SIIF Rating: 8.448

PLANT ORGANIZATION

Purusothaman M,Sakthi Vel K,Mohana Arjun S,Buvana M

INFORMATION TECHNOLOGY SRI SHAKTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY COIMBATORE

Abstract - In the realm of precision agriculture and plant sciences, efficient monitoring of plant health and growth is pivotal. This paper presents the design and implementation of an advanced plant scanner that leverages modern technologies such as multispectral imaging, machine learning, and Internet of Things (IoT) connectivity to provide real-time analysis and monitoring of plant conditions. The plant scanner integrates high-resolution cameras and sensors capable of capturing a wide range of wavelengths, from visible to near-infrared, to detect subtle changes in plant physiology that are indicative of stress, disease, or nutrient deficiencies.

Volume: 08 Issue: 06 | June - 2024

Key Words: real-time analysis, food security, multispectral imaging, machine learning, Internet of Things (IoT)

1.INTRODUCTION :

An advanced plant scanner, which integrates multispectral imaging, machine learning, and Internet of Things (IoT) connectivity, represents a significant innovation in this field. Multispectral imaging enables the capture of data across multiple wavelengths, providing detailed information about plant health that is invisible to the naked eye. This technology can detect early signs of stress, disease, and nutrient deficiencies, allowing for timely and targeted interventions. Machine learning algorithms play a crucial role in analyzing the vast amounts of data collected by the scanner. These algorithms can identify patterns and anomalies with high accuracy, providing insights that are both actionable and

reliable. The incorporation of IoT connectivity ensures that the data is seamlessly transmitted to a central server, where comprehensive analyses are conducted. This connectivity also allows for real-time monitoring and decision-making, which is crucial for effective crop management.

ISSN: 2582-3930

2. working and principle:

The core technology of the plant scanner revolves around multispectral imaging, which is essential for its advanced capabilities. Multispectral imaging captures data across various wavelengths, providing a comprehensive view of plant health. The plant scanner utilizes high-resolution cameras with filters to capture images in the visible, nearinfrared (NIR), and shortwave-infrared (SWIR) spectra. These images reveal intricate details about the plant's physiological state, such as chlorophyll content, water stress, and the presence of pathogens. The hardware components of the plant scanner include a suite of cameras and sensors designed to capture high-resolution multispectral images. These components can be mounted on drones or fixed platforms, allowing for flexible deployment across various terrains and crop types. The imaging system is complemented by GPS and inertial measurement units (IMUs) to ensure precise geolocation and movement tracking.

Machine learning algorithms are vital for processing the vast amounts of data generated by the multispectral imaging system. These algorithms analyze the spectral data to identify patterns and classify plant conditions with

© 2024, IJSREM | www.ijsrem.com | Page 1

Volume: 08 Issue: 06 | June - 2024

SJIF Rating: 8.448

high accuracy. Before analysis, the raw data undergoes preprocessing to remove noise and correct for environmental factors such as lighting conditions and sensor calibration, ensuring that the data fed into the machine learning models is clean and reliable.

Fig-1: Home Page

Fig -2: Login page

Fig-3:Dashboard page

Fig-4:Feedback Page

ISSN: 2582-3930

About u

Filt ampairment is a strate software platform the some multiple inflation and the distinct for the inflation and insurance of plant proper. It is used the word's larger below-drive) ownerscen, with everal million concepts of plant proper. It is used to the word's larger below-drive) ownerscen, which everal million concepts the insurance proper plant is a possible to the concepts of plant proper plant. It is possible to the other means the concert can alter their developers, so that all made to be exceeded by their constant and word with the All to state of proper plant. It is possible to exclude the configuration of the possible to the possible to

This organization application. Trainits to receptor interviets. Figure composition that collidated even a billion plant integrit contention of Only a small properties, however, as a result, in death of the contention with the contention of the content of

Fig-5:About Page

3. CONCLUSIONS

A plant scanner is an invaluable tool for both amateur gardeners and professional botanists. It provides quick, accurate identification of plants, assisting users in proper plant care, pest management, and disease prevention. By leveraging advanced technologies such as image recognition and machine learning, these devices enhance our understanding and appreciation of plant biodiversity. The integration of plant scanners into mobile applications has made plant identification more accessible than ever, fostering a greater connection between people and nature and promoting ecological awareness.

ACKNOWLEDGEMENT

We extend our heartfelt gratitude to our honourable Chairman, **Dr. S. Thangavelu** for providing a wonderful platform to educate our minds, inculcate ideas and implement the technological changes in the real-world environment.

Deepest thanks to our dynamic Joint Secretary, **Mr. T. Sheelan** for monitoring the infrastructure and for providing the work atmosphere to implement the project and providing an excellent and maintaining the decorum and discipline of the students.

We are tremendously thankful to our beloved Principal, **Dr.D. Elangovan,M.E.,Ph.D.** for his incredible support to make us follow ethics and morality in our life and also for allocating sufficient time and resources.

© 2024, IJSREM | www.ijsrem.com | Page 2

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

A big salute to our vibrant Head of the Department, **Dr. S. Prakash** for imbibing scope of the project and systematic procedure in execution. We express our genuine thanks for encouraging us throughout the project period to complete it successfully.

Our great thanks to the Project mentor, **M.Buvana** for her ever lasting contribution in making the project a smooth journey and also for her valuable guidance and for making us realize our potential and be successful.

Our great thanks to the Project Co-Ordinator, **Dr. M. Deepa** for her ever lasting contribution in making the final year project phase a smooth journey and also for her valuable guidance and for making us realize our potential and be successful. We also thanks for her kind help and Cooperation throughout the research period to make us a grant successful completion of project.

REFERENCES

- Adao, T., Hruska, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. J. (2017).
 Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry.
 Remote Sensing, 9(11), 1110. DOI: 10.3390/rs9111110.
- 2. Bhargava, A., & Bansal, A. (2018). Fruits and Vegetables Quality Evaluation Using Computer Vision: A Review. *Journal of King Saud University Computer and Information Sciences*, 33(3), 243-257. DOI: 10.1016/j.jksuci.2018.09.022.
- 3. Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. *Remote Sensing*, 7(4), 4026-4047. DOI: 10.3390/rs70404026.
- Lowe, A., Harrison, N., & French, A. P. (2017). Hyperspectral Image Analysis Techniques for the Detection and Classification of the Early Onset of Plant Disease and Stress. *Plant Methods*, 13(1), 80. DOI: 10.1186/s13007-017-0233-z.

© 2024, IJSREM | www.ijsrem.com | Page 3