
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51021 | Page 1

Plant Disease Prediction Using Mobile-Based Real-Time Leaf Image Analysis

Indira Bhattacharya1, Tanvi Shingate2, Damini Bolye3, Priyanka Koli4

1Indira Bhattacharya MCA & Vivekanand Education Society’s Institute Of Technology
2Tanvi Shingate MCA & Vivekanand Education Society’s Institute Of Technology
3Damini Bolye MCA & Vivekanand Education Society’s Institute Of Technology
4Priyanka Koli MCA & Vivekanand Education Society’s Institute Of Technology

---***---

Abstract - Plant diseases silently impact crops every season,

often going unnoticed until the damage is done, leading to

severe losses for farmers and threatening food supplies. This

project introduces a practical and easy-to-use mobile solution

that helps detect such diseases early by analyzing pictures of

plant leaves. Built on clever image recognition techniques, the

system learns to distinguish between healthy and infected

leaves by observing thousands of real examples. It guides users

through a quick process—capturing, analyzing, and

diagnosing—within moments. What makes this approach

powerful is its potential to bring expert-level support straight to

the farmer's pocket, even in remote areas. The result is faster

decisions, better treatment choices, and healthier crops. This

work highlights how merging agriculture with intelligent

technology can make disease management more efficient,

accessible, and proactive.

1. INTRODUCTION

Artificial intelligence and mobile technology have recently
revolutionized almost all sectors, including agriculture. This
research reports the design of an Android application for plant
disease detection through images of plant leaves. The overall
workflow of the system—from image capture to result in a
generation—is illustrated in Figure 1, offering a clear visual of
how each component functions in real time. Early and accurate
disease detection is essential; farmers do not suffer losses on
crops grown simultaneously and have a secure food source.
Unfortunately, many of these farmers do not have access to
agricultural experts or proper and timely information about this
disease. This app leverages deep learning methods by providing
the architecture of Convolutional Neural Networks (CNNs),
which will closely analyze plant leaf images, classify diseases,
and also recommend treatment options—all within a few
seconds [1], [15]. It fills existing gaps in disease management
with the offer of a portable, real-time solution to be used in
multiple farm environments. This study covers model training
techniques, optimization, and performance evaluation
strategies designed to pave the way for a highly accurate and
responsive mobile implementation. The results have a scope to
improve precision in agriculture and indicate the dimension in
which more AI-based applications can be used for sustainable
agriculture by transforming these applications into state-of-the-
art tools for decision-making regarding plant health
management.

The rest of the paper is structured as follows: Section 2 provides
a comprehensive literature review discussing related works and
existing methodologies. Section 3 outlines the methodology
adopted in this study, detailing data preprocessing
preprocessing, feature extraction, and model training. Section
4 presents the module descriptions, explaining each step in
detail. Section 5 discusses the results and analysis, evaluating
the model's performance based on key metrics. Section 6

concludes the study and highlights possible future work
directions for further improvements.

Figure1: Workflow of Plant Disease Detection App

2. LITERATURE REVIEW

Several studies have explored deep-learning applications in
plant disease detection. Early research utilized image
processing techniques and machine learning models like
Support Vector Machines (SVM) and k-nearest Neighbors (k-
NN). With advancements in deep learning, various neural
network architectures have demonstrated superior performance
due to their ability to learn complex patterns. Existing models
such as AlexNet, VGG16, and ResNet have shown promising
results in classifying plant diseases. However, recent research
highlights the advantages of DenseNet architectures, which
improve feature reuse and gradient propagation. This study
builds on prior research by leveraging DenseNet-121 to
optimize feature extraction, enhance accuracy, and improve
computational efficiency in plant disease detection.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51021 | Page 2

3. METHODOLOGY

Figure2: Class Distribution

The development of the plant leaf disease detection app

followed a structured methodology to ensure accurate detection

of plant diseases, using machine learning and deep learning

techniques, particularly leveraging DenseNet-121. The first

step in the process was collecting a comprehensive dataset

filled with plant leaf images. The data was obtained from

numerous sources, such as agriculture databases, scholarly

articles, and field studies. A sufficient set of photos was crucial

for the model's performance.

We, in total, made a blend of 23 plant disease classes with

approximately 200 sample images in each class, as visualized

in the class distribution graph in Figure 2. We incorporated a

transfer learning strategy using a pre-trained DenseNet model

on ImageNet for training speedup and performance

enhancement. We ensured the images were captured under

varied lighting, angles, and environments so the model could

generalize well in real-world scenarios. Standard image

preprocessing techniques such as resizing, normalization, and

augmentation were applied to make the data uniform and

enhance the model's learning capabilities [13], [16].

For the deep learning architecture, we chose DenseNet-121

because of its efficiency in handling image classification tasks.

DenseNet's unique structure allows layers to pass information

directly to every subsequent layer, significantly improving

learning efficiency by preventing the loss of features [5], [10].

This characteristic was significant for our task, as

distinguishing subtle differences between healthy and diseased

leaves requires a deep network capable of capturing minute

details. To expedite the training phase and enhance the

performance, a transfer learning technique was adopted,

commencing with the DenseNet model that had been trained on

ImageNet [3], [12]; this allowed us to fine-tune the model to

our specific dataset, minimizing training time while still

maintaining high accuracy in detecting plant diseases.

Once the dataset was ready and the model architecture was

chosen, we moved on to the training phase. The dataset was

split into training, validation, and test sets, following an 80-10-

10 split. This division has also served the purpose of ensuring

that the model has not only been trained adequately but also

tested on an unseen set of data to reduce overfitting. During the

training process, we employed the Adam optimizer, which is

widely regarded for its ability to adjust the model's weights

efficiently. The model was trained with categorical cross-

entropy as the loss function, and we applied early stopping to

prevent overfitting. This ensured that the model would not

simply memorize the training data but instead learn

generalizable features. However, the evaluation was not static

and was carried out during the process using measures such as

accuracy, precision, and recall [9], [14]. Adjustments were

made based on what was needed and the observations made.

Figure3: Classification Report

After completing this training, the model was put to a strict test

using the reserved test dataset. This was essential to evaluate

its real-world performance. We measured many performance

metrics, such as accuracy and F1-score. These metrics gave a

fair idea about the model's performance on all classes of

diseases available, as detailed in the classification report shown

in Figure 3 [9], [14]. These metrics gave a fair idea about the

model's performance on all classes of diseases available,

comprising 23 classes. We generated confusion matrices to

detect what the model went wrong with, as visualized in Figure

4, highlighting correct vs. incorrect classifications across

disease classes.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51021 | Page 3

Figure4: Confusion Matrix

Further, several hyperparameters, like learning rate and batch

size, were tuned to achieve the best performance in this model.

To enhance the model's robustness, we also applied additional

data augmentation techniques, which allowed the model to

generalize better across different inputs. The final stage of

development was integrating the trained model into an Android

application. It was created with a simple interface where one

could take a photo or choose a picture from the gallery [6], [18].

The processed real-time image was passed through the

DenseNet-121 model for disease classification.

Along with the name of the disease once diagnosed by the

application, more information is provided about the disease

symptoms, possible treatments, and others, including those that

could be used on the plants themselves. The feature enables

understanding of the problem, and immediate action can be

taken to treat the plants. Continuous updates are designed for

the application. These are the kinds of additions to increasing

the database with more diseases, improving the accuracy of

detection based on user input, and adding other data to the

training.

4. MODULE DESCRIPTION

The data loading and preprocessing module are crucial for a

plant leaf disease detection system, as it prepares the dataset for

training, validation, and testing in the first place. An overview

of the dataset and its class labels is presented in Figure 5, which

helps understand the dataset structure used in training. It works

on a Kaggle dataset containing images of five plant types

(apple, corn, potato, strawberry, and tomato) across 23 classes,

including healthy and diseased leaves. To facilitate proper

learning by the model, this module executes the tasks of

resizing images, rescaling, augmenting, and batching.

These operations standardize the given data, prevent

overfitting, and optimize memory. Thus, with this module

manipulating the organization and transformation of the

dataset, it ensures that the DenseNet-121 model can classify

plant diseases with precision, thereby giving rise to reliable

real-world applications.

Figure: Plant Disease Dataset Overview with Class Labels

4.1 Data Load

The data loading module is an indispensable part of the data
preparation process for the plant leaf disease detection model.
This model uses a dataset available on Kaggle, an image dataset
of plant leaves arranged according to the diseases they suffer
from or healthy leaves. The module aims to ensure that the data
is loaded and preprocessed correctly and assigned respectively
to the training, validation, or testing sets for the successful
modeling of plant disease detection.

The dataset contains information on five plant types: apple,
corn, potato, strawberry, and tomato. Furthermore, each plant
type has several disease categories and a healthy class. For
example, the apple class has black rot, healthy scab, and cedar
apple rust, while for the tomato class, there is a broader range
of diseases like bacterial spot, early blight, late blight, and
mosaic virus, among others. Each of these 23 classes has 200
images, thus allowing a balanced distribution for machine
learning training processes. Furthermore, such a count of
images per category helps not skew the model towards the
results of a specific type of disease, making the classification
more accurate.

4.2 Data PreprocessingPreprocessing

Handling the "Data Preprocessing" module is an integral part

of every step of preparing a dataset for an Android application

of plant leaf disease detection. The dataset is taken from

Kaggle, which consists of 23 classes of plant diseases, each

with 200 images in each class. To illustrate, it contains diseases

like apple black rot, corn common rust, potato late blight, and

tomato yellow leaf curl virus, and healthy classes for each crop.

This module ensures that the images undergo transformation

and augmentation and are ready for use in the DenseNet-121

model. Some of the activities done by this module are image

resizing, rescaling, augmentation, and batching the data. These

transformations are essential to ensure the model can learn from

the data efficiently.

4.2.1 Image Rescaling: One of the most critical aspects of

preprocessing preprocessing is rescaling the pixel values. The

pixel intensity values of most images are usually from 0 to 255.

The resizing operation is based on the method shown in

Equation 1. In this perspective, the module normalizes the

values by dividing every pixel value by 255, restricting the

pixel values to the range [0, 1]. This enhances the efficiency of

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51021 | Page 4

the neural network in handling data by standardizing the input

scale.

4.2.2 Image Augmentation: Data augmentation is applied to

expand the training dataset's diversity artificially. This process

helps prevent overfitting by creating slightly altered versions of

the existing images. The augmentations used in this module

include shear transformation, zoom, and horizontal flip, as

demonstrated in Figure 6:

● Shear Transformation: This shifts the image pixels

along the axis as if "tilted."

● Zoom: This randomly zooms in on parts of the

image.

● Horizontal Flip: This horizontally flips the image to

create a mirrored version.

4.2.3 Data Generator for Loading Images: The module uses

the flow_from_directory function to load images from the

specified directories. This function automatically labels the

photos based on the folder structure and resizes them to a

uniform size of 128x128 pixels, which is required for the

DenseNet-121 model.

Image Resizing Formula: Given the original image dimensions

w×hw \times hw×h, resizing to 128x128 can be done by:

Equation1: Image Resizing Formula

This ensures all images are the same size, making them

compatible with the model’s input layer.

Figure 6: Image Augmentation

4.3 Batch Processing

The dataset is processed in batches of 32 images. To eliminate

any possible bias during training, images are randomly

shuffled. The processed images and corresponding labels are

kept in .npy files for the training and validation sets. This

advantage is that it avoids memory overload with large datasets

and enables the model to load batches simultaneously.

Therefore, it helps ensure that the training and validation data

are processed and ready to use during the model training.

4.4 Class Labels (Categorical Encoding)

The class labels for each image are represented in a one-hot

encoded format. This encoding process is illustrated in

Equation 2. For example, if there are 23 classes, each label will

be a vector of size 23 where only the position corresponding to

the correct class is 1, and the rest are 0s.

Equation2: One-Hot Encoding Formula

This encoding is used for classification tasks to make the labels

understandable by the neural network. A leaf detection

preprocessing module was also incorporated to ensure the

uploaded image contains a leaf before attempting disease

classification.

Example Scenario:

At the outset, the image is adjusted to a resolution of 128x128

pixels. After that, augmentations such as random zooming and

horizontal flipping generate more image variations. The pixel

values are further normalized by dividing them by 255, and the

label, which is "strawberry leaf scorch," in this case, is handily

one-hot encoded with the class index of 1 for "strawberry leaf

scorch." After this, the image and label pair are prepared and

kept within batches for further training or validation. With the

intervention of this preprocessing module, the model can

explore a broader range of well-organized data, promoting

better training and even better generalization capability when

real-world plant disease detection is targeted.

5. FEATURE EXTRACTION

Within the scope of an Android application for detecting plant

leaf diseases, feature selection is considered one of the most

critical processes. It involves determining what features or parts

from the pictures are essential for the model to differentiate

disease classes effectively. Within these parameters, we utilize

the DenseNet-121 feature extraction network for leaf images in

a self-supervised manner.

Explanation of the Feature Extraction Process:

5.1 Pre-trained Model Initialization (Transfer Learning)

At the start, the procedure commences with feature extraction,

where the DenseNet-121 model is loaded with the help of pre-

trained weights obtained from the ImageNet dataset. The

transfer learning concept enables the model to benefit from

training conducted on many uncorrelated images to train the

model in detecting plant leaf diseases. This process can be

represented using Equation 3. The pre-trained DenseNet-121

model can be distinguished from other models because it can

capture complex images by identifying even edges, textures,

color variations, and so on within the image.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51021 | Page 5

Equation3: Formula for Transfer Learning

In this application, we use include_top=False to exclude the

fully connected layers at the top of the DenseNet-121 model.

The purpose is to utilize DenseNet as a feature extractor and

add custom classification layers afterward.

5.2 LayerwiseLayerwise Feature Extraction

Concerning DenseNet-121, any convolutional layer is designed

to extract a specific type of feature available in the input

images. This progressive extraction mechanism is described in

Equation 4. The first layers perform simple feature extraction,

including edges, colors, and textures. In contrast, the final ones

deal with the more complex ones, such as shapes, patterns, and

particular features related to specific diseases.

DenseNet-121 uses a dense connectivity pattern where each

layer receives input from all preceding layers. This helps to

propagate features throughout the network, allowing the model

to learn richer feature representations.

Equation4: LayerwiseLayerwise Feature Extraction Formula

This continuous connectivity enables the reuse of features,

which is highly beneficial for tasks like plant disease detection,

where slight variations in color or texture can signal different

diseases.

5. 3 Global Average Pooling

After the convolutional layers of DenseNet-121 have extracted

feature maps, a Global Average Pooling (GAP) layer is applied.

Instead of using fully connected layers (which could lead to

overfitting, especially with limited data), GAP computes the

average value of each feature map, reducing the spatial

dimensions while preserving the most critical information. The

pooling operation is calculated as per Equation 5.

Equation5:Formula for Global Average Pooling

The GAP layer significantly reduces the number of parameters,

preventing overfitting and making the model more efficient. It

also acts as a bridge between the dense convolutional layers and

the final classification layers.

5.4 Flattening and Feature Vector Generation

After applying GAP, the output is a one-dimensional feature

vector representing the image's most relevant features. This

feature vector structure is shown in Equation 6. This precise

vector contains encrypted data, which is an abstract viewpoint

of the leaf of that particular plant, along with relevant details

like color variations, blemishes, or patches, which are

commonly seen in plant diseases like 'Apple Scab' or 'Bacterial

Spoiling' of tomatoes, for instance. A feature vector is also

defined as a more systematic approach to vectorization, where

every piece of information required for the model to predict

without any omission is included. Feature Vector

Representation: If the GAP layer outputs in feature maps, the

flattened feature vector VVV will have nnn dimensions:

Equation6: Feature Vector Representation

5.5 Final Classification Layer (Softmax)

The final feature extraction stage involves the softmax layer,

where the feature vector is passed for classification. Calculating

the softmax layer gives a probability distribution over the 23

classes of diseases, from which the model can predict which

disease is present in the given image [7], [15]. This is computed

using the softmax function defined in Equation 7.

Equation7: Softmax Formula

The final output is a probability distribution indicating the

likelihood of each disease, with the highest probability

corresponding to the predicted disease.

Example:

For a given image of a tomato leaf infected with the "Tomato

Yellow Leaf Curl Virus," the DenseNet-121 model extracts

features like the yellowing and curling of the leaf margins.

These qualities are combined and reduced to a single-

dimensional feature vector, after which a softmax layer is

applied. The model then gives a probability distribution over

the classes, wherein most probability mass is assigned to the

"Tomato Yellow Leaf Curl Virus" class, enabling the

application to detect the disease correctly. This feature

extraction approach helps the model learn and understand the

data effectively, making it suitable for detecting plant diseases.

6. TRAINING AND TESTING

The training and testing phase is of utmost importance in

building a good model for plant disease detection. The model

identified the various diseases in a dataset of 23 plant classes

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51021 | Page 6

with 200 images each. The images undergo the essential

preprocessing steps, such as resizing, scaling, and

augmentation, mainly to provide diverse data and, therefore,

high adaptability to the model. The DenseNet-121 architecture

was modified with a final softmax layer to perform

classification. The training was done using the Adam optimizer

over several epochs with early stopping to avoid overfitting.

Finally, the model's performance is evaluated on unseen test

images for accuracy and reliability, using performance metrics

such as precision, recall, and overall accuracy. This assures that

the model does well in identifying plant diseases with high

confidence while also imparting valuable insight regarding

treatment measures so that effective management of general

plant health could be integrated.

6.1 Training Phase

For the sake of training, a dataset of images of plant leaves,

which can be found on the Kaggle platform and includes 23

different classes such as Apple Scab, Corn Northern Leaf

Blight, and Tomato Yellow Leaf Curl Virus, was collected,

wherein 200 images per class were collected. The images

undergo a series of preprocessing steps: resizing to 128x128

pixels, normalizing (rescaling pixel values from 0 to 1), and

augmenting (randomly horizontally flipping, zooming, and

shearing the images) to increase the size of the dataset.

The DenseNet-121 architecture pre-trained model in ImageNet

has been adapted for this purpose. The last layer is modified to

give the probabilities of the 23 classes using a softmax layer as

the output. Categorical cross-entropy is the loss function used,

and its formula is presented in Equation 8.

Equation8: Categorical Cross-Entropy

The model is optimized using the Adam optimizer and trained

over 30-50 epochs to minimize loss and maximize accuracy.

Techniques like early stopping and learning rate scheduling

help ensure the model doesn't overfit.

6.2 Testing Phase:

After completion of the training session, this model is put to the

test by utilizing an untrained data set to determine the extent of

its effectiveness. For example, a test image of tomato late blight

will be passed into the model, and it may return a probability

distribution with the highest score on tomato late blight (e.g.,

0.93), meaning 93% sure of that classification.

Accuracy, precision, and recall are some of the performance

metrics used. For instance, if the model manages to classify 950

images correctly from the test set of 1,000 images, the accuracy

is computed using the formula in Equation 9, and the accuracy

of the model will be

Equation8: Accuracy Formula

When a disease is detected in the app, it details it and suggests

common remedies. For example, if apple scab is detected, the

app might suggest removing infected leaves or applying

fungicide, providing practical advice for plant health

management.

The evaluation and performance assessment of the DenseNet-

121-based plant disease detection model was crucial in

determining its effectiveness and reliability in real-world

applications. Several evaluation metrics were employed to

evaluate the model's performance, including accuracy,

precision, recall, and F1 score. These metrics are visually

represented in Figure 3, which displays the classification report

across all disease classes. Accuracy, in this regard, gave a better

picture as it only calculated the number of accurate predictions

(both healthy and ill) out of many total predictions given. This

metric showed how well the model fit for other plant species

and disease states. Simultaneously, precision was measured for

the model when it was expected to identify diseased plants,

which means optimistic predictions were made only as a ratio

of accurate positive predictions. This ensured that the model

reduced the chances of giving false positives, which might

create unnecessary panic among the farmers.

Furthermore, the recall was calculated to assess the model's

effectiveness in capturing all disease cases, ensuring it did not

overlook any infected plants. This metric is critical in

agriculture since crops may be lost due to the inability to

recognize sick plants. To provide fair evaluations, the F1 score,

the weighted average of precision and recall, was calculated to

bring both these metrics into a single measure that considers

how many actual positive cases were present, apart from the

false positives and true negatives. In general, this methodology,

which was proven through ROC curves and AUC techniques,

confirmed the strength of the model and its usability in

advancing agricultural activities. The extent to which these

parameters aided in assessing the model's performance clearly

illustrates how useful this model would be in detecting plant

diseases.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51021 | Page 7

Equation8: Formulas to evaluate the performance of the

model

7. DISCUSSION

The results analysis of the DenseNet-121-based plant disease

detection model highlights its capability to accurately identify

various plant leaf diseases, providing practical benefits for

agricultural management. The model was developed using a

large dataset of 4600 images spanning 23 diseases, including

"Apple Black Rot," "Tomato Early Blight," and "Corn Grey

Leaf Spot," with an average of 200 images per disease. The

model training and validation processes yielded more than 90%

accuracy [1], [5], [11]. The training and validation accuracy

trends are visualized in Figure 7, confirming the model's

stability. For instance, during the 'Potato Late Blight'

evaluation, the model classified 180 out of 200 sampled images

as diseased, which proves its applicability in the real world.

Figure 7: Accuracy Analysis of Plant Disease Model

The precision of the model reached above 85%. For example,

when the model predicted that a leaf was diseased, it was

correct about 85 times out of 100 predictions. Prediction results

for such cases are shown in Figure 8, illustrating the model's

correct disease classification capability. This is very important

in agriculture, as it helps to limit the number of false alarms and

reduces panic among the farmers. For instance, when a farmer

is alerted to a possible infection of his crops with "Tomato

Bacterial Spot," it is necessary that he receive a high precision

rate for the diagnosis to be accurate enough to take any action

or recommend further investigation.

As shown in Figure 6, the model got better with each training

round, with the training and validation accuracy steadily

increasing over time. Since the two curves stay close to each

other throughout, it suggests that the model isn't just

memorizing the training data — it's learning to perform well on

new, unseen data, too.

Both accuracies reach 90%, confirming the DenseNet-121

model's ability to extract meaningful features from diverse leaf

images. Additionally, the absence of large fluctuations or

divergence between the two curves reinforces the model's

robustness and stability. This pattern proves that the training

strategy, including techniques like early stopping, data

augmentation, and balanced datasets, successfully built a

reliable and accurate classification model for real-world plant

disease detection.

Figure 8: Prediction Results with Accurate Classifications

The recall metric revealed comparable effectiveness, achieving

nearly 88% of the scores. This implies that when the actual

diseased leaves, like leaves infested with "Strawberry Leaf

Scorch," were introduced to the model, the model correctly

discerned 88 out of 100 actual cases. Maintaining such a high

recall is essential to ensure that the plants far infected are

captured in time, thus enabling the farmers to take corrective

measures regarding the disease spread.

In addition, as a part of the assessment, the evaluation

embraced ROC curves to evaluate the discriminative power of

the models. The AUC score was slightly less than 0.95; this

indicates that the model can separate different classes of

healthy and infected plants with a very high degree of accuracy.

In analyzing results, for example, under the title "Corn

Northern Leaf Blight," the AUC showed that the model could

tell the difference between an unaffected corn leaf and one that

had the disease, which is crucial for controlling the spread of

the disease.

8. CONCLUSIONS

To summarize, the proposed Android application identifies

diseases in plant leaves, aiming to revolutionize farming

through deep learning that offers farmers and agriculturalists

accurate and timely diagnosis of plant health problems. The app

uses the DenseNet-121 model, which has been trained on over

4600 images and allows the user to take a picture or upload one

of a plant leaf and receive feedback about the possible disease

within seconds. This feature improves the decision-making

process and promotes the management of the disease at an early

stage, all of which are worth translating to better yields in

farming and agriculture as a whole.

Furthermore, the intuitive design and helpful information

concerning disease and treatment guidance enable users to take

action against plant diseases. As the app focuses on allowing

users to take action in time, the adverse effect of plant diseases

on the farmers' economy is lessened while complementing the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM51021 | Page 8

overall food security of the population. As the technology is

ever-evolving, additional innovations to the app in the future

are likely to provide much more than they do now, including a

larger database and features to assist farmers in coping with the

demands of modern-day farming. This shows the growth

prospects of technology in agriculture and the possibilities of

creating an efficient farming system.

9. FUTURE WORK

Future enhancements include

Expanding the dataset to include more plant species and disease

variations.

Implementing a lightweight CNN model for mobile devices.

Developing an integrated mobile or web-based application for

real-time disease detection.

Enhancing model robustness against varying environmental

conditions (lighting, background noise).

ACKNOWLEDGEMENT

The authors would like to extend their heartfelt gratitude to the

faculty and staff of the Department of MCA, Vivekanand

Education Society’s Institute of Technology, for their

unwavering support and encouragement throughout this

research. We are especially thankful to our project guide, Mrs.

Indira Bhattacharya, for her insightful suggestions, technical

guidance, and constant motivation, all of which played a vital

role in shaping this work.

We also gratefully acknowledge the use of publicly available

plant disease image datasets, which significantly contributed to

the training and evaluation of the proposed model.

Additionally, we appreciate the open-source tools and Python-

based libraries that facilitated the efficient development and

testing of the mobile application.

REFERENCES

[1] Mohanty, S.P., Hughes, D.P., & Salathé, M. (2016). Using deep

learning for image-based plant disease detection. Frontiers in Plant

Science, 7, 1419.

[2] Lee, S.H., Chan, C.S., Wilkin, P., & Remagnino, P. (2017). Deep-

plant: Plant identification with convolutional neural networks.

Computational Intelligence and Neuroscience, 2017, 7361042.

[3] Kamilaris, A., & Prenafeta-Boldú, F.X. (2018). Deep learning in

agriculture: A survey. Computers and Electronics in Agriculture, 147,

70-90.

[4] A Novel Smart Approach to Plant Health - Automated Detection

and Diagnosis of Leaf Diseases. Authors- T.Sangeetha, R. Rajarajan,

S. Rithick Krishna, N. Sakthi Siddharth.

[5] Multiple plant leaf disease classification using Densenet-121

architecture, Aswin Vellaichamy S, Akshay Swaminathan, C Varun,

Dr. Kalaivani S

[6] Ng, H.F., Lin, C.Y., Chuah, J.H., Tan, H.K., & Leung, K.H. (2021).

Plant disease detection mobile application. Journal of Physics:

Conference Series, 1827(1), 012001.

[7] Harte, E. (2020). Plant disease detection by CNN. International

Journal of Advanced Computer Science and Applications, 11(5), 235-

240.

[8] Chohan, M. (2020). Plant disease detection deep learning.

International Journal of Computer Applications, 176(34), 1-5.

[9] Li, L., Zhang, S., & Wang, B. (2021). Plant disease detection and

classification by deep learning: A review. IEEE Access, 9, 56683-

56698.

[10] Nandhini, S., & Ashokkumar, K. (2022). An automatic plant leaf

disease identification using DenseNet-121 architecture with a

mutation-based Henry gas solubility optimization algorithm. Neural

Computing and Applications, 34, 11465–11478.

[11] Kale, S.D., Bhute, H.A., Gaikwad, V.S., Patil, A.V., Kumar, C.,

& Bhute, A.N. (2024). Influence of Xception and DenseNet121

architectures for plant disease detection. Communications on Applied

Electronics, 32(1), 1-7.

[12] Yasin, A., & Fatima, R. (2023). On the image-based detection of

tomato and corn leaves diseases: An in-depth comparative

experiments. arXiv preprint arXiv:2312.08659.

[13] Roy, A.M., Bose, R., & Bhaduri, J. (2021). A fast, accurate fine-

grain object detection model based on YOLOv4 deep neural network.

arXiv preprint arXiv:2111.00298.

[14] Zhang, K., Zhang, L., & Wang, L. (2020). Plant disease

recognition based on deep learning: A review. Journal of Physics:

Conference Series, 1693(1), 012123.

[15] Ferentinos, K.P. (2018). Deep learning models for plant disease

detection and diagnosis. Computers and Electronics in Agriculture,

145, 311-318.

[16] Too, E.C., Yujian, L., Njuki, S., & Yingchun, L. (2019). A

comparative study of fine-tuning deep learning models for plant

disease identification. Computers and Electronics in Agriculture, 161,

272-279.

[17] Zhou, G., Zhang, W., Chen, A., He, M., & Ma, X. (2019). Rapid

detection of rice disease based on FCM-KM and Faster R-CNN fusion.

IEEE Access, 7, 143190-143206.

[18] Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-Barredo, A., &

Echazarra, J. (2019). Deep convolutional neural networks for mobile

capture device-based crop disease classification in the wild.

Computers and Electronics in Agriculture, 161, 280-290.

[19] Lu, Y., Yi, S., Zeng, N., Liu, Y., & Zhang, Y. (2017).

Identification of rice diseases using deep convolutional neural

networks. Neurocomputing, 267, 378-384.

http://www.ijsrem.com/

