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Abstract - The global agricultural sector faces significant challenges due to plant diseases that threaten food 

security and sustainable agriculture. Traditional methods of disease detection are often labour-intensive, time-

consuming, and require specialized expertise. This research presents a comprehensive machine learning 

framework for automated plant disease detection, leveraging both traditional machine learning and deep 

learning approaches. We implemented and evaluated multiple models including VGG19, Inception v3, 

Support Vector Machines (SVM), and k-Nearest Neighbors (kNN) on four distinct datasets: Banana Leaf, 

Custard Apple Leaf and Fruit, Fig Leaf, and Potato Leaf. Our experimental results demonstrate remarkable 

performance variations across different crops, with the highest achievement of 99.1% accuracy using VGG19 

with kNN on the Custard Apple dataset, while the Potato Leaf dataset presented the greatest challenges with 

62.6% accuracy using Inception v3 with SVM. The study provides valuable insights into model selection for 

specific agricultural applications and highlights the importance of customized solutions based on crop-specific 

characteristics. We also address critical challenges including dataset limitations, computational requirements, 

and implementation barriers in real-world agricultural settings. 

Keywords - Plant disease detection, machine learning, deep learning, convolutional neural networks, 

agricultural technology, precision agriculture. 

1 Introduction 

Plant diseases present a formidable threat to global food security, potentially causing substantial crop yield 

reductions and economic losses worldwide. The conventional approach to disease identification relies 

heavily on manual inspection by agricultural experts, which is not only time-consuming and labor-intensive 

but also prone to human error and subjectivity. This method becomes particularly impractical for large-scale 

farming operations and developing regions with limited access to agricultural specialists. The urgent need for 

efficient, accurate, and scalable solutions has driven research into automated approaches leveraging artificial 

intelligence, particularly machine learning (ML) and deep learning (DL) techniques. 

The integration of technology into agricultural practices has gained significant momentum in recent years, 

with ML and DL emerging as transformative tools in plant pathology. These advanced computational methods 

can analyse complex patterns in visual data, potentially identifying subtle disease symptoms that might escape 

human detection. The significance of this technological shift lies in its capacity to enable early intervention, 

thereby minimizing crop losses and reducing unnecessary pesticide use through targeted treatment 

applications. This approach aligns with the growing emphasis on sustainable agricultural practices and 

precision farming. 

Despite promising advancements, the application of ML in plant disease detection faces several substantial 

challenges. These include the limited availability of large, well-annotated datasets encompassing various plant 
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species and disease categories; difficulties in handling variations in leaf morphology and intraspecies disease 

manifestations; computational complexity of deep learning models; and practical implementation barriers in 

real-world agricultural environments with constraints on power and connectivity. Furthermore, 

the performance variability across different crops and disease types necessitates crop-specific model 

optimization rather than a universal solution. 

This research makes several key contributions to the field of automated plant disease detection: (1) 

presenting a comprehensive performance analysis of multiple ML and DL architectures across four distinct 

crop types; (2) demonstrating the effectiveness of hybrid approaches combining deep feature extraction with 

traditional classifiers; (3) providing insights into model selection based on specific crop characteristics and 

resource constraints; and (4) identifying critical research gaps and future directions for the domain. 

The practical implications of this work extend to farmers, agricultural technicians, and precision agriculture 

technology developers seeking reliable, automated solutions for plant health monitoring. 

2 Literature Review 

2.1 Traditional Machine Learning Approaches 

Traditional machine learning techniques have been extensively applied to plant disease detection, typically 

relying on handcrafted feature extraction followed by classification algorithms. Early approaches focused 

on extracting colour, texture, and shape features from leaf images, which were then fed into classifiers such 

as Support Vector Machines (SVM), k-Nearest Neighbors (kNN), and decision trees. These methods 

demonstrated reasonable performance in controlled environments with clear differentiation between 

diseased and healthy regions and minimal background interference. However, their effectiveness significantly 

declined in complex field conditions with variations in lighting, orientation, and background clutter. 

The limitations of traditional approaches became increasingly apparent as research advanced. These 

methods struggled with accurately identifying subtle disease symptoms, early-stage infections, and required 

extensive preprocessing and domain expertise for feature engineering. Additionally, they exhibited limited 

adaptability to new disease categories or plant species, as feature representations needed to be redesigned for 

different contexts. Despite these constraints, traditional ML approaches remain relevant for applications with 

limited computational resources or where interpretability is prioritized over maximum accuracy. 

2.2 Deep Learning Advancements 

The advent of deep learning, particularly Convolutional Neural Networks (CNNs), has revolutionized the 

field of plant disease detection. CNNs automatically learn hierarchical feature representations directly from 

raw images, eliminating the need for manual feature engineering and demonstrating superior performance in 

handling complex visual patterns. Liu et al. (2017) and Karthik et al. (2020) were among the pioneers 

applying CNNs to plant disease identification, reporting significant accuracy improvements compared to 

traditional methods. 

Several advanced architectures have been explored for this domain. Mohanty et al. (2016) achieved 

landmark results using AlexNet and GoogleNet on the Plant Village dataset, bringing widespread attention to 

deep learning applications in agriculture. Subsequent research has investigated more sophisticated 

architectures including VGG variants, Inception networks, ResNet, and DenseNet. For instance, a study by 

Chen et al. (2021) integrated MobileNet with Squeeze-and-Excitation (SE) blocks, achieving remarkable 

accuracy rates of 99.78% on clear background datasets and 99.33% on heterogeneous background datasets. 
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Table 1: Summary of Key Deep Learning Approaches in Plant Disease Detection 

Reference Model Dataset Key Findings Limitations 

Mohanty et al. 

(2016) 

AlexNet, 

GoogleNet 

PlantVillage Pioneered deep 

learning 

application: 

high accuracy 

Controlled 

environment 

only 

Chen et al. 

(2021) 

SE-MobileNet Multiple crops 99.78% 

accuracy; robust 

to background 

variations 

Computational 

complexity 

R et al. (2020) CNN with 

attention 

Plant Village 98% accuracy 

with 5-fold 

cross-validation 

Risk of 

overfitting with 

limited data 

Al-Gaashani et 

al. (2023) 

SANet 

(ResNet50) 

Rice diseases 98.71% test 

accuracy 

Resource-

intensive 

Current Study Multiple 

architectures 

Four distinct 

datasets 

Comparative 

analysis; hybrid 

approaches 

Variable 

performance 

across crops 

 

2.3 Hybrid Approaches and Emerging Trends 

Hybrid methodologies that combine deep feature extraction with traditional classifiers have shown promising 

results. Our research builds on this concept by implementing architectures where CNN models such as 

VGG19 and Inception v3 serve as feature extractors, with classifiers like SVM making final predictions. This 

approach leverages strengths of both methodologies: the powerful representation learning of deep networks 

and the efficiency and robustness of traditional classifiers, particularly beneficial with limited training data. 

Recent trends indicate growing interest in lightweight architectures suitable for mobile deployment, 

attention mechanisms for improved feature representation, and multi-modal approaches combining visual data 

with environmental parameters. Tang et al. (2020) developed a mobile-optimized CNN with channel-wise 

attention mechanism that achieved 99.14% accuracy on grape leaf diseases while reducing model size from 

227.5MB to 4.2MB . Similarly, Minhaz Hossain et al. (2022) implemented a depthwise separable convolution 

model for tomato disease detection that achieved 98.31% accuracy with significantly reduced computational 

requirements. 

Despite these advancements, the research gaps remain in developing generalizable models that perform 

consistently across diverse crops and environmental conditions, addressing data scarcity through advanced 

augmentation techniques, and creating interpretable models that build trust with end-users. Our study 

addresses several of these gaps through systematic evaluation of multiple architectures across different crop 

types and analysis of hybrid approaches. 

3 Methodology 

3.1 Datasets and Preprocessing 

This research utilized four distinct datasets to ensure comprehensive evaluation across different plant species 

and disease types: Banana Leaf (containing diseases like Black Sigatoka and Banana Bacterial Wilt), Custard 

Apple Leaf and Fruit (covering various fungal and bacterial infections), Fig Leaf (including leaf spot diseases 

and rust), and Potato Leaf (featuring early and late blight among other conditions) . The diversity in 

datasets was intentional to evaluate model robustness and generalizability across different leaf morphologies, 

disease patterns, and image capture conditions. 
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To address common challenges in agricultural image analysis, we implemented extensive preprocessing 

techniques. All images were resized to appropriate dimensions for each architecture (224×224 for VGG19, 

299×299 for Inception v3) and normalized using channel-wise mean and standard deviation. Data 

augmentation strategies were employed to increase dataset diversity and prevent overfitting, including 

random rotations (±30°), horizontal and vertical flips, brightness and contrast variations (±20%), and slight 

affine transformations. These techniques simulate the variations encountered in real-world field conditions 

and improve model generalization. 

3.2 Model Architectures 

Our experimental framework incorporated multiple deep learning architectures to extract meaningful 

features from leaf images, followed by traditional classifiers for disease categorization. The selection criteria 

balanced proven performance, architectural diversity, and practical applicability: 

• VGG19: This architecture features 19 weight layers with small 3×3 convolutional filters, 

providing a deep but straightforward structure. We utilized its powerful feature extraction capabilities, 

particularly for texture-based disease patterns. 

• Inception v3: Known for its efficiency and use of factorized convolutions, this model reduces 

computational complexity while maintaining high performance through multi-scale feature processing. 

• Support Vector Machines (SVM): We employed SVM with radial basis function (RBF) 

kernel as a classifier on top of deep features, leveraging its effectiveness in high-dimensional spaces 

and robustness to overfitting. 

• k-Nearest Neighbors (kNN): This instance-based classifier was implemented for its simplicity 

and effectiveness when combined with discriminative deep features. 
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Fig. 1: Proposed Framework for Plant Disease Detection 

] 

3.3 Experimental Setup 

All experiments were conducted using TensorFlow and Keras frameworks with Python 3.8, running on a 

workstation with NVIDIA RTX 3080 GPU, 32GB RAM, and Intel i7 processor. The models were trained 

using categorical cross-entropy loss and optimized with Adam optimizer with an initial learning rate of 

0.001, which was reduced by a factor of 10 when validation loss plateaued for 5 consecutive epochs. We 

implemented early stopping with patience of 10 epochs to prevent overfitting and maximize generalization. 

The dataset partitioning followed a 70:15:15 ratio for training, validation, and test sets respectively, ensuring 

stratified sampling to maintain class distribution across splits. For traditional ML classifiers using deep 

features, we extracted features from the global average pooling layer of each CNN and standardized them 

using StandardScaler before classifier training. This rigorous evaluation protocol ensured fair comparison 

across different architectural approaches and provided reliable performance estimates. 

3.4 Performance Metrics 

To comprehensively evaluate model performance, we employed multiple metrics that capture different 

aspects of classification effectiveness: 
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• Accuracy: Overall correctness across all classes (TP+TN)/(TP+TN+FP+FN) 

• Precision: Ability to avoid false positives TP/(TP+FP) 

• Recall: Ability to identify all relevant instances TP/(TP+FN) 

• F1-Score: Harmonic mean of precision and recall 2×(Precision×Recall)/(Precision+Recall) 

• AUC: Area Under the ROC Curve, measuring separability between classes 

• MCC: Matthews Correlation Coefficient, providing a balanced measure for imbalanced 

datasets 

These complementary metrics provide a holistic view of model performance beyond simple accuracy, 

particularly important given the potential class imbalances in plant disease datasets. 

4 Results 

4.1 Performance Across Different Crops 

Our experimental results demonstrated significant variation in performance across different crop types and 

model combinations. The highest accuracy of 99.1% was achieved on the Custard Apple Leaf and Fruit 

dataset using VGG19 with kNN classifier, while the most challenging dataset proved to be Potato Leaf, with 

the best performance of 62.6% accuracy using Inception v3 with SVM . This performance 

disparity highlights the crop-specific nature of plant disease detection and the need for tailored solutions 

rather than a one-size-fits-all approach. 

For the Banana Leaf dataset, the combination of Inception v3 with SVM proved most effective, achieving an 

accuracy of 91.9%, precision of 92.2%, recall of 91.9%, F1 score of 91.6%, AUC of 99.6%, and MCC of 

90.4% . The Fig Leaf dataset showed moderate performance with accuracy of 86.5%, precision of 86.5%, 

recall of 86.5%, F1 score of 86.5%, AUC of 93.3%, and MCC of 72.2% using VGG19 with kNN . These 

results suggest that disease characteristics, leaf morphology, and image quality significantly impact model 

performance. 

 

Table 2: Detailed Performance Metrics Across Different Crop-Model Combinations 

Dataset Model 

Combination 

Accurac

y 

Precision Recall F1-

Score 

AUC MCC 

Banana 

Leaf 

Inception v3 

+ SVM 

91.9% 92.2% 91.9 % 91.6 % 99.6 % 90.4 % 

Custard 

Apple 

VGG19 + 

kNN 

99.1% 99.1% 99.1 % 99.1% 99.1% 99.0 % 

Fig Leaf VGG19 + 

kNN 

86.5 % 86.5 % 86.5 % 86.5 % 93.3 % 72.2 % 

Potato 

Leaf 

Inception v3 

+ SVM 

62.6% 63.0% 62.6 % 62.1 % 89.0 % 54.2 % 

 

4.2 Comparative Analysis of Architectures 

The comparison between architectures revealed distinct strengths and weaknesses. VGG19 consistently 

demonstrated strong performance when combined with kNN across multiple datasets, particularly excelling 

with the Custard Apple dataset. This suggests its feature extraction capabilities are well-suited for diseases 

with clear visual patterns and consistent morphology. However, its computational demands and larger 

memory footprint present practical deployment challenges, especially for mobile applications. 
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The Inception v3 architecture showed particular effectiveness on the Banana Leaf dataset when paired with 

SVM, indicating its multi-scale feature extraction approach benefits from more complex disease patterns. 

Its inferior performance on the Potato Leaf dataset across all configurations suggests limitations in handling 

diseases with subtle visual symptoms or significant within-class variations. The relatively poor 

performance on potato leaves aligns with challenges reported in literature, likely due to similar visual 

manifestations of different diseases and significant intra-class variations . 

4.3 Feature Extraction and Classification Combinations 

Our experiments on hybrid approaches combining deep feature extraction with traditional classifiers yielded 

important insights. The combination of VGG19 with kNN achieved remarkable results on the Custard Apple 

dataset, suggesting that the features learned by VGG19 formed compact, well-separated clusters in the feature 

space that kNN could effectively leverage. This alignment between feature extraction and classification 

methodology appears critical for optimal performance. 

Conversely, the combination of Inception v3 with SVM proved most effective for Banana Leaf diseases, 

indicating that the more complex features extracted by Inception v3 benefited from SVM's ability to find 

optimal separation boundaries in high-dimensional spaces. These findings emphasize that model 

selection should consider not just individual component performance but their synergistic compatibility for 

specific disease detection tasks. 

Fig. 2: Performance Comparison Across Different Dataset-Model Combinations 

[Image: Bar chart comparing accuracy, precision, recall, and F1-score across the four datasets and different 

model combinations] 

 

5 Discussion 

5.1 Interpretation of Results 

The substantial performance variation across different crops underscores the complex nature of plant 

disease detection and the challenge of developing universal solutions. The exceptional performance on 

Custard Apple datasets (99.1% accuracy) can be attributed to several factors: more distinct visual symptoms, 

consistent imaging conditions, and clearer differentiation between disease classes. In contrast, the relatively 

lower performance on Potato leaves (62.6% accuracy) aligns with practical challenges reported by 

agricultural experts, including similar visual symptoms across different diseases, significant stage-dependent 

appearance variations, and environmental factors affecting symptom manifestation . 
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The effectiveness of hybrid approaches combining deep feature extraction with traditional classifiers 

demonstrates the practical value of leveraging strengths from both methodologies. Deep CNNs excel at 

learning hierarchical visual representations from raw pixels, while traditional classifiers like SVM and kNN 

can provide robust classification with smaller training samples when fed with discriminative features. This 

approach is particularly valuable in agricultural applications where large, annotated datasets may be 

unavailable for specific crops or diseases. 

 

5.2 Practical Implications 

The differential performance across crops has important practical implications for technology adoption in 

agriculture. For high-value crops like custard apple where disease detection achieves near-perfect accuracy, 

automated systems can reliably support or even replace human expertise for routine monitoring. However, for 

crops like potatoes where accuracy remains moderate, these systems may function best as preliminary 

screening tools, flagging potential cases for human expert verification rather than making autonomous 

decisions. 

The computational requirements of different models also impact their practical deployment. While VGG19 

achieved excellent performance on several datasets, its substantial computational demands may limit 

deployment in resource-constrained environments or real-time applications on mobile devices. In such cases, 

lighter architectures like MobileNet or SqueezeNet, though potentially slightly less accurate, may offer better 

trade-offs for practical implementation . 

5.3 Limitations and Challenges 

Several important limitations must be acknowledged in this research. First, the datasets, while diverse, may 

not fully represent the challenging conditions encountered in real-world agricultural environments, including 

varying lighting, occlusions, weather effects, and different growth stages. Second, the class imbalance present 

in many plant disease datasets can bias models toward majority classes, though we attempted to mitigate this 

through appropriate evaluation metrics like MCC and F1-score. 

Another significant challenge is the generalization to unseen conditions. Models trained on specific datasets 

often struggle when applied to images captured under different conditions, with different equipment, or from 

different geographical regions. This limitation highlights the need for more robust domain adaptation 

techniques and more comprehensive datasets encompassing greater diversity in imaging conditions, cultivars, 

and disease strains. 

6 Conclusion and Future Work 

This comprehensive study demonstrates the significant potential of machine learning, particularly hybrid 

approaches combining deep feature extraction with traditional classifiers, for automated plant disease 

detection. Our experimental results across four distinct crop types reveal that model performance varies 

substantially depending on the specific crop-disease context, with accuracy ranging from 99.1% for custard 

apple to 62.6% for potato leaves. These findings underscore the importance of crop-specific model 

selection rather than seeking a universal solution for all plant disease detection scenarios. 

The practical contribution of this work lies in providing guidance for researchers and practitioners in 

selecting appropriate architectures based on their specific crop focus and resource constraints. For applications 

where maximum accuracy is prioritized and computational resources are ample, VGG19-based approaches 

appear favorable. For more constrained environments or when dealing with certain disease patterns, Inception 

v3 with SVM may offer better performance characteristics. The hybrid methodology presented demonstrates 

how combining deep learning with traditional machine learning can leverage the strengths of both approaches. 
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For future research, several promising directions emerge from this work. First, addressing the performance 

gaps for challenging crops like potatoes requires novel approaches potentially incorporating multi-modal data 

(including hyperspectral imaging and environmental parameters) . Second, developing more efficient 

architectures suitable for deployment on mobile devices with limited computational resources would 

significantly enhance practical adoption . Third, creating more sophisticated data augmentation techniques and 

generative models to address data scarcity for specific crop-disease combinations would improve model 

robustness. Finally, exploring explainable AI techniques to provide transparent reasoning for disease 

classifications would build trust with agricultural experts and facilitate wider adoption of these technologies in 

critical agricultural decision-making. 
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