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---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - Plant diseases silently impact crops every season, 

often going unnoticed until the damage is done, leading to 

severe losses for farmers and threatening food supplies. This 

project introduces a practical and easy-to-use mobile solution 

that helps detect such diseases early by analyzing pictures of 

plant leaves. Built on clever image recognition techniques, the 

system learns to distinguish between healthy and infected 

leaves by observing thousands of real examples. It guides users 

through a quick process—capturing, analyzing, and 

diagnosing—within moments. What makes this approach 

powerful is its potential to bring expert-level support straight to 

the farmer's pocket, even in remote areas. The result is faster 

decisions, better treatment choices, and healthier crops. This 

work highlights how merging agriculture with intelligent 

technology can make disease management more efficient, 

accessible, and proactive. 

 

1. INTRODUCTION  

 
Artificial intelligence and mobile technology have recently 
revolutionized almost all sectors, including agriculture. This 
research reports the design of an Android application for plant 
disease detection through images of plant leaves. The overall 
workflow of the system—from image capture to result in a 
generation—is illustrated in Figure 1, offering a clear visual of 
how each component functions in real time. Early and accurate 
disease detection is essential; farmers do not suffer losses on 
crops grown simultaneously and have a secure food source. 
Unfortunately, many of these farmers do not have access to 
agricultural experts or proper and timely information about this 
disease. This app leverages deep learning methods by providing 
the architecture of Convolutional Neural Networks (CNNs), 
which will closely analyze plant leaf images, classify diseases, 
and also recommend treatment options—all within a few 
seconds [1], [15]. It fills existing gaps in disease management 
with the offer of a portable, real-time solution to be used in 
multiple farm environments. This study covers model training 
techniques, optimization, and performance evaluation 
strategies designed to pave the way for a highly accurate and 
responsive mobile implementation. The results have a scope to 
improve precision in agriculture and indicate the dimension in 
which more AI-based applications can be used for sustainable 
agriculture by transforming these applications into state-of-the-
art tools for decision-making regarding plant health 
management. 

The rest of the paper is structured as follows: Section 2 provides 
a comprehensive literature review discussing related works and 
existing methodologies. Section 3 outlines the methodology 
adopted in this study, detailing data preprocessing 
preprocessing, feature extraction, and model training. Section 
4 presents the module descriptions, explaining each step in 
detail. Section 5 discusses the results and analysis, evaluating 
the model's performance based on key metrics. Section 6 

concludes the study and highlights possible future work 
directions for further improvements. 

 

Figure1: Workflow of Plant Disease Detection App 

 
2. LITERATURE REVIEW 

 
Several studies have explored deep-learning applications in 
plant disease detection. Early research utilized image 
processing techniques and machine learning models like 
Support Vector Machines (SVM) and k-nearest Neighbors (k-
NN). With advancements in deep learning, various neural 
network architectures have demonstrated superior performance 
due to their ability to learn complex patterns. Existing models 
such as AlexNet, VGG16, and ResNet have shown promising 
results in classifying plant diseases. However, recent research 
highlights the advantages of DenseNet architectures, which 
improve feature reuse and gradient propagation. This study 
builds on prior research by leveraging DenseNet-121 to 
optimize feature extraction, enhance accuracy, and improve 
computational efficiency in plant disease detection. 
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3. METHODOLOGY 

 

 
 

Figure2: Class Distribution 

The development of the plant leaf disease detection app 

followed a structured methodology to ensure accurate detection 

of plant diseases, using machine learning and deep learning 

techniques, particularly leveraging DenseNet-121. The first 

step in the process was collecting a comprehensive dataset 

filled with plant leaf images. The data was obtained from 

numerous sources, such as agriculture databases, scholarly 

articles, and field studies. A sufficient set of photos was crucial 

for the model's performance. 

We, in total, made a blend of 23 plant disease classes with 

approximately 200 sample images in each class, as visualized 

in the class distribution graph in Figure 2. We incorporated a 

transfer learning strategy using a pre-trained DenseNet model 

on ImageNet for training speedup and performance 

enhancement. We ensured the images were captured under 

varied lighting, angles, and environments so the model could 

generalize well in real-world scenarios. Standard image 

preprocessing techniques such as resizing, normalization, and 

augmentation were applied to make the data uniform and 

enhance the model's learning capabilities [13], [16]. 

For the deep learning architecture, we chose DenseNet-121 

because of its efficiency in handling image classification tasks. 

DenseNet's unique structure allows layers to pass information 

directly to every subsequent layer, significantly improving 

learning efficiency by preventing the loss of features [5], [10]. 

This characteristic was significant for our task, as 

distinguishing subtle differences between healthy and diseased 

leaves requires a deep network capable of capturing minute 

details. To expedite the training phase and enhance the 

performance, a transfer learning technique was adopted, 

commencing with the DenseNet model that had been trained on 

ImageNet [3], [12]; this allowed us to fine-tune the model to 

our specific dataset, minimizing training time while still 

maintaining high accuracy in detecting plant diseases. 

 
Once the dataset was ready and the model architecture was 

chosen, we moved on to the training phase. The dataset was 

split into training, validation, and test sets, following an 80-10-

10 split. This division has also served the purpose of ensuring 

that the model has not only been trained adequately but also 

tested on an unseen set of data to reduce overfitting. During the 

training process, we employed the Adam optimizer, which is 

widely regarded for its ability to adjust the model's weights 

efficiently. The model was trained with categorical cross-

entropy as the loss function, and we applied early stopping to 

prevent overfitting. This ensured that the model would not 

simply memorize the training data but instead learn 

generalizable features. However, the evaluation was not static 

and was carried out during the process using measures such as 

accuracy, precision, and recall [9], [14]. Adjustments were 

made based on what was needed and the observations made. 

 
Figure3: Classification Report 

After completing this training, the model was put to a strict test 

using the reserved test dataset. This was essential to evaluate 

its real-world performance. We measured many performance 

metrics, such as accuracy and F1-score. These metrics gave a 

fair idea about the model's performance on all classes of 

diseases available, as detailed in the classification report shown 

in Figure 3 [9], [14]. These metrics gave a fair idea about the 

model's performance on all classes of diseases available, 

comprising 23 classes. We generated confusion matrices to 

detect what the model went wrong with, as visualized in Figure 

4, highlighting correct vs. incorrect classifications across 

disease classes. 

http://www.ijsrem.com/
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Figure4: Confusion Matrix 

Further, several hyperparameters, like learning rate and batch 

size, were tuned to achieve the best performance in this model. 

To enhance the model's robustness, we also applied additional 

data augmentation techniques, which allowed the model to 

generalize better across different inputs. The final stage of 

development was integrating the trained model into an Android 

application. It was created with a simple interface where one 

could take a photo or choose a picture from the gallery [6], [18]. 

The processed real-time image was passed through the 

DenseNet-121 model for disease classification. 

Along with the name of the disease once diagnosed by the 

application, more information is provided about the disease 

symptoms, possible treatments, and others, including those that 

could be used on the plants themselves. The feature enables 

understanding of the problem, and immediate action can be 

taken to treat the plants. Continuous updates are designed for 

the application. These are the kinds of additions to increasing 

the database with more diseases, improving the accuracy of 

detection based on user input, and adding other data to the 

training. 

4. MODULE DESCRIPTION 

 
The data loading and preprocessing module are crucial for a 

plant leaf disease detection system, as it prepares the dataset for 

training, validation, and testing in the first place. An overview 

of the dataset and its class labels is presented in Figure 5, which 

helps understand the dataset structure used in training. It works 

on a Kaggle dataset containing images of five plant types 

(apple, corn, potato, strawberry, and tomato) across 23 classes, 

including healthy and diseased leaves. To facilitate proper 

learning by the model, this module executes the tasks of 

resizing images, rescaling, augmenting, and batching. 

 

These operations standardize the given data, prevent 

overfitting, and optimize memory. Thus, with this module 

manipulating the organization and transformation of the 

dataset, it ensures that the DenseNet-121 model can classify 

plant diseases with precision, thereby giving rise to reliable 

real-world applications. 

 
 

Figure: Plant Disease Dataset Overview with Class Labels 

 

4.1 Data Load 

The data loading module is an indispensable part of the data 
preparation process for the plant leaf disease detection model. 
This model uses a dataset available on Kaggle, an image dataset 
of plant leaves arranged according to the diseases they suffer 
from or healthy leaves. The module aims to ensure that the data 
is loaded and preprocessed correctly and assigned respectively 
to the training, validation, or testing sets for the successful 
modeling of plant disease detection. 

The dataset contains information on five plant types: apple, 
corn, potato, strawberry, and tomato. Furthermore, each plant 
type has several disease categories and a healthy class. For 
example, the apple class has black rot, healthy scab, and cedar 
apple rust, while for the tomato class, there is a broader range 
of diseases like bacterial spot, early blight, late blight, and 
mosaic virus, among others. Each of these 23 classes has 200 
images, thus allowing a balanced distribution for machine 
learning training processes. Furthermore, such a count of 
images per category helps not skew the model towards the 
results of a specific type of disease, making the classification 
more accurate. 

 

4.2 Data PreprocessingPreprocessing 

Handling the "Data Preprocessing" module is an integral part 

of every step of preparing a dataset for an Android application 

of plant leaf disease detection. The dataset is taken from 

Kaggle, which consists of 23 classes of plant diseases, each 

with 200 images in each class. To illustrate, it contains diseases 

like apple black rot, corn common rust, potato late blight, and 

tomato yellow leaf curl virus, and healthy classes for each crop. 

This module ensures that the images undergo transformation 

and augmentation and are ready for use in the DenseNet-121 

model. Some of the activities done by this module are image 

resizing, rescaling, augmentation, and batching the data. These 

transformations are essential to ensure the model can learn from 

the data efficiently. 

4.2.1 Image Rescaling: One of the most critical aspects of 

preprocessing preprocessing is rescaling the pixel values. The 

pixel intensity values of most images are usually from 0 to 255. 

The resizing operation is based on the method shown in 

Equation 1. In this perspective, the module normalizes the 

values by dividing every pixel value by 255, restricting the 

pixel values to the range [0, 1]. This enhances the efficiency of 

http://www.ijsrem.com/
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the neural network in handling data by standardizing the input 

scale. 

4.2.2 Image Augmentation: Data augmentation is applied to 

expand the training dataset's diversity artificially. This process 

helps prevent overfitting by creating slightly altered versions of 

the existing images. The augmentations used in this module 

include shear transformation, zoom, and horizontal flip, as 

demonstrated in Figure 6: 

● Shear Transformation: This shifts the image pixels 

along the axis as if "tilted." 

● Zoom: This randomly zooms in on parts of the 

image. 

● Horizontal Flip: This horizontally flips the image to 

create a mirrored version. 

4.2.3 Data Generator for Loading Images: The module uses 

the flow_from_directory function to load images from the 

specified directories. This function automatically labels the 

photos based on the folder structure and resizes them to a 

uniform size of 128x128 pixels, which is required for the 

DenseNet-121 model. 

Image Resizing Formula: Given the original image dimensions 

w×hw \times hw×h, resizing to 128x128 can be done by: 

 

Equation1: Image Resizing Formula 

This ensures all images are the same size, making them 

compatible with the model’s input layer. 

Figure 6: Image Augmentation 

4.3 Batch Processing 

The dataset is processed in batches of 32 images. To eliminate 

any possible bias during training, images are randomly 

shuffled. The processed images and corresponding labels are 

kept in .npy files for the training and validation sets. This 

advantage is that it avoids memory overload with large datasets 

and enables the model to load batches simultaneously. 

Therefore, it helps ensure that the training and validation data 

are processed and ready to use during the model training. 

 

4.4 Class Labels (Categorical Encoding) 

The class labels for each image are represented in a one-hot 

encoded format. This encoding process is illustrated in 

Equation 2. For example, if there are 23 classes, each label will 

be a vector of size 23 where only the position corresponding to 

the correct class is 1, and the rest are 0s. 

 

Equation2: One-Hot Encoding Formula 

This encoding is used for classification tasks to make the labels 

understandable by the neural network. A leaf detection 

preprocessing module was also incorporated to ensure the 

uploaded image contains a leaf before attempting disease 

classification. 

Example Scenario: 

At the outset, the image is adjusted to a resolution of 128x128 

pixels. After that, augmentations such as random zooming and 

horizontal flipping generate more image variations. The pixel 

values are further normalized by dividing them by 255, and the 

label, which is "strawberry leaf scorch," in this case, is handily 

one-hot encoded with the class index of 1 for "strawberry leaf 

scorch." After this, the image and label pair are prepared and 

kept within batches for further training or validation. With the 

intervention of this preprocessing module, the model can 

explore a broader range of well-organized data, promoting 

better training and even better generalization capability when 

real-world plant disease detection is targeted. 

5. FEATURE EXTRACTION 

Within the scope of an Android application for detecting plant 

leaf diseases, feature selection is considered one of the most 

critical processes. It involves determining what features or parts 

from the pictures are essential for the model to differentiate 

disease classes effectively. Within these parameters, we utilize 

the DenseNet-121 feature extraction network for leaf images in 

a self-supervised manner. 

Explanation of the Feature Extraction Process: 

5.1 Pre-trained Model Initialization (Transfer Learning) 

At the start, the procedure commences with feature extraction, 

where the DenseNet-121 model is loaded with the help of pre-

trained weights obtained from the ImageNet dataset. The 

transfer learning concept enables the model to benefit from 

training conducted on many uncorrelated images to train the 

model in detecting plant leaf diseases. This process can be 

represented using Equation 3. The pre-trained DenseNet-121 

model can be distinguished from other models because it can 

capture complex images by identifying even edges, textures, 

color variations, and so on within the image. 

http://www.ijsrem.com/
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Equation3: Formula for Transfer Learning 

In this application, we use include_top=False to exclude the 

fully connected layers at the top of the DenseNet-121 model. 

The purpose is to utilize DenseNet as a feature extractor and 

add custom classification layers afterward. 

5.2 LayerwiseLayerwise Feature Extraction 

Concerning DenseNet-121, any convolutional layer is designed 

to extract a specific type of feature available in the input 

images. This progressive extraction mechanism is described in 

Equation 4. The first layers perform simple feature extraction, 

including edges, colors, and textures. In contrast, the final ones 

deal with the more complex ones, such as shapes, patterns, and 

particular features related to specific diseases. 

DenseNet-121 uses a dense connectivity pattern where each 

layer receives input from all preceding layers. This helps to 

propagate features throughout the network, allowing the model 

to learn richer feature representations. 

 

Equation4: LayerwiseLayerwise Feature Extraction Formula 

This continuous connectivity enables the reuse of features, 

which is highly beneficial for tasks like plant disease detection, 

where slight variations in color or texture can signal different 

diseases. 

5. 3 Global Average Pooling 

After the convolutional layers of DenseNet-121 have extracted 

feature maps, a Global Average Pooling (GAP) layer is applied. 

Instead of using fully connected layers (which could lead to 

overfitting, especially with limited data), GAP computes the 

average value of each feature map, reducing the spatial 

dimensions while preserving the most critical information. The 

pooling operation is calculated as per Equation 5. 

 

Equation5:Formula for Global Average Pooling 

The GAP layer significantly reduces the number of parameters, 

preventing overfitting and making the model more efficient. It 

also acts as a bridge between the dense convolutional layers and 

the final classification layers. 

5.4 Flattening and Feature Vector Generation 

After applying GAP, the output is a one-dimensional feature 

vector representing the image's most relevant features. This 

feature vector structure is shown in Equation 6. This precise 

vector contains encrypted data, which is an abstract viewpoint 

of the leaf of that particular plant, along with relevant details 

like color variations, blemishes, or patches, which are 

commonly seen in plant diseases like 'Apple Scab' or 'Bacterial 

Spoiling' of tomatoes, for instance. A feature vector is also 

defined as a more systematic approach to vectorization, where 

every piece of information required for the model to predict 

without any omission is included. Feature Vector 

Representation: If the GAP layer outputs in feature maps, the 

flattened feature vector VVV will have nnn dimensions: 

 

Equation6: Feature Vector Representation 

5.5 Final Classification Layer (Softmax) 

The final feature extraction stage involves the softmax layer, 

where the feature vector is passed for classification. Calculating 

the softmax layer gives a probability distribution over the 23 

classes of diseases, from which the model can predict which 

disease is present in the given image [7], [15]. This is computed 

using the softmax function defined in Equation 7. 

 

Equation7: Softmax Formula 

The final output is a probability distribution indicating the 

likelihood of each disease, with the highest probability 

corresponding to the predicted disease. 

Example: 

For a given image of a tomato leaf infected with the "Tomato 

Yellow Leaf Curl Virus," the DenseNet-121 model extracts 

features like the yellowing and curling of the leaf margins. 

These qualities are combined and reduced to a single-

dimensional feature vector, after which a softmax layer is 

applied. The model then gives a probability distribution over 

the classes, wherein most probability mass is assigned to the 

"Tomato Yellow Leaf Curl Virus" class, enabling the 

application to detect the disease correctly. This feature 

extraction approach helps the model learn and understand the 

data effectively, making it suitable for detecting plant diseases. 

6. TRAINING AND TESTING 

 
The training and testing phase is of utmost importance in 

building a good model for plant disease detection. The model 

identified the various diseases in a dataset of 23 plant classes 

http://www.ijsrem.com/
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with 200 images each. The images undergo the essential 

preprocessing steps, such as resizing, scaling, and 

augmentation, mainly to provide diverse data and, therefore, 

high adaptability to the model. The DenseNet-121 architecture 

was modified with a final softmax layer to perform 

classification. The training was done using the Adam optimizer 

over several epochs with early stopping to avoid overfitting. 

Finally, the model's performance is evaluated on unseen test 

images for accuracy and reliability, using performance metrics 

such as precision, recall, and overall accuracy. This assures that 

the model does well in identifying plant diseases with high 

confidence while also imparting valuable insight regarding 

treatment measures so that effective management of general 

plant health could be integrated. 

6.1 Training Phase 

For the sake of training, a dataset of images of plant leaves, 

which can be found on the Kaggle platform and includes 23 

different classes such as Apple Scab, Corn Northern Leaf 

Blight, and Tomato Yellow Leaf Curl Virus, was collected, 

wherein 200 images per class were collected. The images 

undergo a series of preprocessing steps: resizing to 128x128 

pixels, normalizing (rescaling pixel values from 0 to 1), and 

augmenting (randomly horizontally flipping, zooming, and 

shearing the images) to increase the size of the dataset. 

The DenseNet-121 architecture pre-trained model in ImageNet 

has been adapted for this purpose. The last layer is modified to 

give the probabilities of the 23 classes using a softmax layer as 

the output. Categorical cross-entropy is the loss function used, 

and its formula is presented in Equation 8. 

Equation8: Categorical Cross-Entropy 

The model is optimized using the Adam optimizer and trained 

over 30-50 epochs to minimize loss and maximize accuracy. 

Techniques like early stopping and learning rate scheduling 

help ensure the model doesn't overfit. 

6.2 Testing Phase: 

After completion of the training session, this model is put to the 

test by utilizing an untrained data set to determine the extent of 

its effectiveness. For example, a test image of tomato late blight 

will be passed into the model, and it may return a probability 

distribution with the highest score on tomato late blight (e.g., 

0.93), meaning 93% sure of that classification. 

Accuracy, precision, and recall are some of the performance 

metrics used. For instance, if the model manages to classify 950 

images correctly from the test set of 1,000 images, the accuracy 

is computed using the formula in Equation 9, and the accuracy 

of the model will be 

 

Equation8: Accuracy Formula 

When a disease is detected in the app, it details it and suggests 

common remedies. For example, if apple scab is detected, the 

app might suggest removing infected leaves or applying 

fungicide, providing practical advice for plant health 

management. 

The evaluation and performance assessment of the DenseNet-

121-based plant disease detection model was crucial in 

determining its effectiveness and reliability in real-world 

applications. Several evaluation metrics were employed to 

evaluate the model's performance, including accuracy, 

precision, recall, and F1 score. These metrics are visually 

represented in Figure 3, which displays the classification report 

across all disease classes. Accuracy, in this regard, gave a better 

picture as it only calculated the number of accurate predictions 

(both healthy and ill) out of many total predictions given. This 

metric showed how well the model fit for other plant species 

and disease states. Simultaneously, precision was measured for 

the model when it was expected to identify diseased plants, 

which means optimistic predictions were made only as a ratio 

of accurate positive predictions. This ensured that the model 

reduced the chances of giving false positives, which might 

create unnecessary panic among the farmers. 

Furthermore, the recall was calculated to assess the model's 

effectiveness in capturing all disease cases, ensuring it did not 

overlook any infected plants. This metric is critical in 

agriculture since crops may be lost due to the inability to 

recognize sick plants. To provide fair evaluations, the F1 score, 

the weighted average of precision and recall, was calculated to 

bring both these metrics into a single measure that considers 

how many actual positive cases were present, apart from the 

false positives and true negatives. In general, this methodology, 

which was proven through ROC curves and AUC techniques, 

confirmed the strength of the model and its usability in 

advancing agricultural activities. The extent to which these 

parameters aided in assessing the model's performance clearly 

illustrates how useful this model would be in detecting plant 

diseases. 

http://www.ijsrem.com/
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Equation8: Formulas to evaluate the performance of the 

model 

7. DISCUSSION 

 
The results analysis of the DenseNet-121-based plant disease 

detection model highlights its capability to accurately identify 

various plant leaf diseases, providing practical benefits for 

agricultural management. The model was developed using a 

large dataset of 4600 images spanning 23 diseases, including 

"Apple Black Rot," "Tomato Early Blight," and "Corn Grey 

Leaf Spot," with an average of 200 images per disease. The 

model training and validation processes yielded more than 90% 

accuracy [1], [5], [11]. The training and validation accuracy 

trends are visualized in Figure 7, confirming the model's 

stability. For instance, during the 'Potato Late Blight' 

evaluation, the model classified 180 out of 200 sampled images 

as diseased, which proves its applicability in the real world. 

Figure 7: Accuracy Analysis of Plant Disease Model 

The precision of the model reached above 85%. For example, 

when the model predicted that a leaf was diseased, it was 

correct about 85 times out of 100 predictions. Prediction results 

for such cases are shown in Figure 8, illustrating the model's 

correct disease classification capability. This is very important 

in agriculture, as it helps to limit the number of false alarms and 

reduces panic among the farmers. For instance, when a farmer 

is alerted to a possible infection of his crops with "Tomato 

Bacterial Spot," it is necessary that he receive a high precision 

rate for the diagnosis to be accurate enough to take any action 

or recommend further investigation. 

As shown in Figure 6, the model got better with each training 

round, with the training and validation accuracy steadily 

increasing over time. Since the two curves stay close to each 

other throughout, it suggests that the model isn't just 

memorizing the training data — it's learning to perform well on 

new, unseen data, too. 

Both accuracies reach 90%, confirming the DenseNet-121 

model's ability to extract meaningful features from diverse leaf 

images. Additionally, the absence of large fluctuations or 

divergence between the two curves reinforces the model's 

robustness and stability. This pattern proves that the training 

strategy, including techniques like early stopping, data 

augmentation, and balanced datasets, successfully built a 

reliable and accurate classification model for real-world plant 

disease detection. 

Figure 8: Prediction Results with Accurate Classifications 

The recall metric revealed comparable effectiveness, achieving 

nearly 88% of the scores. This implies that when the actual 

diseased leaves, like leaves infested with "Strawberry Leaf 

Scorch," were introduced to the model, the model correctly 

discerned 88 out of 100 actual cases. Maintaining such a high 

recall is essential to ensure that the plants far infected are 

captured in time, thus enabling the farmers to take corrective 

measures regarding the disease spread. 

In addition, as a part of the assessment, the evaluation 

embraced ROC curves to evaluate the discriminative power of 

the models. The AUC score was slightly less than 0.95; this 

indicates that the model can separate different classes of 

healthy and infected plants with a very high degree of accuracy. 

In analyzing results, for example, under the title "Corn 

Northern Leaf Blight," the AUC showed that the model could 

tell the difference between an unaffected corn leaf and one that 

had the disease, which is crucial for controlling the spread of 

the disease. 

8. CONCLUSIONS 

To summarize, the proposed Android application identifies 

diseases in plant leaves, aiming to revolutionize farming 

through deep learning that offers farmers and agriculturalists 

accurate and timely diagnosis of plant health problems. The app 

uses the DenseNet-121 model, which has been trained on over 

4600 images and allows the user to take a picture or upload one 

of a plant leaf and receive feedback about the possible disease 

within seconds. This feature improves the decision-making 

process and promotes the management of the disease at an early 

stage, all of which are worth translating to better yields in 

farming and agriculture as a whole. 

Furthermore, the intuitive design and helpful information 

concerning disease and treatment guidance enable users to take 

action against plant diseases. As the app focuses on allowing 

users to take action in time, the adverse effect of plant diseases 

on the farmers' economy is lessened while complementing the 

http://www.ijsrem.com/
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overall food security of the population. As the technology is 

ever-evolving, additional innovations to the app in the future 

are likely to provide much more than they do now, including a 

larger database and features to assist farmers in coping with the 

demands of modern-day farming. This shows the growth 

prospects of technology in agriculture and the possibilities of 

creating an efficient farming system. 

9. FUTURE WORK 

 
Future enhancements include 

Expanding the dataset to include more plant species and disease 

variations. 

Implementing a lightweight CNN model for mobile devices. 

Developing an integrated mobile or web-based application for 

real-time disease detection. 

Enhancing model robustness against varying environmental 

conditions (lighting, background noise). 
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