobile-optimized CNN with channel-wise
attention mechanism that achieved 99.14% accuracy on grape leaf diseases while reducing model size from
227.5MB to 4.2MB . Similarly, Minhaz Hossain et al. (2022) implemented a depthwise separable convolution
model for tomato disease detection that achieved 98.31% accuracy with significantly reduced computational
requirements.

Despite these advancements, the research gaps remain in developing generalizable models that perform
consistently across diverse crops and environmental conditions, addressing data scarcity through advanced
augmentation techniques, and creating interpretable models that build trust with end-users. Our study
addresses several of these gaps through systematic evaluation of multiple architectures across different crop
types and analysis of hybrid approaches.

3 Methodology
3.1 Datasets and Preprocessing

This research utilized four distinct datasets to ensure comprehensive evaluation across different plant species
and disease types: Banana Leaf (containing diseases like Black Sigatoka and Banana Bacterial Wilt), Custard
Apple Leaf and Fruit (covering various fungal and bacterial infections), Fig Leaf (including leaf spot diseases
and rust), and Potato Leaf (featuring early and late blight among other conditions) . The diversity in
datasets was intentional to evaluate model robustness and generalizability across different leaf morphologies,
disease patterns, and image capture conditions.
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To address common challenges in agricultural image analysis, we implemented extensive preprocessing
techniques. All images were resized to appropriate dimensions for each architecture (224x224 for VGGI19,
299%x299 for Inception v3) and normalized using channel-wise mean and standard deviation. Data
augmentation strategies were employed to increase dataset diversity and prevent overfitting, including
random rotations (£30°), horizontal and vertical flips, brightness and contrast variations (+20%), and slight
affine transformations. These techniques simulate the variations encountered in real-world field conditions
and improve model generalization.

3.2 Model Architectures

Our experimental framework incorporated multiple deep learning architectures to extract meaningful
features from leaf images, followed by traditional classifiers for disease categorization. The selection criteria
balanced proven performance, architectural diversity, and practical applicability:

. VGG19: This architecture features 19 weight layers with small 3%3 convolutional filters,
providing a deep but straightforward structure. We utilized its powerful feature extraction capabilities,
particularly for texture-based disease patterns.

. Inception v3: Known for its efficiency and use of factorized convolutions, this model reduces
computational complexity while maintaining high performance through multi-scale feature processing.

. Support Vector Machines (SVM): We employed SVM with radial basis function (RBF)
kernel as a classifier on top of deep features, leveraging its effectiveness in high-dimensional spaces
and robustness to overfitting.

. k-Nearest Neighbors (kNN): This instance-based classifier was implemented for its simplicity
and effectiveness when combined with discriminative deep features.
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Fig. 1: Proposed Framework for Plant Disease Detection
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3.3 Experimental Setup

All experiments were conducted using TensorFlow and Keras frameworks with Python 3.8, running on a
workstation with NVIDIA RTX 3080 GPU, 32GB RAM, and Intel i7 processor. The models were trained
using categorical cross-entropy loss and optimized with Adam optimizer with an initial learning rate of
0.001, which was reduced by a factor of 10 when validation loss plateaued for 5 consecutive epochs. We
implemented early stopping with patience of 10 epochs to prevent overfitting and maximize generalization.

The dataset partitioning followed a 70:15:15 ratio for training, validation, and test sets respectively, ensuring
stratified sampling to maintain class distribution across splits. For traditional ML classifiers using deep
features, we extracted features from the global average pooling layer of each CNN and standardized them
using StandardScaler before classifier training. This rigorous evaluation protocol ensured fair comparison
across different architectural approaches and provided reliable performance estimates.

3.4 Performance Metrics

To comprehensively evaluate model performance, we employed multiple metrics that capture different
aspects of classification effectiveness:
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. Accuracy: Overall correctness across all classes (TP+TN)/(TP+TN+FP+FN)

. Precision: Ability to avoid false positives TP/(TP+FP)
. Recall: Ability to identify all relevant instances TP/(TP+FN)

. F1-Score: Harmonic mean of precision and recall 2x(PrecisionxRecall)/(Precision+Recall)

. AUC: Area Under the ROC Curve, measuring separability between classes

. MCC: Matthews Correlation Coefficient, providing a balanced measure for imbalanced
datasets

These complementary metrics provide a holistic view of model performance beyond simple accuracy,
particularly important given the potential class imbalances in plant disease datasets.

4 Results
4.1 Performance Across Different Crops

Our experimental results demonstrated significant variation in performance across different crop types and
model combinations. The highest accuracy of 99.1% was achieved on the Custard Apple Leaf and Fruit
dataset using VGG19 with kNN classifier, while the most challenging dataset proved to be Potato Leaf, with
the best performance of 62.6% accuracy using Inception v3 with SVM . This performance
disparity highlights the crop-specific nature of plant disease detection and the need for tailored solutions
rather than a one-size-fits-all approach.

For the Banana Leaf dataset, the combination of Inception v3 with SVM proved most effective, achieving an
accuracy of 91.9%, precision of 92.2%, recall of 91.9%, F1 score of 91.6%, AUC of 99.6%, and MCC of
90.4% . The Fig Leaf dataset showed moderate performance with accuracy of 86.5%, precision of 86.5%,
recall of 86.5%, F1 score of 86.5%, AUC of 93.3%, and MCC of 72.2% using VGG19 with kNN . These
results suggest that disease characteristics, leaf morphology, and image quality significantly impact model
performance.

Table 2: Detailed Performance Metrics Across Different Crop-Model Combinations

Dataset | Model Accurac | Precision | Recall | F1- AUC MCC
Combination | y Score

Banana | Inception v3 | 91.9% 92.2% 91.9% [91.6% [99.6% |90.4 %

Leaf + SVM

Custard | VGG19 +199.1% 99.1% 99.1% [99.1% [99.1% |99.0%

Apple kNN

Fig Leaf | VGGI19 + | 86.5 % 86.5 % 86.5% [86.5% [933% |722%
kNN

Potato Inception v3 | 62.6% 63.0% 62.6% [62.1% [89.0% |54.2%

Leaf + SVM

4.2 Comparative Analysis of Architectures

The comparison between architectures revealed distinct strengths and weaknesses. VGG19 consistently
demonstrated strong performance when combined with kNN across multiple datasets, particularly excelling
with the Custard Apple dataset. This suggests its feature extraction capabilities are well-suited for diseases
with clear visual patterns and consistent morphology. However, its computational demands and larger
memory footprint present practical deployment challenges, especially for mobile applications.
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The Inception v3 architecture showed particular effectiveness on the Banana Leaf dataset when paired with
SVM, indicating its multi-scale feature extraction approach benefits from more complex disease patterns.
Its inferior performance on the Potato Leaf dataset across all configurations suggests limitations in handling
diseases with subtle visual symptoms or significant within-class variations. The relatively poor
performance on potato leaves aligns with challenges reported in literature, likely due to similar visual
manifestations of different diseases and significant intra-class variations .

4.3 Feature Extraction and Classification Combinations

Our experiments on hybrid approaches combining deep feature extraction with traditional classifiers yielded
important insights. The combination of VGG19 with kNN achieved remarkable results on the Custard Apple
dataset, suggesting that the features learned by VGG19 formed compact, well-separated clusters in the feature
space that kNN could effectively leverage. This alignment between feature extraction and classification
methodology appears critical for optimal performance.

Conversely, the combination of Inception v3 with SVM proved most effective for Banana Leaf diseases,
indicating that the more complex features extracted by Inception v3 benefited from SVM's ability to find
optimal separation boundaries in high-dimensional spaces. These findings emphasize that model
selection should consider not just individual component performance but their synergistic compatibility for
specific disease detection tasks.

Fig. 2: Performance Comparison Across Different Dataset-Model Combinations

[Image: Bar chart comparing accuracy, precision, recall, and F1-score across the four datasets and different
model combinations]
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20 4

5 Discussion
5.1 Interpretation of Results

The substantial performance variation across different crops underscores the complex nature of plant
disease detection and the challenge of developing universal solutions. The exceptional performance on
Custard Apple datasets (99.1% accuracy) can be attributed to several factors: more distinct visual symptoms,
consistent imaging conditions, and clearer differentiation between disease classes. In contrast, the relatively
lower performance on Potato leaves (62.6% accuracy) aligns with practical challenges reported by
agricultural experts, including similar visual symptoms across different diseases, significant stage-dependent
appearance variations, and environmental factors affecting symptom manifestation .
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The effectiveness of hybrid approaches combining deep feature extraction with traditional classifiers
demonstrates the practical value of leveraging strengths from both methodologies. Deep CNNs excel at
learning hierarchical visual representations from raw pixels, while traditional classifiers like SVM and kNN
can provide robust classification with smaller training samples when fed with discriminative features. This
approach is particularly valuable in agricultural applications where large, annotated datasets may be
unavailable for specific crops or diseases.

5.2 Practical Implications

The differential performance across crops has important practical implications for technology adoption in
agriculture. For high-value crops like custard apple where disease detection achieves near-perfect accuracy,
automated systems can reliably support or even replace human expertise for routine monitoring. However, for
crops like potatoes where accuracy remains moderate, these systems may function best as preliminary
screening tools, flagging potential cases for human expert verification rather than making autonomous
decisions.

The computational requirements of different models also impact their practical deployment. While VGG19
achieved excellent performance on several datasets, its substantial computational demands may limit
deployment in resource-constrained environments or real-time applications on mobile devices. In such cases,
lighter architectures like MobileNet or SqueezeNet, though potentially slightly less accurate, may offer better
trade-offs for practical implementation .

5.3 Limitations and Challenges

Several important limitations must be acknowledged in this research. First, the datasets, while diverse, may
not fully represent the challenging conditions encountered in real-world agricultural environments, including
varying lighting, occlusions, weather effects, and different growth stages. Second, the class imbalance present
in many plant disease datasets can bias models toward majority classes, though we attempted to mitigate this
through appropriate evaluation metrics like MCC and F1-score.

Another significant challenge is the generalization to unseen conditions. Models trained on specific datasets
often struggle when applied to images captured under different conditions, with different equipment, or from
different geographical regions. This limitation highlights the need for more robust domain adaptation
techniques and more comprehensive datasets encompassing greater diversity in imaging conditions, cultivars,
and disease strains.

6 Conclusion and Future Work

This comprehensive study demonstrates the significant potential of machine learning, particularly hybrid
approaches combining deep feature extraction with traditional classifiers, for automated plant disease
detection. Our experimental results across four distinct crop types reveal that model performance varies
substantially depending on the specific crop-disease context, with accuracy ranging from 99.1% for custard
apple to 62.6% for potato leaves. These findings underscore the importance of crop-specific model
selection rather than seeking a universal solution for all plant disease detection scenarios.

The practical contribution of this work lies in providing guidance for researchers and practitioners in
selecting appropriate architectures based on their specific crop focus and resource constraints. For applications
where maximum accuracy is prioritized and computational resources are ample, VGG19-based approaches
appear favorable. For more constrained environments or when dealing with certain disease patterns, Inception
v3 with SVM may offer better performance characteristics. The hybrid methodology presented demonstrates
how combining deep learning with traditional machine learning can leverage the strengths of both approaches.
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For future research, several promising directions emerge from this work. First, addressing the performance
gaps for challenging crops like potatoes requires novel approaches potentially incorporating multi-modal data
(including hyperspectral imaging and environmental parameters). Second, developing more efficient
architectures suitable for deployment on mobile devices with limited computational resources would
significantly enhance practical adoption . Third, creating more sophisticated data augmentation techniques and
generative models to address data scarcity for specific crop-disease combinations would improve model
robustness. Finally, exploring explainable AI techniques to provide transparent reasoning for disease
classifications would build trust with agricultural experts and facilitate wider adoption of these technologies in
critical agricultural decision-making.
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